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Abstract. In this paper, for any pointed map f : X → Y between finite
type nilpotent CW-complexes, we obtain L∞ and Lie models of map∗f (X, Y ),

the pointed space of based maps homotopic to f , in terms of Lie algebras
constructed from the Quillen models of X and Y . The main advantage of
our approach is to allow X to be an infinite dimensional CW-complex, in
which case map∗f (X, Y ) has no longer the homotopy type of a finite type CW-

complex.

1. Introduction.

The notion of L∞ algebra or strongly homotopy Lie algebra was introduced
in the context of deformation theory of algebraic structures as a generalization of
classical differential graded Lie algebras [22]. Since then, the geometrical trans-
lation of algebraic properties of these algebraic structures have been successfully
applied in many situations. Interesting examples are the proof by M. Kontsevich
of the Formality Conjecture on Poisson manifolds [14], and the L∞ structure de-
fined by M. Chas and D. Sullivan on the equivariant free loop space of a manifold
[8].

In the same spirit as in rational homotopy theory differential graded Lie al-
gebras are realized by rational spaces, L∞ algebras can also be realized or “inte-
grated”, modeling thus the rational homotopy type of a given space. [10], [12].

On the other hand, based on the work of Haefliger [11], models for the ratio-
nal homotopy type (or for the rational homotopy groups) of the mapping space
map∗f (X, Y ) have been obtained in different contexts [4], [1], [6] when X is a finite
complex. By map∗f (X, Y ) we denote the pointed space of based maps homotopic
to a given f : X → Y .
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Moreover, starting from [23, Section 11], in which Sullivan interprets the
rational homotopy type of the classifying space Baut1(X) in terms of derivations
of the model of X, it has been of interest to model, also in terms of derivations,
homotopical features of these mapping spaces. See for instance [5], [18], or [7] in
which this approach has been successfully applied to the description of the rational
homotopy of the fixed and homotopy fixed point set of an S1 action on a given
space X.

However, all this work concerns the case when X is a finite nilpotent CW-
complex in which case [20] map∗f (X, Y ) is a nilpotent space of finite type.

In this paper, for a given map f : X → Y between finite type nilpotent
CW-complexes (non necessarily finite), we obtain explicit Lie and L∞ models
of map∗f (X, Y ) (which is no longer of finite type) in terms of derivations between
the Quillen models of X and Y .

More precisely, let L be a Quillen minimal model for X and C be a finite type
graded differential coalgebra model for X. Then we have a quasi-isomorphism
ϕ : L → L (C) where L (C) denotes the Quillen functor on C (see Section 2).
Now let γ : L (C) → L′ be a Quillen model for f . Then, the Lie bracket in L′

and the coalgebra structure on C induce a Lie bracket on the graded vector space
s−1Derγ(L (C), L′). We prove (see Theorems 3.2, 4.1 and 5.2 in the text):

Theorem 1. When X is a finite nilpotent complex, then:

1. The differential graded Lie algebra s−1Derγ(L (C), L′) is a Lie model for
map∗f (X, Y ).

2. There is a L∞ structure on s−1Derγϕ(L,L′) for which it becomes a L∞ model
for map∗f (X, Y ).

When X is a finite type nilpotent (non necessarily finite) CW-complex, then:

1. H∗(s−1Derγϕ(L,L′)) ∼= π∗Ω(map∗f (X, Y )) as graded Lie algebras.
2. The universal cover of s−1Derγ(L (C), L′) is a Lie model for the universal

cover of map∗f (X, Y )
3. The universal cover of s−1Derγϕ(L,L′) is a L∞ model for the universal cover

of map∗f (X, Y ).

As an example we then describe the homotopy type of map∗c(BS1
Q, Y ) for

any rational space Y , with c denoting the constant map. More generally, for
any formal space X and any coformal space Y , both finite type 1-connected
CW-complexes, map∗c(X, Y ) is a coformal space whose homotopy Lie algebra is
Hom(H∗(X;Q), π∗ΩY ⊗Q).

We also deduce a splitting result for certain mapping spaces which generalizes
[15, Theorem 1.2]. Suppose that X and Y are finite type nilpotent CW-complexes
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(non necessarily finite) and let α ∈ π∗(X)⊗Q be an iterated Whitehead bracket of
length n ≥ nilπ∗(Y )⊗Q. Then, any f : X → Y extend to a map f : X ∪α ek+1 →
YQ and we prove the following in which m̃ap∗f (X, Y ) denotes the universal cover
of map∗f (X, Y )) and nilπ∗(Y ) ⊗Q is the length of the longest non zero iterated
Whitehead bracket in π∗(Y )⊗Q.

Proposition 1. Let α ∈ π∗(X)⊗Q be a Whitehead bracket of length n ≥
nilπ∗(Y )⊗Q. Then:

(1) m̃ap∗f (X ∪α ek+1, Y )Q ' m̃ap∗f (X, Y )Q × Ωk+1YQ.
(2) Moreover, for any q ≥ 1,

πq map∗
f

(
X ∪α ek+1, Y

)⊗Q ∼=
(
πq map∗f (X, Y )⊗Q

)⊕ (
πqΩk+1Y ⊗Q

)
.

2. L∞ algebras.

For a basic compendium of known properties of L∞ algebras we refer to [16]
or [17]. Also, in [14], the algebraic behavior of these structures is nicely introduced
as a result of their geometrical counterpart. Here, we simply recall the basic facts
we shall need.

Definition 1. An L∞ algebra or sh-Lie algebra (sh stands for strongly
homotopy) is a graded vector space L endowed with a system of linear maps `k

(denoted also by [ , . . . , ]), k ≥ 0, of degree k − 2

`k = [ , . . . , ] : ⊗k L → L

which satisfy:
(1) `k are skew-symmetric, i.e., for any k-permutation σ,

[xσ(1), . . . , xσ(k)] = sgn(σ)εσ[x1, . . . , xk],

where εσ is the sign given by the Koszul convention and sgn(σ) is the signature of
σ.

(2) The following generalized Jacobi identities hold:

∑

i+j=n+1

∑

σ∈S(i,n−i)

sgn(σ)εσ(−1)i(j−1)`j

(
`i(xσ(1), . . . , xσ(i)), xσ(i+1), . . . , xσ(n)

)
= 0.

By S(i, n− i) we denote the (i, n− i) shuffles whose elements are permutations σ

such that σ(1) < · · · < σ(i) and σ(i + 1) < · · · < σ(n).
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In particular (L, `1) is a differential vector space and `2 = [ , ] is a skew-
symmetric operation for which `1 satisfies the usual Leibniz rule and the Jacobi
identity up to the homotopy given by `3. Thus a differential graded Lie algebra is
the same as an L∞ algebra for which `k = 0 for k ≥ 3.

The lower central series of an L∞ algebra L is, as in the classical setting,
defined inductively by F 1L = L and, for i > 1,

F iL =
∑

i1+···+ik=i

[
F i1L, . . . , F ikL

]
.

We say that L is nilpotent if F iL = 0 for i > i0 for some i0.
On the other hand, recall that the free commutative algebra ΛV generated

by the graded vector space V has a structure of cocommutative graded coalgebra
whose comultiplication ∆ is defined as the unique morphism of algebras for which
every generator v ∈ V is primitive, i.e., ∆(v) = v ⊗ 1 + 1 ⊗ v. Explicitly, the
reduced diagonal is given by

∆(v1 ∧ · · · ∧ vn) =
n−1∑

j=1

∑

σ∈Sn

εσ(vσ(1) ∧ · · · ∧ vσ(j))⊗ (vσ(j+1) ∧ · · · ∧ vσ(n)).

This structure is naturally augmented by ε : ΛV → Q, ε(Λ+V ) = 0, ε(1) = 1, and
coaugmented by Q = Λ0V . It is the cofree cocommutative coalgebra generated by
V . This terminology is due to the following:

For a general graded coalgebra C augmented by ε : C → Q and coaugmented
by Q → C, define the n-th reduced diagonal inductively by ∆

(n)
= (∆ ⊗ 1C ⊗

· · · ⊗ 1C)∆
(n−1)

: C → ⊗n+1C with ∆
(0)

= 1C and ∆
(1)

= ∆. Call C primitively

cogenerated if C = ∪n ker∆
(n)

.
Then, given a primitively cogenerated cocommutative coalgebra C and a de-

gree zero linear map f : C → V there exists a unique morphism of coalgebras
ϕ : C → ΛV such that πϕ|C = f . Here, π : ΛV → V denotes the obvious projec-
tion. Indeed, if we consider the linear maps fk : ⊗k C → ΛkV , fk(c1⊗ · · · ⊗ ck) =
1/k!f(c1) ∧ · · · ∧ f(ck), define ϕ(1) = 1 and ϕ(c) =

∑
k≥0 fk+1∆

(k)
(c), for c ∈ C.

It is also worth remarking that if M is a bi-comodule over ΛV then there is a
natural isomorphism of graded vector spaces Coder(M, ΛV ) ∼= Hom(M, V ), given
by θ 7→ πθ. The inverse, for the special case M = ΛV is given as follows: decom-
pose any linear map of arbitrary degree h : ΛV → V as

∑
k h(k), h(k) : ΛkV → V .

For each k consider the coderivation θk : ΛV → ΛV :
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θk(v1 ∧ · · · ∧ vn) =
∑

1≤i1<···<ik≤n

±h(k)(vi1 ∧ · · · ∧ vik
) ∧ v1 ∧ . . . v̂i1 . . . v̂ik

. . . ∧ vn.

Then, in the isomorphism above the map h is sent to the coderivation
∑

k θk.

Proposition 2 ([16], [17]). L∞ algebra structures on a graded vector space
L are in bijective correspondance with codifferentials on the coalgebra ΛsL.

Proof. As this is standard, we only sketch this equivalence:
On the one hand, a codifferential on ΛsL is just a degree −1 coderivation D

which, as stated, corresponds to a degree −1 linear map D : ΛsL → sL. Such a
map is the sum of linear maps D(k) : ΛksL → sL which, in turn, correspond to a
collection of skew-symmetric operations `k of degree k − 2,

`k = s−1 ◦D(k) ◦ s⊗k : ⊗k L → L.

Here, s⊗k : ⊗k L → ⊗ksL denotes the obvious map of degree k. The equation
D2 = 0 implies the generalized Jacobi identities.

On the other hand given k-ary maps `k as above, define degree −1 linear maps
D(k) : ⊗k sL → sL by

D(k) = (−1)(k(k−1))/2s ◦ `k ◦ (s−1)⊗k.

These maps are symmetric (in the graded sense) so they factor as D(k) : ΛksL →
sL. Finally the map D =

∑
k D(k) determines a degrere −1 coderivation on ΛsL

which again satisfy D2 = 0. ¤

Observe that, if L is a finite type graded vector space, an L∞ structure on L

is then equivalent to a CDGA (commutative differential graded algebra) structure
on (ΛsL)∨ ∼= Λ(sL)∨ ∼= Λs−1L∨. We shall denote by C∞(L) this structure and
call it the Cartan-Chevalley-Eilenberg algebra on L.

Definition 2. Given two L∞ algebras L and L′, a morphism of L∞ algebras
is a morphism of differential graded coalgebras f : (ΛsL,D) → (ΛsL′, D′).

Remark 3. Observe that an L∞ morphism does not correspond, in gen-
eral to a degree zero map f : L → L′ commuting with all the k-ary bracket
(f ◦ `k = `′k ◦ f⊗k). In fact a morphism f : (ΛsL,D) → (ΛsL′, D′) of differen-
tial graded coalgebras is determined by f̃ = πf : ΛsL → sL′ which is the sum
of maps f̃ (k) : ΛksL → sL′. This produces a system of skew-symmetric maps of
degree 1− k
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f (k) : ⊗k L −→ L′.

Therefore, morphisms of differential coalgebras correspond to systems of maps f (k)

that satisfy a sequence of equations involving the brackets `k and `′k, k ≥ 0.
For instance, an L∞ morphism between DGL’s (differential graded Lie al-

gebras) (L, ∂) and (L′, ∂′) is just a morphism between their Cartan-Chevalley-
Eilenberg constructions (see next section) f : (ΛsL,D = d1 + d2) → (ΛsL′, D′ =
d′1 + d′2). In this particular case, the equations satisfied by the f (k)’s only in-
volve the differentials and the Lie brackets on L and L′. Explicitly, the first two
equations are:

(1) ∂′f (1) = f (1)∂, i.e., f (1) : L → L′ is a differential map.
(2) f (1)[x, y] = [f (1)(x), f (1)(y)] + ∂′f (2)(x⊗ y)− f (2)(∂x⊗ y − (−1)|x|x⊗ ∂y).

Hence, an L∞ morphism between DGL’s is not in general a DGL morphism.

A quasi-isomorphism between L∞ algebras L and L′ is an L∞ morphism
f : (ΛsL,D) → (ΛsL′, D′) such that f (1) is a quasi-isomorphism of differential
vector spaces.

3. Sullivan, Quillen and L∞ models of a space.

Our results heavily depend on known facts and techniques arising from ra-
tional homotopy theory. All of them, and with the same notation we use, can be
found in [9]. Here we simply recall the following:

In [23] (see also [2]), Sullivan introduces a couple of adjoint functors,

SimplSetsAPL−→←−
〈 〉

CDGA

between the homotopy categories of commutative differential graded algebras
(CDGA henceforth) and simplicial sets which turns out to be an equivalence when
considering 1-connected (more generally, nilpotent) simplicial sets of finite type
(over Q) and 1-connected rational CDGA’s of finite type. In fact, for every space
(or simplicial set) M of this kind there is a CDGA (ΛV, d) which algebraically
models the rational homotopy type of M and is unique up to isomorphism. This
is the Sullivan minimal model of M . By ΛV we mean the free commutative graded
algebra generated by the vector space V , i.e., ΛV = TV/I in which TV is the ten-
sor algebra over V and I is the ideal generated by v⊗w−(−1)|v||w|w⊗v, v, w ∈ V .
The differential d satisfies a minimal condition which, in the simply connected case,
is equivalent to say that, for any generator v ∈ V , dv is a “polynomial” in ΛV

with no linear term.
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As the dual of a cocommutative differential graded coalgebra (CDGC hence-
forth) is a CDGA, a coalgebra model of a nilpotent space X of finite type is a
CDGC such that its dual is a CDGA model of X.

The bridge between the categories of CDGC’s and that of DGL’s is provided
by the Quillen and Cartan-Chevalley-Eilenberg functors:

DGL
C //

CDGC
L

oo

On one hand, the Cartan-Chevalley-Eilenberg construction on a given DGL
(L, dL) is the CDGC C (L, dL) = (ΛsL, d = d1 + d2) in which, as usual, (sL)k =
Lk−1 and

d1(sx1 ∧ · · · ∧ sxk) = −
k∑

i=1

(−1)nisx1 ∧ · · · ∧ sdLxi ∧ · · · ∧ sxk,

d2(sx1 ∧ · · · ∧ sxk) =
∑

1≤i<j≤k

(−1)nij s[xi, xj ] ∧ sx1 · · · sx̂i · · · sx̂j · · · ∧ sxk.

Here, ni =
∑

j<i |sxj |, and

sx1 ∧ · · · ∧ sxk = (−1)nij sxi ∧ sxj ∧ sx1 · · · sx̂i · · · sx̂j · · · ∧ sxk.

The dual of the construction above is the CDGA

C ∗(L, dL) = Hom(C (L, dL),Q).

If L is of finite type, then C ∗(L, dL) = (ΛV, d) where V and sL are dual graded
vector spaces and d = d1 +d2 in which: 〈d1v; sx〉 = (−1)|v|〈v; sdLx〉 and 〈d2v; sx∧
sy〉 = (−1)|y|+1〈v; s[x, y]〉.

From now on we shall write, for convenience, C (L) and C ∗(L) instead of
C (L, dL) and C ∗(L, dL).

On the other hand, the Quillen functor is constructed for any CDGC C aug-
mented by ε : C → Q and coaugmented by Q → C. Denote by C = ker ε and
consider the reduced diagonal ∆: C → C ⊗ C. Then L (C, d) = (L(s−1C), ∂) in
which:

(i) L(s−1C) is the free Lie algebra generated by s−1C, i.e., the sub Lie algebra
of the tensor Lie algebra (bracket is the commutator) T (s−1C) generated by s−1C.

(ii) ∂ = ∂1 + ∂2 where ∂1(s−1c) = −s−1dc and
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∂2(s−1c) =
1
2

∑

i

(−1)|ai|[s−1ai, s
−1bi

]

being ∆c =
∑

ai ⊗ bi.
Observe that for an L∞ algebra L, C∞(L) is a natural generalization of the

Cartan-Chevalley-Eilenberg construction on a differential graded Lie algebra. In
fact, the following can be easily proved:

Proposition 3. Suppose L is a nilpotent L∞ algebra of finite type con-
centrated in non negative degrees. Then, C∞(L) = (ΛV, d) is a Sullivan model
in which V and sL are dual graded vector spaces and d =

∑
j≥1 dj in which

〈djv; sx1 ∧ · · · ∧ sxj〉 = ε〈v; s[x1, . . . , xj ]〉 where ε is the appropriate sign given by
the Koszul convention.

Conversely, suppose (ΛV, d) is an arbitrary Sullivan algebra of finite type.
Then, a nilpotent L∞ algebra L is determined uniquely by the condition (ΛV, d) =
C∞(L).

The relation of the functors above with the homotopy category is the following:
In [21], Quillen associates to any 1-connected space X (non necessarily of finite

type!) a DGL (free as Lie algebra) λ(X) which determines an equivalence between
the homotopy categories of rational 1-connected spaces and that of reduced (L≤0 =
0) DGL’s over Q. If moreover, X is of finite type then C ∗λ(X) is quasi-isomorphic
to the Sullivan model of X [19]. On the other hand, whenever X is nilpotent and
of finite type and C is a coalgebra model of X, the association X Ã L (C) extends
the mentioned equivalence to nilpotent spaces (but finite type is required).

Definition 4. Given a 1-connected space X, an L∞ model of X is an L∞
algebra quasi-isomorphic, as L∞ algebra, to λ(X).

Note that, by Proposition 3, if X is nilpotent and of finite type, there is an L∞
structure on π∗(ΩX)⊗Q modeling X. The Eckmann-Hilton dual of this assertion
is also true and well known: in [13], H∗(X;Q) is endowed with an A∞-structure
quasi-isomorphic to the Sullivan model of X.

Next, denote by LX = (L(U), ∂) a Quillen model of a nilpotent space X of
finite type. Assume U is of finite type so that C ∗(LX) is a Sullivan model of X.
In this case denote by I the ideal L(U)≥2 ⊕ Z1 where Z1 is the vector space of
cycles in L(U)1. Applying C ∗ to the short exact sequence of DGL’s:

0 → I −→ LX −→ LX

I
→ 0,

we obtain a relative Sullivan algebra



L∞ models of based mapping spaces 511

C ∗
(

LX

I

)
−→ C ∗(LX) −→ C ∗(I)

which is a model for the universal covering of X,

X̃ −→ X −→ K(π1X, 1).

This shows that I is a Lie model for X̃ called the universal cover of LX .

Now consider a pronilpotent space X = lim←n
Xn where each Xn is a rational

nilpotent space of finite type. Denote by pn : L (n + 1)³L (n) a surjective Lie
model of the map Xn+1 → Xn and define

L = lim
←n

L (n).

Lemma 5.

(1) Hq(L ) = lim←n
πq+1Xn = πq+1X, q ≥ 0.

(2) Denote by I the ideal L≥2 ⊕ Z1 ⊂ L , where Z1 ⊂ L is the vector space
of cycles in degree 1. Then I is a Lie model for X̃.

Proof.

(1) Hq(L ) = lim←n Hq(L (n)) = lim←n πq+1Xn. To finish apply [3, IX,
Theorem 3.1], taking into account that lim1

← vanishes when applied to a tower of
vector spaces [26], to obtain that lim←n πq+1Xn = πq+1X.

(2) In particular, from (1) we deduce a weak homotopy equivalence X̃
'−→

lim←n X̃n.
Consider the ideal in L (n) defined by

In = L (n)≥2 ⊕ Z
(
L (n)1

)
.

We then have a short exact sequence of towers

0 → lim
←n

In −→ L −→ lim
←n

(
L (n)

In

)
→ 0.

Consider Quillen models L eXn
and L eX of X̃n and X̃ respectively. Then we have

coherent quasi-isomorphisms L eXn

'−→ In which gives, by composition, a quasi-

isomorphism L eX
'−→ lim←n

In. This finishes the proof as I = lim←n
In. ¤
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4. Lie algebras of derivations modeling mapping spaces map∗
f

(X, Y ) with X finite.

Let ρ : L → L′ be a DGL morphism and consider the differential graded
vector space of Lie ρ-derivations (Derρ(L,L′), δ). Explicitly Derρ(L,L′)n is the
space of linear maps of degree n, θ : L∗ −→ L′∗+n, for which θ[x, y] = [θ(x), ρ(y)]+
(−1)n|x|[ρ(x), θ(y)], x, y ∈ L. The differential is defined as usual δθ = ∂θ +
(−1)nθ∂. Of particular interest is the space Derρ(L,L′) of positive ρ-derivations,

Derρ(L,L′)i =

{
Derρ(L,L′)i for i > 1,

ZDerρ(L,L′)1 for i = 1,

in which Z denotes the space of cycles. We shall also denote by δ the differential
of this complex.

Next, let f : X → Y be a map of nilpotent complexes with X finite, let L′

be a Lie model of Y and choose a Quillen model of X of the form L (C) for
some CDGC, C. This is always possible by taking C, for instance, the dual of
a commutative differential graded algebra of the rational homotopy type of X.
Finally choose any DGL morphism γ : L (C) → L′ modeling the homotopy type
of f .

The restriction of γ to U = s−1C gives a linear map γ : s−1C → L′ which is
also identified to a map γ : C → sL′. Composing with the degree −1 isomorphism
sL′ → L′ we obtain the map γ : C −→ L′.

Next consider the vector space Hom(C, L′) with the usual bracket, [f, g] =
[ , ] ◦ f ⊗ g ◦∆, and the perturbed differential Dγ = D + adγ :

Dγf = ∂Lf + (−1)|f |fδ + [γ, f ].

Finally, discard the negative graded part by defining H om(C, L′):

H omi(C, L′) =

{
Homi(C, L′) for i > 1,

Z(Hom1(C, L′)) for i = 1.

Then, the following holds:

Theorem 2 ([6, Corollary 15]). (H om(C, L′), Dγ) is a Lie model of
map∗f (X, Y ).

From this we can prove the following:
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Theorem 3. The DGL s−1Derγ(L (C), L′), equipped with the differential
and the bracket defined by

δθ = ∂ ◦ θ + (−1)|θ|θ ◦ ∂,

[f, g](a) =
∑

i

(−1)1+|ai| |g|[f(ai), g(bi)], where ∆(a) =
∑

i

ai ⊗ bi,

is a Lie model for map∗f (X, Y ).

Proof. Observe that the restriction of a given derivation in Derγ

(L (C), L′) to s−1C produces an isomorphism of graded vector spaces,

Υ: s−1Derγ(L (C), L′)
∼=−→ H om(C, L′), Υ(s−1θ)(c) = (−1)|θ|θ(s−1c).

We now prove that Υ commutes with the differentials s−1δ and Dγ respectively:

DγΥ(s−1θ)(c) = Υ(s−1δ)(s−1θ)(c),

for any derivation θ ∈ Derγ(L (C), L′) and c ∈ C.
On the one hand,

DγΥ(s−1θ)(c) = ∂L′Υ(s−1θ)(c) + (−1)|θ|+1Υ(s−1θ)(dc) +
[
γ, Υ(s−1θ)

]
(c)

= (−1)|θ|∂L′θ(s−1c)− θ(s−1dc)

+
∑

i

(−1)|ai|(|θ|+1)+|θ|∑

i

[
γ(s−1ai), θ(s−1bi)

]
,

where ∂L′ and d are the differentials in L′ and C respectively, and ∆(c) =
∑

i ai⊗bi.
On the other hand,

Υ(s−1δ)(s−1θ)(c) = (−1)|θ|∂L′θ(s−1c) + θ(∂s−1c).

where ∂ = ∂1 + ∂2 is the differential in L = L(s−1C). Hence,

θ(∂s−1c) = −θ(s−1dc) + θ

(
1
2

∑

i

(−1)|ai|[s−1ai, s
−1bi

])

= −θ(s−1dc) +
∑

i

(−1)|ai|+|θ|(|ai|+1)
[
γ(s−1ai), θ(s−1bi)

]
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as θ is a γ-derivation and C is cocommutative.
Finally, a straightforward computation shows that Υ respects the Lie brackets

and therefore, is an isomorphism of DGL’s. ¤

Now let ϕ : L
'→ L (C) be a quasi-isomorphism where L is a cofibrant DGL.

Then:

Corollary 1. H∗(Derγϕ(L,L′), δ) is naturally isomorphic (as graded
vector space) to π∗Ωmap∗f (X, Y ).

The proof is an immediate consequence of the following:

Lemma 6. Let γ : L1 → L′ and ψ : L2
'→ L1 be DGL morphisms, with L1, L2

cofibrant and ψ a quasi-isomorphism of graded vector spaces. Then, the induced
map

ψ∗ : Derγ(L1, L
′) '−→ Derγψ(L2, L

′)

is a quasi-isomorphism.

Proof. Write L1 = L(W ), L2 = L(U), and filter the spaces
Derγ(L(U), L′) and Derγψ(L(W ), L′) respectively by

F p =
{
f ∈ Derγ(L(U), L′), f(U) ∈ L′≥p

}

and

Gp =
{
g ∈ Derγψ(L(W ), L′), g(W ) ∈ L′≥p

}
,

so that ψ∗ is a morphism of filtered spaces. At the 0-level, the induced morphism
of the resulting spectral sequences has the form (E0(ψ∗), d0) where

E0(ψ∗) : Derγ

(
(L(U), ∂0), (L′, ∂)

) −→ Derγψ

(
(L(W ), ∂0), (L′, ∂)

)

is again given by pre-composition; ∂0 denotes the indecomposable part of the
differential in the corresponding free DGL; ∂ denotes the induced differential on
the associated graded space L′ = ⊕pL

′≥p/L′≥p+1; and d0 is the usual differential.
However, in this setting, the map

ΥL(U) : Derγ

(
(L(U), ∂0), (L′, ∂)

) ∼=−→ H om
(
(U, ∂0), (L′, ∂)

)
,
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is an isomorphism of differential vector spaces, this time with the usual differentials
(the same for ΥL(W )).

Therefore, E0(ψ∗) can be seen as:

Q(ψ)∗ : H om
(
(U, ∂0), (L′, ∂)

) '−→ H om
(
(W,∂0), (L′, ∂)

)

where Q(ψ) : (U, ∂0)
'→ (W,∂0) is induced by ψ on the indecomposables. The map

Q(ψ)∗ is clearly a quasi-isomorphism as Q(ψ) is. Hence, E1(ψ∗) is an isomorphism
and, by comparison, ψ∗ is a quasi-isomorphism. ¤

The construction presented in this section is natural in X. Let g : X → X ′

be a map between finite complexes and ψ : C → C ′ a CDGC model for g. Let now
f : X ′ → Y be a continuous map, L a Quillen model for Y and γ : L (C ′) → L a
model for f .

Theorem 4. With the above notations, the induced map

s−1Derγ(L (C ′), L) → s−1Derγψ(L (C), L)

is a DGL model for map∗(g, Y ) : map∗f (X ′, Y ) → map∗fg(X, Y ).

Proof. We show that, applying C ∗ to

s−1Derγ(L (C ′), L) → s−1Derγψ(L (C), L),

we obtain a DGA model of map∗(g, Y ) : map∗f (X ′, Y ) → map∗fg(X, Y ).
For it consider the following diagram of DGL’s

s−1Derγ(L (C ′), L) //

∼=Υ

²²

s−1Derγψ(L (C), L)

∼= Υ

²²
H om(C ′, L) //

∼=
²²

H om(C, L)

∼=
²²

s−1Der(ΛV, C ′
]
) // s−1Der(ΛV, C

]
)

in which: V = (sL)], Υ is the isomorphism defined in the proof of Theorem 3, and
the lower square commutes by [6, Theorem 13]. The DGL structure in the last
arrow is the one given in [5, Theorem 1] or [6, Definition 5]. Hence,
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C ∗(s−1Derγ(L (C ′), L)
) ←− C ∗(s−1Derγψ(L (C), L)

)

is identified to

C ∗(s−1Der(ΛV, C ′
]
)
) ←− C ∗(s−1Der(ΛV, C

]
)
)
.

However, by [6, Theorem 9], and using the same notation than in this reference,
this last morphism equals to

Λ(1⊗ ψ) : Λ
(
V ⊗A

1 ⊕ (V ⊗A)≥2
)−→Λ

(
V ⊗A′

1 ⊕ (V ⊗A′)≥2
)
,

which is a DGA model of map∗(g, Y ) : map∗f (X ′, Y ) → map∗fg(X, Y ). Here, A =

C
]
, A′ = C ′

]
and ψ : C → C ′. ¤

As a final remark, consider the particular case of the space of self-equivalences
of X homotopic to the identity map map1(X, X) = aut1(X), and choose L =
L (C) a model of X as in Theorem 3. Then, by this result, s−1Der(L,L) is a
Lie model of aut1(X). Note that the Lie bracket is not related with the usual
commutator bracket of derivations of Der(L,L) which is known to model the
classifying space Baut1(X) [22], [23], [24].

5. L∞ algebras of derivations modeling mapping spaces map∗
f

(X, Y ) with X finite.

As before, let f : X → Y be a map of nilpotent complexes with X finite, let L

be the minimal Quillen model of X and let L′ be any Lie model of Y . Choose also
a DGL morphism γ : L → L′ modeling the homotopy type of f . Then we have:

Theorem 5. There is a structure of L∞ algebra on s−1Derγ(L,L′) for
which it becomes an L∞ model of map∗f (X, Y ).

For its proof we need the following results, which are of a classical type in
deformation theory. However, we have added here a complete proof in order to
have the precise hypothesis and statements we want in our applications.

Proposition 4. Let ϕ : (L, ∂)
'³ (E, ∂) be a surjective quasi-isomorphism

of finite type complexes where (L, ∂) is an L∞ algebra for which `1 = ∂. Then, E

has an structure of L∞ algebra for which `1 = ∂ and there is a quasi-isomorphism
of L∞ algebras {f (k)} from L to E with f (1) = ϕ.

Moreover, this construction is natural with respect to surjective morphisms:
consider the following commutative diagram of finite type complexes
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kerϕ1
� � //

²²²²

L1
ϕ1

'
// //

α
²²²²

E1

β
²²²²

kerϕ2
� � // L2

ϕ2

'
// // E2

where α is a morphism of L∞ algebras, ϕi are surjective quasi-isomorphsms, i =
1, 2, and all the vertical arrows are surjections. Then, β is also a morphism of
L∞ algebras.

The proof for this result requires its dual counterpart:

Lemma 7. Let (ΛW,D) be a Sullivan algebra with D =
∑

i≥1 Di, Di(W ) ⊂
ΛiW , and let j : (V, d)

'
↪→ (W,D1) be an injective quasi-isomorphism. Then,

there exists a differential D on ΛV for which D1 = d and a quasi-isomorphism
ψ : (ΛV, D) '−→ (ΛW,D) extending j, i.e., such that (ψ − j)(V ) ∈ Λ≥2V .

Moreover, this construction is natural: consider the following commutative
diagram of complexes

(V2, d) � � j2

'
//

� _

φ

²²

(W2, d) //
� _

θ

²²

(W2/V2, d)� _

²²
(V1, d) � � j1

'
// (W1, d) // (W1/V1, d)

where j1, j2 are injective quasi-isomorphisms and all the vertical arrows are in-
jections. Suppose there are differentials D in ΛW1 and ΛW2, with D1 = d, for
which Λθ : (ΛW2, D) → (ΛW1, D) is a CDGA morphism. Then, the following is a
commutative diagram of CDGA’s:

(ΛV2, D)
ψ2

'
//

Λφ

²²

(ΛW2, D)

Λθ

²²
(ΛV1, D)

ψ1

'
// (ΛW1, D)

Proof. For the first statement, choose a basis of the acyclic complex
(W/V, D1) of the form {xi, yi}, where D1xi = yi, and take elements wi ∈ W such
that [wi] = xi. Then, the section σ : (W/V, D1) → W , σ(xi) = wi, σ(yi) = D1wi

induces an isomorphism of differential vector spaces j ⊕ σ : (V, d)⊕ (W/V, D1)
∼=→

(W,D1). Endow Λ(V ⊕ 〈xi, yi〉) with a differential D so that
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Λ(j ⊕ σ) :
(
Λ(V ⊕ 〈xi, yi〉), D

) ∼=−→ (ΛW,D)

becomes a CDGA isomorphism. As Dxi = yi + Ωi with Ωi decomposable,

(
Λ(V ⊕ 〈xi, yi〉), D

)
=

(
Λ(V ⊕ 〈xi, y

′
i〉), D

)

with Dxi = y′i = yi + Ωi. Note that, in the quotient quasi-isomorphism p : (ΛV ⊕
〈xi, y

′
i〉, D)

'³ (ΛV, D), D1(v) = dv. We now show that we may choose a section
ρ of p such that ρ(v) = v + Φ, with Φ decomposable:

Let (vj)j≥1 be a basis of V such that D(vj) ∈ ΛV<j and assume ρ is a section of
p for which ρ(vk)−vk is decomposable for k < j. Then, the linear part of ρ(vj)−vj

is a D1-cycle in 〈xi, y
′
i〉, and so is a D1-boundary, ρ(vj) = vj + D1(u) + ω, with ω

decomposable. Define ρ′ = ρ on ΛV<j , ρ′(vj) = ρ(vj)−D(u) and extend ρ′ into a
map on all of ΛV homotopic to ρ. Proceeding inductively in this way we obtain
the required section.

To finish, define ψ = Λ(j ⊕ σ) ◦ ρ.
For the second statement, observe that the quotient map (W2/V2, d) ↪→

(W1/V1, d) is injective, Hence, as above, we may decompose W2 and W1 as follows:

(W2, d) ∼= (V2, d)⊕ (S, d), (W1, d) ∼= (V1, d)⊕ (S, d)⊕ (T, d),

where both (S, d) and (T, d) are acyclic complexes. With this decomposition the
lemma easily follows. ¤

Proof of Proposition 4. For the first assertion, the dual map ϕ∨ :
(E∨, ∂∨) ↪→ (L∨, ∂∨) is an injective quasi-isomorphism. Moreover (see Propo-
sition 3) C∞(L) = (ΛsL∨, D) where D1 = s∂∨. By the lemma aboe there
is a differential D on ΛsE∨ where D1 = s∂∨ and a CDGA quasi-isomorphism
ψ : (ΛsE∨, D) '−→ (ΛsL∨, D) extending sϕ∨.

For the second assertion, take the dual of the diagram and apply Lemma 7.
¤

Proof of Theorem 5. Recall that, given a coalgebra model of X, C,
there is an injective DGL quasi-isomorphism ψ : L

'
↪→ L (C) [9, Section 22]. By

Lemma 6, this produces a surjective quasi-isomorphism of differential vector spaces

ψ∗ : Derγ′(L (C), L′) '−→ Derγ(L,L′).

Here, γ′ is a factorization of γ through ψ. To finish apply Proposition 4 taking into
account that, by Theorem 3, s−1Derγ′(L (C), L′) is a Lie model of map∗f (X, Y ).

¤
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Theorem 4.1 is natural in X. Let i : X ↪→ X ′ be an inclusion of finite com-
plexes and j : LX ↪→ LX′ a minimal Quillen model for i. Let now f : X ′ → Y be
a continuous map, L a Quillen model for Y and γ : LX′ → L′ a DGL model for f .

Theorem 6. With the above notations, the induced map

s−1Derγ(LX′ , L) → s−1Derγj(LX , L′)

is a surjective L∞-model for map∗(i, Y ) : map∗f (X ′, Y ) → map∗fi(X, Y ).

Proof. Apply Theorem 4 and Proposition 4. ¤

6. Lie and L∞ models for mapping spaces without finite dimension
hypothesis on X.

Until this point we have dealt with mapping spaces map∗f (X, Y ) in which X is
a finite complex. We now consider the general situation and assume f : X → Y to
be a pointed map between nilpotent rational CW-complexes of finite type. Denote
by fn : Xn → Y the restriction of f to the n−skeleton of X and let in : Cn ↪→ Cn+1

be an injective coalgebra model of the inclusion jn : Xn ↪→ Xn+1. Then, if we
denote by Un = H∗(Cn), there is a differential on L(Un) and an injective quasi-
isomorphism [9, Section 22]

ϕn : L(Un)
'
↪→ L (Cn).

Moreover, we may assume Un ↪→ Un+1 and we may choose ϕn so that the following
commutes:

L(Un) � � ϕn

'
//

� _

²²

L (Cn)� _

L (in)

²²
L(Un+1)

� � ϕn+1

'
// L (Cn+1).

The linear part (ϕn)1 of ϕn is injective. We denote by Sn a supplement of the
image of (ϕn)1 in Cn. This can be done in a functorial way, L (in)(Sn) ⊂ Sn+1.

Next, choose L′ a Lie model of Y and DGL morphisms γn : L (Cn) → L′

modeling fn. Then, the diagram above produces another commutative diagram in
which the vertical arrows are surjections and the sequences are exact:
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Hom(Sn+1, L
′) � � //

²²²²

Derγn+1(L (Cn+1), L′)
' // //

²²²²

Derγn+1ϕn+1(L(Un+1), L′)

²²²²
Hom(Sn, L′) � � // Derγn

(L (Cn), L′) ' // // Derγnϕn
(L(Un), L′).

Finally, desuspend this diagram and apply Theorem 6 to obtain:

Proposition 5. s−1Derγn+1ϕn+1(L(Un+1), L′) ³ s−1Derγnϕn
(L(Un), L′)

is a surjective L∞ model of j∗n : mapfn+1
(Xn+1, Y ) → mapfn

(Xn, Y ).

Observe that C = lim→n
Cn is a coalgebra model for X,

γ = lim
→n

γn : L (C) → L′

is a Lie model of f and L = lim←n L(Un) is the Quillen minimal model of X.
Moreover, ϕ = lim→n ϕn : L

'→ L (C) is still an injective quasi-isomorphism.
Then we have:

Theorem 7.

(1) H∗
(
s−1Derγϕ(L,L′)

) ∼= π∗Ω
(
map∗f (X, Y )

)⊗Q as graded Lie algebras.
(2) The universal cover of s−1Derγ(L (C), L′) is a Lie model for the universal

cover of map∗f (X, Y ).
(3) The universal cover of s−1Derγϕ(L,L′) is a L∞ model for the universal cover

of map∗f (X, Y ).

Proof. Observe that,

Derγϕ(L,L′) = lim
←n

Derγnϕn
(L(Un), L′),

Derγ(L (C), L′) = lim
←n

Derγn
(L (Cn), L′),

as DGL and L∞ algebras respectively. Moreover, in view of diagram above, and
by Proposition 4, we have a quasi-isomorphism of L∞ algebras

Derγ(L (C), L′)
'³ Derγϕ(L,L′).

On the other hand, map∗f (X, Y ) = lim←n
map∗fn

(Xn, Y ). Apply Theorem 3 and
Lemma 5 to get (1) and (2). Finally, Proposition 5 and again Lemma 5 imply (3).

¤
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As an immediate consequence we obtain:

Corollary 2. For any formal space X, and any coformal space Y , both
finite type 1-connected CW-complexes, map∗c(X, Y ) is a coformal space whose ho-
motopy Lie algebra is Hom(H∗(X;Q), π∗ΩY ⊗Q). Here c denotes the constant
map.

Example 8. We compute the Lie algebra π∗Ω(map∗c(CP∞Q , YQ)). First,
recall that, for a 1-connected finite complex X,

π∗Ω
(
map∗c(X, Y )

)
Q
∼= ⊕j−i=∗Hom

(
Hi(X;Q), πjΩY ⊗Q

)

as graded Lie algebras with the bracket in the latter term given by the coalgebra
structure ∆ on H∗(X;Q) and the bracket in π∗ΩY ⊗Q given by

[f, g](x) =
∑

i

(−1)|g||x
′
i|[f(xi), g(x′i)], ∆(x) =

∑

i

xi ⊗ x′i.

Therefore, by Theorem 7, for n ≥ 2,

πnΩ
(
map∗c(CP∞Q , YQ)

) ∼= lim
←r

πnΩ
(
map∗c(CP r

Q, YQ)
)

=
∏

r≥n+1,
r−n−1 even

πrY ⊗Q.

The bracket of two sequences (ar)r≥n+1 and (bs)s≥m+1 is the sequence
(c`)`≥m+n+2 with,

c` =
∑

r+s=`

[ar, bs].

As a final application of all of the above, consider a map f : X → Y between
CW-complexes of finite type (non necessarily finite) and let α ∈ π∗(X) ⊗ Q be
a Whitehead bracket of length n ≥ nilπ∗(Y ) ⊗ Q. Then, f extends to a map
f : X ∪α ek+1 → Y and we get a fibration

map∗c(S
k+1, Y ) → map∗

f
(X ∪α ek+1, Y )

q→ map∗f (X, Y ).

Here, c is the constant map and map∗c(S
k+1, Y ) = Ωk+1Y acts on map∗

f
(X ∪α

ek+1, Y ) via the pinching coaction ∇ : X ∪α ek+1 → X ∪α ek+1 ∨ Sk+1. Then, we
have the following generalization of the main result in [15]:
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Proposition 6. Let α ∈ π∗(X)⊗Q be a Whitehead bracket of length n ≥
nilπ∗(Y )⊗Q. Then:

(1) Rationally, and at the level of universal covers, the above fibration is trivial,
i.e.,

m̃ap∗f
(
X ∪α ek+1, Y

)
Q
' m̃ap∗f (X, Y )Q × Ωk+1YQ.

(2) Moreover, for any q ≥ 1,

πq map∗
f

(
X ∪α ek+1, Y

)⊗Q ∼=
(
πq map∗f (X, Y )⊗Q

)⊕ (
πqΩk+1Y ⊗Q

)
.

Proof. Under our hypothesis, in [15, Theorem 1.2] it is proved that, for
a finite complex X of dimension bounded by the connectivity of Y , and for the
constant map c : X → Y , map∗c(X ∪α ek+1, Y )Q ' map∗c(X, Y )Q×Ωk+1YQ. How-
ever, assuming again X finite, but for any f : X → Y , essentially the same proof
can be carried out to show that the fibration above splits rationally:

map∗
f

(
X ∪α ek+1, Y

)
Q
' map∗f (X, Y )Q × Ωk+1YQ.

Now, if X is a (non necessarily finite) CW-complex of finite type, observe that

map∗
f

(
X ∪α ek+1, Y

)
= lim
←n

map∗
fn

(
Xn ∪α ek+1, Y

)
,

is a pronilpotent complex. Here, Xn denotes the n-skeleton of X and fn is the
appropriate restriction.

As at the beginning of this section consider for each n, a coalgebra model
Cn ↪→ Cn+1 of the inclusion Xn ↪→ Xn+1, so that C = lim→n

Cn is a coal-
gebra model for X. Moreover, choose L′ a Lie model of Y and DGL mor-
phisms γn : L (Cn) → L′ modeling fn, the restriction of f to Xn, so that
γ = lim→n

γn : L (C) → L′ is a Lie model of f .
Next, as for each n ≥ k,

map∗
f

(
Xn ∪α ek+1, Y

) 'Q map∗f (Xn, Y )× Ωk+1YQ,

apply Theorem 3 to get a Lie model for this space of the form

s−1Derγn
(L (Cn), L′)× s−1Der(L(ak), L′).
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Now observe that the limit of these DGL’s is

s−1Derγ(L (C), L′)× s−1Der(L(ak), L′).

To finish apply Lemma 5 and Theorem 7(2). ¤
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