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Abstract. Weiss and, independently, Mazzeo and Montcouquiol re-
cently proved that a 3-dimensional hyperbolic cone-manifold (possibly with
vertices) with all cone angles less than 2π is infinitesimally rigid. On the other
hand, Casson provided 1998 an example of an infinitesimally flexible cone-
manifold with some of the cone angles larger than 2π.

In this paper several new examples of infinitesimally flexible cone-manifolds
are constructed. The basic idea is that the double of an infinitesimally flexible
polyhedron is an infinitesimally flexible cone-manifold. With some additional
effort, we are able to construct infinitesimally flexible cone-manifolds without
vertices and with all cone angles larger than 2π.

1. Introduction.

1.1. Hyperbolic cone-manifolds.
A hyperbolic cone-manifold M is a manifold with metric structure that is hy-

perbolic away from a codimension 2 subcomplex Σ and exhibits cone-like singulari-
ties at the points of Σ. In this paper, only 3-dimensional hyperbolic cone-manifolds
are studied. Thus, the singular locus Σ is a graph.

By definition, at a point x ∈ Σ, a cone-manifold is locally isometric to a
hyperbolic cone over a spherical cone-surface Lx homeomorphic to the sphere, see
[BLP05]. The cone-surface Lx is called the link of x. If Lx has exactly two cone-
points, then x is said to lie on an edge of Σ; if Lx has more than two cone-points,
then x is called a vertex of Σ.

Sometimes, when speaking about cone-manifolds, one means only those whose
singular locus is a 2-codimensional submanifold, that is a disjoint union of closed
curves in our case. We will use the term cone-manifolds without vertices to describe
this situation; general cone-manifolds will be sometimes called cone-manifolds with
vertices.

An alternative way of viewing cone manifolds is as follows. Take a collection of
hyperbolic polyhedra and glue them isometrically face-to-face so that the resulting
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space K is homeomorphic to a 3-manifold. Then K is clearly a hyperbolic cone-
manifold. All examples of cone-manifolds in this paper will be of this kind.

Conversely, it is plausible that every cone-manifold has a geodesic triangula-
tion (i.e. can be glued from simplices). But we have not found a proof of this in
the literature.

1.2. Rigidity theorems for cone-manifolds.
Compact hyperbolic manifolds of dimension 3 and higher are known to be

globally rigid (Mostow rigidity theorem) and infinitesimally rigid (Calabi-Weil
rigidity theorem). By constrast, it is easy to find a smooth family of hyperbolic
cone-manifolds, say, by changing the shapes of polyhedra in the last paragraph
of Section 1.1. As a consequence, cone-manifolds are neither globally nor in-
finitesimally rigid in regard to deformations that preserve only the topology of the
manifold and of its singular locus.

One can reduce degrees of freedom by requiring all cone angles at the singular
locus to be constant during the deformation. This leads to remarkable rigidity
results. Hodgson and Kerckhoff [HK98] showed that, under this restriction, 3-
dimensional hyperbolic cone-manifolds without vertices are infinitesimally rigid
if all cone angles are less than 2π. Weiss [Wei05] proved the same by allowing
vertices and restricting all cone angles to be less or equal π. And recently, Weiss
[Wei] and Mazzeo and Montcouquiol [MM] extended this to cone-manifolds with
vertices and cone-angles less than 2π.

Infinitesimal rigidity can be used to prove local rigidity, which means that
cone-manifolds (with restrictions on the singular locus mentioned above) are lo-
cally parametrized by their cone angles, [HK98], [Mon], [Wei]. Hodgson and
Kerckhoff [HK98] suggested how global rigidity can be derived from local rigid-
ity, if one is able to extend “small” deformations to a “big” one that makes all cone
angles vanish at the end. Kojima [Koj98] accomplished this, under assumption
that all cone angles are less or equal π and that there are no vertices. This was
extended by Weiss [Wei07], to include the case of cone-manifolds with vertices.
It is an open question whether cone-manifolds with cone angles less than 2π are
globally rigid.

Without any restrictions on the values of cone angles, Hodgson and Kerckhoff
[HK08] proved infinitesimal and local rigidity for cone-manifolds without vertices
provided that the singular locus has a tubular neighborhood of radius at least
arctanh 1/

√
3.

Shortly after the first rigidity result appeared, Casson [Cas98] presented an
example of an infinitesimally flexible cone-manifold with vertices and with some
cone angles bigger than 2π. This coexistence of rigidity theorems and flexibility
examples raised the question where the border between them lies. For example, it
was asked if all cone-manifolds with cone angles larger than 2π are infinitesimally
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rigid.

1.3. Results of the present paper.
In this paper we present a series of examples of infinitesimally flexible cone-

manifolds, inferring that the result of Weiss [Wei] and Mazzeo and Montcouquiol
[MM] is the best possible, in some sense. Besides, we show that global rigidity
fails if cone angles larger than 2π are allowed.

The main idea is that doubling an infinitesimally flexible polyhedron P pro-
duces an infinitesimally flexible cone-manifold. An infinitesimal deformation of
the double is constructed by choosing an infinitesimal isometric deformation on
one copy of P and the opposite deformation on the other copy. As the variations
of dihedral angles cancel each other, the cone angles of the double are stable.

In order to construct examples of infinitesimally flexible hyperbolic polyhedra,
we use an elegant theorem of Pogorelov: a hyperbolic polyhedron is infinitesimally
flexible if and only if its image in a Klein model is infinitesimally flexible as a
Euclidean polyhedron. Several examples of infinitesimally flexible Euclidean poly-
hedra are known, the simplest ones being combinatorially isomorphic to the octa-
hedron. This leads to the following theorem, see Section 2.

Theorem A. There exists a compact infinitesimally flexible hyperbolic cone-
manifold homeomorphic to the sphere with the skeleton of the octahedron as sin-
gular locus.

A Euclidean polyhedron P whose vertices lie outside the ball of the Klein
model can be viewed as a non-compact hyperbolic polyhedron PH . By truncating
the infinite ends, we obtain a compact polyhedron PH

tr . If P is infinitesimally
flexible, then an analog of Pogorelov’s theorem implies that PH

tr is infinitesimally
flexible in the class of truncated hyperideal polyhedra. By gluing four copies of PH

tr

together, we obtain a cone-manifold without vertices that is again infinitesimally
flexible. If the gluing is done in a “doubling and redoubling” fashion, then each
edge of P gives rise to a component of the singular locus of the manifold. By
modifying the gluing scheme, we can reduce the number of components.

Theorem B. There exist a compact non-orientable infinitesimally flexible
hyperbolic cone-manifold without vertices whose singular locus has three compo-
nents and a compact orientable infinitesimally flexible hyperbolic cone-manifold
without vertices whose singular locus has four components. In both cases, exactly
one of the components has cone angle larger than 2π.

In the light of a result in [HK08] mentioned in Section 1.2, it would be
interesting to compute the injectivity radius of the tube around the singular locus
in our examples. This amounts to computing the minimum distance between edges
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of an infinitesimally flexible hyperideal polyhedron. The result of Hodgson and
Kerckhoff implies that in every infinitesimally flexible hyperideal polyhedron some
pair of edges must have distance at most arctanh 1/

√
3. We don’t know if this

bound is sharp.
Once an infinitesimally flexible cone-manifold without vertices is found, other

examples can be constructed by taking over it a finite-sheeted branched cover
whose branching locus is a subset of the singular locus of the cone-manifold. If the
covering space is “branched enough” over all of the components of the singular
locus with cone angles less than 2π, then all cone angles in the covering space
are larger than 2π. By applying this idea, we prove in Section 3.4 the following
theorem.

Theorem C. There exists a compact infinitesimally flexible hyperbolic cone-
manifold without vertices with all cone angles larger than 2π.

The deaveraging lemma of Pogorelov shows how an infinitesimally flexible
polyhedron gives rise to a pair of non-congruent polyhedra with isometric bound-
aries. With the help of this, we show that global rigidity fails if cone angles larger
than 2π are allowed.

Theorem D. There exist non-isometric compact cone-manifolds M1,M2

with singular loci Σ1,Σ2 such that pairs (M1,Σ1) and (M2,Σ2) are homeomorphic
and the cone angles at all singular segments in M1 are equal to corresponding cone
angles in M2. Besides, M1 and M2 can be chosen arbitrarily close to each other
in the Gromov-Hausdorff metric.

Theorem D follows from Proposition 4.2.

Acknowledgements. I would like to thank Jean-Marc Schlenker for con-
stant interest to this work and for suggestion to use branched covers to prove
Theorem C. I also thank Rafe Mazzeo for an interesting discussion we had on
the subject of this paper, and Grégoire Montcouquiol for pointing out the work
[HK08] and other results.

2. Infinitesimally flexible cone-manifolds with vertices.

2.1. Schönhardt’s twisted octahedron.
Definition 2.1. Let P ⊂ R3 be a polyhedron with triangular faces and

vertex set V = {p1, . . . , pn}. An infinitesimal isometric deformation of P is a map
q : V → R3 such that

d

dt

∣∣∣∣
t=0

dist(pi + tqi, pj + tqj) = 0, (1)
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for all edges pipj of P . Here qi denotes q(pi).
An infinitesimal isometric deformation is called trivial if qi = ξ(pi), for some

Killing field (infinitesimal isometric deformation) ξ of R3.
A polyhedron P is called infinitesimally flexible if it has a non-trivial infinites-

imal isometric deformation.

A simple calculation shows that condition (1) is equivalent to

〈pi − pj , qi − qj〉 = 0. (2)

Example 2.2 (Schönhardt [Scn28], Wunderlich [Wun65]). Let ABC be
an equilateral triangle in R3, and let l be a line that passes through the center of
ABC orthogonally to the plane of the triangle. Let A′B′C ′ be the image of ABC

under a screw motion with axis l and rotation angle π/2. Consider a polyhedron
P bounded by triangles ABC, A′B′C ′, ABC ′, A′BC, AB′C, A′B′C, AB′C ′, and
A′BC ′. The polyhedron P is combinatorially isomorphic to an octahedron, and
has three edges with dihedral angles bigger than π: the edges AB′, BC ′, and CA′,
see Figure 1.

Figure 1. Schönhardt’s twisted octahedron.

Lemma 2.3. The polyhedron from Example 2.2 is infinitesimally flexible.

Proof. Put q(A) = q(B) = q(C) = 0. Let q(C ′) be a vector orthogonal
to the plane ABC ′, and let q(A′) and q(B′) be images of q(C ′) under rotations
by 2π/3 and 4π/3 around l. Clearly, the infinitesimal deformation q preserves in
the first order the side lengths of the triangles ABC ′, A′BC, and AB′C. Let us
show that the side lengths of the triangle A′B′C ′ are also infinitesimally preserved.
Indeed, the plane ABC ′ is easily seen to pass through the center of the triangle
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A′B′C ′. Therefore the vector q(C ′) is tangent to a cylinder with axis l. By
symmetry, the triangle A′B′C ′ undergoes an infinitesimal screw motion with axis
l. Hence, its side lengths are also infinitesimally constant. ¤

2.2. Infinitesimal Pogorelov map.
Infinitesimally flexible hyperbolic polyhedra are defined similarly to Euclidean

ones, see Definition 2.1. We assume qi ∈ TpiH
3 and replace p + tq in (1) by

expp(tq), where

expp : TpH
3 → H3

is the exponential map. Pogorelov [Pog73, Chapter 5] showed that a hyperbolic
polyhedron is infinitesimally flexible if and only if its image in a Klein model is an
infinitesimally flexible Euclidean polyhedron.

Theorem 2.4 (Pogorelov). Let P ⊂ R3 be a Euclidean polyhedron. Take
an arbitrary ball B ⊂ R3 that contains P in its interior, and regard B as a Klein
model of the hyperbolic space H3. Denote by PH ⊂ H3 the hyperbolic polyhedron
that corresponds to P ⊂ B. Then PH is infinitesimally flexible if and only if P is
infinitesimally flexible.

More precisely, there is a canonical way to associate with an infinitesimal
isometric deformation q of P an infinitesimal isometric deformation qH of PH ,
so that qH is trivial if and only if q is trivial.

Pogorelov considered infinitesimal isometric deformations of smooth surfaces,
but his arguments carry over to the polyhedral case.

The correspondence q 7→ qH between infinitesimal isometric deformations of
P and PH is called infinitesimal Pogorelov map. Its existence can be explained by
the fact that infinitesimal flexibility is a projective property, rather than a metric
one, see [Izm09].

By regarding the polyhedron from Example 2.2 as the image of a hyperbolic
polyhedron in a Klein model, we obtain the following statement.

Corollary 2.5. There exists an infinitesimally flexible hyperbolic polyhe-
dron combinatorially equivalent to the octahedron.

Remark 2.6. Note that the infinitesimal Pogorelov map q 7→ qH is not the
identity in the Klein model B. For example, the vectors q(A′), q(B′), and q(C ′)
in the proof of Lemma 2.3 are tangent to a Euclidean cylinder, whereas the corre-
sponding vectors qH(A′), qH(B′), and qH(C ′) will be tangent to an equidistant
surface of the line l in the hyperbolic metric of the Klein model (assuming that
the center of P is the center of the Klein model).
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2.3. Flexibility of the double.
Let P be a hyperbolic polyhedron. Let M be the double of P , that is the

result of gluing P and its isometric copy P ′ along pairs of corresponding faces.
Then M is a hyperbolic cone-manifold homeomorphic to the 3-dimensional sphere,
and its singular locus is the skeleton of P .

Proposition 2.7. The double of an infinitesimally flexible polyhedron is an
infinitesimally flexible cone-manifold with vertices.

A non-trivial infinitesimal deformation of M can be described as follows. Let
q be a non-trivial infinitesimal isometric deformation of P . The deformation q

preserves the edge lengths of P in the first order, but changes the dihedral angles
(otherwise it can be shown that q is trivial). The opposite deformation −q, which
consists of vectors −qi, also preserves the edge lengths. A crucial point is that the
variations of dihedral angles under −q are the negatives of their variations under q.
Thus if M = P ∪ P ′ and we deform P and P ′ according to q and −q respectively,
then the angles around the segments of the singular locus are preserved in the first
order. The resulting deformation is non-trivial, because the links of the vertices
are deformed non-trivially.

Note that this infinitesimal deformation of M preserves not only the angles
around the edges, but also their lengths.

Corollary 2.5 and Proposition 2.7 imply Theorem A.

2.4. Other examples of infinitesimally flexible polyhedra.
There is an elegant description of all infinitesimally flexible octahedra.

Theorem 2.8 (Blaschke [Bla20], Liebmann [Lie20]). Let P ⊂ R3 be a
polyhedron combinatorially isomorphic to the octahedron. Color the faces of P

black and white so that every pair of adjacent faces has different colors. Then P

is infinitesimally flexible if and only if the four black faces intersect at a point or,
equivalently, if the four white faces intersect at a point. Intersection points can lie
at infinity.

For example, on Figure 1 the faces ABC ′, A′BC, AB′C, and A′B′C ′ intersect
at the center of the face A′B′C ′. Figure 2 shows another example, taken from
[Glu75]. It is easy to see that the intersection point of the lines AB and CD is
common to all four black faces.

Corollary 2.9. A hyperbolic polyhedron combinatorially isomorphic to the
octahedron is infinitesimally flexible if and only if its four black faces (see Theo-
rem 2.8) intersect at a point. The intersection point can lie at infinity or beyond
infinity.
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Figure 2. If the points A, B, C, and D lie in one plane,
then this polyhedron is infinitesimally flexible.

Proof. This is a direct consequence of Theorems 2.4 and 2.8. ¤

A generalization of Example 2.2 in a different direction is a twisted antiprism.
A regular antiprism is the convex hull of a regular n-gon C and of its image
C ′ under a screw motion with rotation angle π/n and axis orthogonal to C and
passing through its center. A twisted antiprism is obtained from the regular one by
rotating the base C ′ by π/2 around its center while preserving the combinatorics.
A twisted antiprism has a non-trivial infinitesimal isometric deformation similar
to that described in the proof of Lemma 2.3.

One more example of an infinitesimally flexible polyhedron is Jessen’s orthog-
onal icosahedron, [Gol78].

3. Infinitesimally flexible cone-manifolds without vertices.

3.1. Infinitesimal deformations of truncated hyperideal polyhedra.
Let B ⊂ R3 be a ball, and P ⊂ R3 be a polyhedron such that all vertices

of P lie outside B, and all edges of P intersect the interior of B. Regard B as
a Klein model of H3. Then the intersection of P with the interior of B is the
image of a hyperideal polyhedron PH ⊂ H3. For every vertex pi of P , denote
by p∗i a plane in R3 polar to pi with respect to the boundary sphere of B. The
corresponding hyperbolic plane, that we also denote p∗i , intersects the boundary
of the polyhedron PH orthogonally. The plane p∗i cuts off an infinite end of PH

incident to the (hyperideal) point pi. By cutting off all infinite ends we obtain a
truncated hyperideal polyhedron which we denote by PH

tr .
Let pipj be an edge of the polyhedron P . Since pipj intersects the interior

of B, the hyperbolic planes p∗i and p∗j don’t intersect each other. It follows that



Infinitesimally flexible hyperbolic cone-manifolds 589

the truncated hyperideal polyhedron PH
tr is combinatorially isomorphic to P with

small neighborhoods of vertices removed. See Figure 3 for the combinatorial struc-
ture of a truncated hyperideal octahedron.

Denote by pij the vertex of PH
tr that is the intersection point of the plane p∗i

with the edge pipj of P . Let us refer to the faces of PH
tr that are subsets of faces

of P as old faces, and to the faces that span the planes p∗i as new ones. Similarly,
if an edge is a part of an edge of P , call it old; call all the other edges, that is all
edges of new faces, new. Note that the dihedral angles at new edges are all equal
to π/2.

Assume that all faces of the polyhedron P are triangular. We are going
to define infinitesimal deformations of PH

tr in the class of truncated hyperideal
polyhedra.

Definition 3.1. Let PH
tr be a truncated hyperideal polyhedron such that

all faces of P are triangles. An infinitesimal deformation of PH
tr in the class of

truncated hyperideal polyhedra is an assignment pij 7→ qij ∈ Tpij
H3 such that if

all of the vertices move along trajectories pij(t) = exppij
(tqij), then

( i ) all faces of PH
tr remain planar;

( ii ) all angles between old and new faces remain π/2.

An infinitesimal deformation is called isometric, if in addition

(iii) lengths of all old edges are constant in the first order.

A truncated hyperideal polyhedron PH
tr is called infinitesimally flexible if it

posesses an infinitesimal isometric deformation (in the class of truncated hyperideal
polyhedra) that is not a restriction of a Killing field.

Some remarks are in order. First, it seems more consistent to require in
conditions (i) and (ii) that faces remain flat and angles are preserved in the first
order only. However, it is easy to see that if several of the vertices pij(t) remain
infinitesimally coplanar, then they just remain coplanar. Similarly, if a dihedral
angle has zero derivative under this deformation, then this angle is constant.

Second, condition (iii) implies that lengths of new edges are also constant in
the first order. Indeed, each old face of PH

tr is a right-angled hexagon, and lengths
of three pairwise disjoint edges determine the lengths of the other three edges.
Moreover, the Jacobian of the map that associates three new lengths to three old
lengths is non-degenerate. This implies our assertion.

And third, if an isometric infinitesimal deformation is non-trivial, then some
angles of new faces must have a non-zero variation. That is, an isometric infinites-
imal deformation in the class of truncated hyperideal polyhedra is isometric only
on the old part of the boundary.
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3.2. De Sitter space and infinitesimal Pogorelov map.
Let

〈x, y〉(3,1) = −x0y0 + x1y1 + x2y2 + x3y3

be the scalar product in the Minkowski space R3,1. We identify H3 with its
hyperboloid model:

H3 =
{
x ∈ R3,1 | 〈x, x〉(3,1) = −1, x0 > 0

}
,

with the induced metric. The de Sitter space is the one-sheeted hyperboloid with
the induced metric:

dS3 =
{
x ∈ R3,1 | 〈x, x〉(3,1) = 1

}
.

The central projection from the origin maps H3 to the interior of the unit disk on
the hyperplane {x0 = 1}, and this yields the Klein model. The same projection
maps the upper half of the de Sitter space to the exterior of the unit disk, which
we thus consider as the Klein model of the de Sitter space.

Let P be a polyhedron as described at the beginning of Section 3.1. Then
vertices of P represent points in the de Sitter space. Polyhedron P itself is the
image of a hyperbolic-de Sitter polyhedron PHdS . We define an infinitesimal de-
formation of PHdS as a collection of vectors qi ∈ Tpi

dS3. Every infinitesimal
deformation of PHdS induces an infinitesimal deformation of PH

tr in the class of
truncated hyperideal polyhedra.

Lemma 3.2. Every infinitesimal deformation of PH
tr in the class of truncated

hyperideal polyhedra is induced by an infinitesimal deformation of PHdS.
An infinitesimal deformation of PH

tr is isometric if and only if for the corre-
sponding deformation of PHdS we have

〈pi − pj , qi − qj〉(3,1) = 0, (3)

for all edges ij of P .

Proof. Consider a new face of PH
tr . By condition (i) in Definition 3.1, the

face remains planar during the deformation. The point dual to the plane of the
face traces a trajectory pi(t) in the de Sitter space. Since, by condition (ii), all
adjacent old faces remain orthogonal to the new face, their planes pass through
the point pi(t). Thus the vectors qi = d/dt |t=0 pi(t) induce the given infinitesimal
deformation of PH

tr .
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Since the old edges of PH
tr are orthogonal to the new faces they join, we have

for their lengths

dist(pij , pji) = dist(p∗i , p
∗
j ).

On the other hand, it is well known that

− cosh dist(p∗i , p
∗
j ) = 〈pi, pj〉(3,1).

Therefore condition (ii):

d

dt

∣∣∣∣
t=0

dist(pij(t), pji(t)) = 0

is equivalent to

d

dt

∣∣∣∣
t=0

〈pi(t), pj(t)〉(3,1) = 0

which due to 〈pi, qi〉(3,1) = 〈pj , qj〉(3,1) = 0 can be rewritten as

〈pi − pj , qi − qj〉(3,1) = 0. ¤

Remark 3.3. The points pij(t), by Definition 3.1, move with constant veloc-
ities along geodesics. The corresponding points pi(t) don’t have constant velocities
in general.

It is natural to call an infinitesimal deformation {qi ∈ TpidS3} of PHdS

isometric if the condition (3) holds. As usual, we say that a deformation is trivial if
it is a restriction of a Killing field on dS3. Thus we come to a notion of infinitesimal
rigidity of hyperbolic-de Sitter polyhedra.

Proposition 3.4. A hyperbolic-de Sitter polyhedron PHdS is infinitesimally
flexible if and only if the corresponding Euclidean polyhedron P is infinitesimally
flexible.

The theorem can be proved either by repeating the arguments from [Izm09,
Section 4.1] or by exhibiting a formula that relates infinitesimal isometric defor-
mations of PHdS to those of P , [Scl05, Section 1].

Corollary 3.5. There exists a truncated hyperideal octahedron infinitesi-
mally flexible in the sense of Definition 3.1.
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Proof. Schönhardt’s twisted octahedron (Example 2.2) can be inscribed
in a ball. By taking a ball of a slightly smaller radius and with the same center,
we obtain a hyperideal polyhedron. Its truncation is infinitesimally flexible due to
Lemma 3.2 and Proposition 3.4. ¤

3.3. Doubling the double.
Let PH

tr be a truncated hyperideal polyhedron. Take its double D along old
faces. Then D is a cone-manifold with geodesic boundary: old edges of PH

tr give
rise to singular segments with endpoints on the boundary, and the boundary is
geodesic because all angles between old and new faces are π/2. It follows that the
double M of D is a cone-manifold without vertices. Components of the singular
locus of M are in one-to-one correspondence with old edges of PH

tr , with cone
angles twice the dihedral angles.

Proposition 3.6. If the polyhedron PH
tr is infinitesimally flexible in the

class of truncated hyperideal polyhedra, then M is an infinitesimally flexible cone-
manifold.

Proof. Deform one half of D according to a non-trivial infinitesimal de-
formation q of PH

tr , and the other half according to the opposite deformation −q.
This gives an infinitesimal deformation of D that preserves the angles around the
segments of the singular locus, in the first order. The boundary of D undergoes
a non-isometric infinitesimal deformation but remains geodesic. Thus if we take
the same infinitesimal deformation on an isometric copy of D, then together they
yield an infinitesimal deformation of M that preserves the angles around the com-
ponents of the singular locus. Note that the lengths of the components of the
singular locus are also preserved. ¤

If we take for PH
tr an infinitesimally flexible truncated octahedron that exists

by Corollary 3.5, then the singular locus of the manifold M has 12 components.
For a symmetric truncated octahedron described in the proof of Corollary 3.5,
the gluing pattern can be modified so that to obtain an infinitesimally flexible
manifold with less components of the singular locus.

A symmetric infinitesimally flexible truncated octahedron has three types of
dihedral angles, see Figure 3. Letters on the new faces correspond to the hyperideal
vertices, see Figure 1. Note that all new faces are equal, equally oriented, and un-
dergo the same infinitesimal deformation when PH

tr is isometrically infinitesimally
deformed.

Example 3.7. Instead of doubling D, identify its boundary components
pairwise. Namely, the double of the face A is glued to the double of the face A′

and so on, and we take care that a face of PH
tr is each time glued to a face of PH

tr
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Figure 3. A schematic drawing of truncated twisted octahedron.
Edges with equal dihedral angles are drawn with lines of same type.

but not to a face of its double. Then the gluing is consistent with an infinitesimal
deformation of D that preserves the angles around the singular locus.

The same gluing pattern can be described as first identifying antipodal pairs
of new faces of PH

tr and then doubling the result. After the first step we obtain
a non-orientable infinitesimally flexible manifold with polyhedral boundary. The
boundary has no vertices and exactly three edges as can be seen on Figure 3 by
tracing the identifications of edges’ endpoints.

Example 3.8. The two-fold orientable cover of the previous example can be
described as follows. We take two copies of D and glue them along the antipodal
pairs of boundary components. For each antipodal pair, there are two possible
gluings, and we choose them consistently, so that each copy of PH

tr is glued along its
new faces to only one of the other copies. This ensures that infinitesimal isometric
deformations ±q on all four copies can be chosen so that they fit together and
leave the cone angles unchanged in the first order.

By tracing the gluing with the help of Figure 3, it can be shown that the
singular locus consists of four components, and only one of them has cone angle
bigger than 2π.

Examples 3.7 and 3.8 prove Theorem B.

3.4. An example with all cone angles larger than 2π.
At the beginning of Section 3.3 we described a cone-manifold M glued from

four copies of a truncated hyperideal polyhedron PH
tr . First we double PH

tr along
old faces to obtain a cone-manifold with boundary D, then we double D. To
obtain a cone-manifold with all angles larger than 2π, we will construct a cover of
D branched over the singular segments with cone angles less than 2π.

Example 3.9. By Lemma 3.10, there exists an infinitesimally flexible trun-
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cated hyperideal octahedron PH
tr with all angles larger than π/7. Let D be the

double of PH
tr along old faces, and let Σ+ ⊂ D be the union of singular segments

with cone angles less than 2π. The space D \ Σ+ is homotopically equivalent to
the complement of the skeleton of a triangular prism in S3. By Lemma 3.11, there
exists a seven-fold cover

D̂ \ Σ+ → D \ Σ+

such that links of all components of Σ+ are covered cyclically. Then the completion
D′ = D̂ \ Σ+∪Σ+ is a cone-manifold with boundary and with cone angles around
the components of Σ+ seven times larger than those in D. Since all cone angles
in D are larger than 2π/7, all cone angles in D′ are larger than 2π.

Let M ′ be the double of D′. Then M ′ is a cone-manifold without boundary
and with all cone angles larger than 2π. Since M ′ is a cover of M branched over
a subset of the singular locus, infinitesimal flexibility of M implies infinitesimal
flexibility of M ′.

Lemma 3.10. For every ε > 0, there exists an infinitesimally flexible trun-
cated hyperideal octahedron with all dihedral angles larger than (π/6)− ε.

Proof. It suffices to prove this for ideal octahedra, because slightly pushing
the vertices outwards changes the dihedral angles only a little. Consider an ideal
octahedron Pid obtained from Example 2.2. In the Poincaré half-space model,
vertices of Pid are the vertices of two concentric regular triangles, with pairwise
orthogonal sides, see Figure 4, left. A face of Pid intersects the boundary plane
of the model in a circle, and the dihedral angle between two faces is equal to the
angle between corresponding circles. On Figure 4, the four angles adjacent to the
vertex A are marked.

The ideal polyhedron Pid depends on one parameter, the relative size of the

Figure 4. Dihedral angles of an ideal twisted octahedron.
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triangles. As this parameter tends to infinity, the dihedral angles of Pid tend to
π/6, π/3, π/3, and 7π/6, see Figure 4, right. Thus, for a sufficiently large value
of the parameter, all angles are larger than (π/6)− ε. Lemma follows. ¤

Lemma 3.11. Let Γ ⊂ S3 be the skeleton of a triangular prism. There
exists a seven-fold cover of S3 \ Γ such that the link of every edge of Γ is covered
cyclically (that is, the preimage of a meridional curve of every edge has one com-
ponent).

Proof. It suffices to construct a homomorphism

φ : π1(S3 \ Γ) → Z7

that maps every meridional element of π1(S2 \ Γ) to a non-zero element of Z7.
The fundamental group of S3 \ Γ is freely generated by the meridians a1, . . . , a4

of a four-cycle in Γ, all the other meridians being words of length two, see Figure
5. Let φ be a homomorphism defined by sending a1, a2, and a4 to 1 ∈ Z7, and
a3 to 2 ∈ Z7. Then the images of all meridians are contained in the set {1, 2, 3}.
Lemma is proved. ¤

Figure 5. Meridional elements of π1(S
3 \ Γ).

4. Pairs of non-isometric cone-manifolds with same cone angles.

4.1. Deaveraging
Lemma 4.1 (Pogorelov). Let P be a Euclidean polyhedron with triangular

faces and let q be an infinitesimal isometric deformation of P , see Definition 2.1.
Denote by Pt a polyhedron with the same combinatorics as P and with vertices
pi(t) = pi + tqi instead of pi. Then, for all t > 0, the pairs of corresponding edges
of Pt and P−t have equal lengths. Besides, q is non-trivial if and only if polyhedra
Pt and P−t are non-congruent.
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To avoid self-intersections of Pt, Lemma 4.1 can be stated for all sufficiently
small t.

The equalities

dist(pi(t), pj(t)) = dist(pi(−t), pj(−t))

for all edges ij of P follow easily from (2). Pogorelov uses in [Pog73, Chapter 5]
the inverse of Lemma 4.1 in the smooth case, but the idea transfers to the discrete
situation easily.

Finally, Lemma 4.1 has a hyperbolic and a hyperbolic-de Sitter analogs, with

pi(t) = exppi
(tqi).

4.2. Existence of non-isometric pairs.
Using the hyperbolic version of Lemma 4.1, we now construct three families

of cone-manifolds. Let P be a compact hyperbolic polyhedron with a non-trivial
infinitesimal isometric deformation q, and let Pt and P−t be polyhedra constructed
in Lemma 4.1. Denote

Pt ∪∂ Pt = M1
t ,

Pt ∪∂ P−t = M2
t , (4)

P−t ∪∂ P−t = M3
t .

Here ∪∂ means gluing of two polyhedra along their boundaries. Denote by M i
0 the

double P ∪∂ P . The manifold M i
0 does not depend on the choice of the index i

and can be viewed as a common element of the three families (4).
Specifically, consider a symmetric twisted octahedron obtained from a Eu-

clidean polyhedron in Example 2.2 by placing it in the center of a Klein model.
By taking Euclidean polyhedra of different widths and heights, we obtain a two-
parameter family of hyperbolic twisted octahedra P (a, b). Here a stands e.g. for
the edge length of the base, and b for the distance between the bases. As in
the previous paragraph, for each sufficiently small t > 0 we have cone-manifolds
M i

t (a, b), i = 1, 2, 3.

Proposition 4.2. For every ε > 0 and every pair of intervals A,B ⊂ R+

there exist t1, t2 ∈ (0, ε], a1, a2 ∈ A, and b1, b2 ∈ B such that cone-manifolds
M i

t1(a1, b1) and M j
t2(a2, b2), for some i 6= j, have same cone angles.

Proof. Consider a space of cone-manifolds
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M =
{
M i

t (a, b) | t ∈ [0, ε], a ∈ A, b ∈ B, i ∈ {1, 2, 3}}.

We have

M ≈ A×B × Y ≈ D2 × Y, (5)

where Y is a “triod”, the topological space homeomorphic to the union of three
copies of [0, 1] with all exemplars of 0 identified.

Due to the symmetry of P (a, b), the singular segments of each of the cone-
manifolds M i

t (a, b) split into three groups according to the values of cone angles
around them. Thus we have a continuous map

M → R3,

and we have to show that this map is not injective. But it cannot be injective due
to (5). Proposition is proved. ¤

By deaveraging an infinitesimally flexible hyperideal polyhedron, one can
prove existence of non-isometric pairs of cone-manifolds without vertices and with
same cone angles. By taking a suitable branched cover as in Section 3.4, all cone
angles can be made larger than 2π.
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