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On Hermitian modular forms mod p
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Abstract. We generalize the notion of modular forms mod p to the
case of Hermitian modular forms. Moreover we determine the structure of
the algebra of degree 2 Hermitian modular forms mod p in the cases that the
corresponding quadratic field is Q(

√−1) and Q(
√−3).

1. Introduction.

The theory of modular forms mod p was initially developed by H. P. F.
Swinnerton-Dyer [12]. Since then the theory has developed into one of the essen-
tial tools for studying p-adic and mod p properties of modular forms; for example,
it played an essential role when J.-P. Serre defined the notion of p-adic modular
forms [11]. Consequently, generalization has been attempted by several people.
N. M. Katz developed the theory from the viewpoint of algebraic geometry [7].
The generalization to the case of modular forms of several variables has been stud-
ied by the second author. He determined the structure of the algebra of Siegel
modular forms mod p in the case of degree two (cf. [9]).

In this paper, we generalize the notion of modular forms mod p to the case
of Hermitian modular forms and determine the structure of the algebra of Hermi-
tian modular forms mod p in the cases of degree two over Q(

√−1) and Q(
√−3)

(Theorem 5.2, Theorem 6.2).
As in the case of Siegel modular forms, the main points of the proof are as

follows:

(1) Construction of generators over Z(p) (Theorem 5.1, Theorem 6.1).
(2) Construction of a Hermitian modular form Fp−1 of weight p− 1 satisfying

Fp−1 ≡ 1 (mod p).

(Proposition 5.1, Proposition 6.1).
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(3) Determination of the Krull dimension of the algebras.

Our results depend strongly on the structure theorem for the graded ring of
Hermitian modular forms obtained by T. Dern and A. Krieg [4].

2. Hermitian modular forms.

2.1. Definition and notation.
The Hermitian upper half-space of degree n is defined by

Hn :=
{

Z ∈ Mn(C) | 1
2i

(Z − tZ) > 0
}

where tZ is the transposed complex conjugate of Z. The space Hn contains the
Siegel upper half-space of degree n

Sn := Hn ∩ Symn(C).

Let K be an imaginary quadratic number field with discriminant dK and ring
of integers OK . The Hermitian modular group

Un(OK) :=
{

M ∈ M2n(OK) | tMJnM = Jn, Jn =
(

0 −1n

1n 0

)}

acts on Hn by fractional transformation

Hn 3 Z 7−→ M〈Z〉 := (AZ + B)(CZ + D)−1, M =
(

AB
CD

)
∈ Un(OK).

The subgroup SUn(OK) := Un(OK) ∩ SL2n(K) coincides with the full group
Un(OK) unless dK = −3 or −4.

Let Γ ⊂ Un(OK) be a subgroup of finite index and νk (k ∈ Z) an abelian
character of Γ satisfying νk · νk′ = νk+k′ . We denote by Mk(Γ, νk) the space of
Hermitian modular forms of weight k and character νk with respect to Γ. Namely,
it consists of holomorphic functions F : Hn −→ C satisfying

F |k M(Z) := det(CZ + D)−kF (M〈Z〉) = νk(M) · F (Z),

for all M =
(

A B
C D

) ∈ Γ.
The subspace Sk(Γ, νk) of cusp forms is characterized by the condition
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Φ
(

F |k
(

tU 0
0 U

))
≡ 0 for all U ∈ GLn(K)

where Φ is the Siegel Φ-operator. A modular form F ∈ Mk(Γ, νk) is called
symmetric (resp. skew-symmetric) if

F (tZ) = F (Z) (resp. F (tZ) = −F (Z)).

We denote by Mk(Γ, νk)sym (resp. Mk(Γ, νk)skew) the subspace consisting of
symmetric (resp. skew-symmetric) modular forms. Moreover

Sk(Γ, νk)sym := Mk(Γ, νk)sym ∩ Sk(Γ, νk),

Sk(Γ, νk)skew := Mk(Γ, νk)skew ∩ Sk(Γ, νk).

2.2. Fourier expansion.
If F ∈ Mk(Γ, νk) satisfies the condition

F (Z + B) = F (Z) for all B ∈ Hern(OK),

then F has a Fourier expansion of the form

F (Z) =
∑

0≤H∈Λn(K)

aF (H) exp[2πitr(HZ)]

where

Λn(K) :=
{
H = (hkj) ∈ Hern(K) | hkk ∈ Z,

√
dKhkj ∈ OK

}
.

Put ω := (dK +
√

dK)/2 and define the matrices Ż = (żkj) and Z̈ = (z̈kj) by

Ż :=
ωtZ − ω̄Z

ω − ω̄
, Z̈ :=

Z − tZ

ω − ω̄
.

Then the above F can be considered as a function of the n(n − 1)/2 complex
variables z̈kj (k < j) in Z̈ and of the n(n + 1)/2 complex variables żkj (k ≤ j) in
Ż. Moreover, F has period 1 for each of these variables. If we define

q̇kj := exp(2πiżkj) (k ≤ j), q̈kj := exp(2πiz̈kj) (k < j)
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then

F =
∑

aF (H) exp[2πitr(HZ)] =
∑

aF (H)qH

may be considered as an element of the formal power series ring

C
[
q̇±1
kj , q̈±1

kj (k < j)
]
[[q̇11, . . . , q̇nn]].

Let R be a subring of C. We define

Mk(Un(OK), νk)R

:=
{

F =
∑

aF (H)qH ∈ Mk(Un(OK), νk) | aF (H) ∈ R for all H ∈ Λn(K)
}

and

Mk(Un(OK), νk)sym
R := Mk(Un(OK), νk)R ∩Mk(Un(OK), νk)sym.

So we may consider the inclusion:

Mk(Un(OK), νk)R ⊂ R
[
q̇±1
kj , q̈±1

kj (k < j)
]
[[q̇11, . . . , q̇nn]].

We fix a prime number p. For F =
∑

aF (H)qH ∈ Mk(Un(OK), νk)Q, we
define vp(F ) ∈ Z by

vp(F ) := inf
H∈Λn(K)

ordp(aF (H)). (2.1)

It should be noted that the value vp(F ) is finite.
Let Z(p) denote the local ring at p, namely, Z(p) := Q ∩ Zp. The following

lemma will be needed in later sections.

Lemma 2.1. If F ∈ Mk(Un(OK), νk)sym
Q and G ∈ Mk′(Un(OK), νk′)

sym
Q

satisfy

FG ∈ Mk+k′(Un(OK), νk+k′)
sym
Z(p)

and vp(G) = 0,

then

F ∈ Mk(Un(OK), νk)sym
Z(p)

.
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Proof. The lemma is an easy consequence of the identity

vp(FG) = vp(F ) + vp(G). ¤

2.3. Hermitian modular forms mod p.
Let Z(p) be as in the previous section. For any element F =

∑
aF (H)qH ∈

Mk(Un(OK), νk)Z(p) , consider the reduction mod p of F :

F̃ :=
∑

ãF (H)qH

where ãF (H) denotes the reduction mod p of aF (H) ∈ Z(p). Therefore we may
regard F̃ as follows:

F̃ ∈ Fp

[
q̇±1
kj , q̈±1

kj (k < j)
]
[[q̇11, . . . , q̇nn]] =: Fp[[q]].

We define subspaces of Fp[[q]]:

M̃k(Un(OK), νk)p :=
{

F̃ =
∑

ãF (H)qH | F ∈ Mk(Un(OK), νk)Z(p)

}
,

M̃k(Un(OK), νk)sym
p :=

{
F̃ =

∑
ãF (H)qH | F ∈ Mk(Un(OK), νk)sym

Z(p)

}
.

The subalgebra

M̃(Un(OK), ν)p :=
∑

k∈Z

M̃k(Un(OK), νk)p ⊂ Fp[[q]]

is called the algebra of Hermitian modular forms mod p.

Remark. Later we treat the case where νk = detk/2 or detk (cf. (2.2)). We
write the sum

∑
k∈Z M̃k(Un(OK), νk)p by M̃(Un(OK), ν)p symbolically.

Similarly we can define subalgebras

M̃(Un(OK), ν)sym
p :=

∑

k∈Z

M̃k(Un(OK), νk)sym
p ,

M̃ (e)(Un(OK), ν)sym
p :=

∑

k∈2Z

M̃k(Un(OK), νk)sym
p .

The main purpose of this paper is to determine the structure of the algebra
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M̃ (e)(U2(OK), ν)sym
p =

∑

k∈2Z

M̃(U2(OK), νk)sym
p

for K = Q(
√−1) and Q(

√−3) where

νk =

{
detk/2 for K = Q(

√−1),

detk for K = Q(
√−3).

(2.2)

3. Siegel modular forms.

In this section we introduce some results concerning Siegel modular forms
which are needed in later sections.

3.1. Definition and notation.
Let Mk(Γn) denote the space of Siegel modular forms of weight k (∈ Z) for

the Siegel modular group Γn := Spn(Z) and Sk(Γn) the subspace of cusp forms.
Any Siegel modular form F (Z) in Mk(Γn) has a Fourier expansion of the form

F (Z) =
∑

0≤T∈Λn

aF (T ) exp[2πitr(TZ)],

where

Λn = Sym∗
n(Z) :=

{
T = (tkj) ∈ Symn(Q) | tkk, 2tkj ∈ Z

}

(the lattice in Symn(R) of half-integral, symmetric matrices).
Taking qkj := exp(2πizkj) with Z = (zkj) ∈ Hn, we write

qT := exp[2πitr(TZ)] =
∏

1≤k<j≤n

q
2tkj

kj

n∏

k=1

qtkk

kk .

Using this notation, we obtain the generalized q-expansion:

F =
∑

0≤T∈Λn

aF (T ) qT =
∑
ti

( ∑
tkj

aF (T )
∏

k<j

q
2tkj

kj

) n∏

k=1

qtkk

kk

∈ C
[
q−1
kj , qkj

]
[[q11, . . . , qnn]].

For any subring R ⊂ C, we adopt the notation,
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Mk(Γn)R :=
{

F =
∑

T∈Λn

aF (T )qT | aF (T ) ∈ R (∀T ∈ Λn)
}

,

Sk(Γn)R := Mk(Γn) ∩ Sk(Γn).

Any element F ∈ Mk(Γn)R can be regarded as an element of

R
[
q−1
kj , qkj

]
[[q11, . . . , qnn]].

3.2. Siegel modular forms of degree 2.
In this subsection we consider the case of degree 2. A typical example of a

Siegel modular form is the Siegel-Eisenstein series

Gk(Z) :=
∑

M=
( ∗ ∗

C D

) det(CZ + D)−k, Z ∈ S2

where k > 3 is even and M =
( ∗ ∗

C D

)
runs over a set of representatives

{( ∗ ∗
0 ∗

)}\Γ2.
It is known that Gk ∈ Mk(Γ2)Q.

We set

X10 := − 43867
210 · 35 · 52 · 7 · 53

(G10 −G4G6),

X12 := − 691 · 1847
213 · 36 · 53 · 72

(
G12 − 441

691
G3

4 −
250
691

G2
6

)
.

(3.1)

Then we have Xk ∈ Sk(Γ2)Z (k = 10, 12) and

aX10

(
1 1

2

1
2 1

)
= aX12

(
1 1

2

1
2 1

)
= 1.

Theorem 3.1 (Igusa [6]). The graded ring

M (e)(Γ2) :=
⊕

k∈2Z

Mk(Γ2)

is generated by four modular forms

G4, G6, X10, X12,
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which are algebraically independent. Namely,

M (e)(Γ2) = C[G4, G6, X10, X12].

3.3. Siegel modular forms mod p.
For any Siegel modular form

F =
∑

aF (T )qT ∈ Mk(Γn)Z(p) ,

there exists a formal power series correspondence,

F̃ :=
∑

ãF (T )qT ∈ Fp

[
q−1
kj , qkj

]
[[q11, . . . , qnn]],

where ãF (T ) denotes the reduction modulo p of aF (T ). We define

M̃k(Γn)p :=
{

F̃ =
∑

ãF (T )qT | F ∈ Mk(Γn)Z(p)

}

⊂ Fp

[
q−1
kj , qkj

]
[[q11, . . . , qnn]].

The algebra

M̃(Γn)p :=
∑

k∈Z

M̃k(Γn)p

(
resp. M̃ (e)(Γn)p :=

∑

k∈2Z

M̃k(Γn)p

)

is called the algebra of Siegel modular forms mod p (resp. the algebra of Siegel
modular forms mod p of even weight).

The structure of M̃(Γ1)p was determined by H. P. F. Swinnerton-Dyer [12].
Moreover the structure of M̃(Γ2)p was studied by the second author [9]. Here we
introduce the structure theorem of M̃ (e)(Γ2)p for the cases p ≥ 5.

Proposition 3.1. Assume that p ≥ 5. If F ∈ Mk(Γ2)Z(p) (k : even), then
there exists a unique polynomial P (x1, x2, x3, x4) ∈ Z(p)[x1, x2, x3, x4] such that

F = P (G4, G6, X10, X12)

where Gk (k = 4, 6) is the Siegel-Eisenstein series and Xk (k = 10, 12) is the cusp
form defined in (3.1).
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Proposition 3.2. Assume that p ≥ 5. There exists a Siegel modular form
Fp−1 ∈ Mp−1(Γ2)Z(p) such that

Fp−1 ≡ 1 (mod p)

where the congruence is defined Fourier coefficient-wise.

Remark. The existence of such a modular form of general degree was stud-
ied by Böcherer and the second author [1].

Theorem 3.2 ([9]). Assume that p ≥ 5. Then we have

M̃ (e)(Γ2) ∼= Fp[x1, x2, x3, x4]/(Ã− 1)

where (Ã− 1) is the principal ideal generated by Ã− 1 and A ∈ Z(p)[x1, x2, x3, x4]
is defined by

Fp−1 = A(G4, G6, X10, X12).

Remark. There are many possibilities for the choice of Fp−1; however, the
polynomial Ã ∈ Fp[x1, x2, x3, x4] is uniquely determined by p.

4. Hermitian modular forms of degree 2.

4.1. Eisenstein series and cusp forms.
In this section, we deal with Hermitian modular forms of degree 2.
We consider the Hermitian Eisenstein series of degree 2

Ek(Z) :=
∑

M=
( ∗ ∗

C D

)(detM)k/2 det(CZ + D)−k, Z ∈ H2,

where k > 4 is even and M =
( ∗ ∗

C D

)
runs over a set of representatives of{( ∗ ∗

0 ∗
)}\U2(OK). Then we have

Ek ∈ Mk

(
U2(OK),det−k/2

)sym
.

Moreover E4 ∈ M4(U2(OK),det−2)sym is constructed by the Maass lift ([10]).
In the case that the class number of K is one, the Fourier coefficient of Ek is

given as follows:
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Theorem 4.1 (Krieg [10], Dern [2], [3]). Assume that the class number of
K is one. The Fourier coefficient aEk

(H) of Ek is given as follows.

aEk
(H)

=





4k(k − 1)
Bk ·Bk−1,χK

∑
0<d|ε(H) dk−1GK

(
k − 2,

|dK |det(H)
d2

)
if rank(H) = 2,

− 2k

Bk
σk−1(ε(H)) if rank(H) = 1,

1 if H = 0,

where
Bm is the m-th Bernoulli number,
Bm,χK

is the m-th generalized Bernoulli number associated with the Kronecker
character χK =

(
dK

∗
)
,

ε(H) := max{l ∈ N | l−1H ∈ Λ2(K)},
and

GK(m,N) :=
1

1 + |χK(N)|
(
σm,χK

(N)− σ∗m,χK
(N)

)
,

σm,χK
(N) :=

∑

0<d|N
χK(d)dm, σ∗m,χK

(N) :=
∑

0<d|N
χK(N/d)dm.

(4.1)

In the case that the class number of K is 1, we can construct cusp forms by
using Hermitian Eisenstein series (cf. [4, Corollary 2]).

Proposition 4.1. Assume that the class number of K is 1. Then there are
symmetric cusp forms

f10 := E10 − E4E6 ∈ S10(U2(OK),det−5)sym,

f12 := E12 − 441
691

E3
4 −

250
691

E2
6 ∈ S12(U2(OK), 1)sym.

(4.2)

4.2. The graded ring over Q(
√−1).

In this section, we deal with the case K = Q(
√−1). The following result is

due to Dern and Krieg.

Theorem 4.2 (Dern-Krieg [4]). Let K = Q(
√−1).

(1) There exists a skew-symmetric Hermitian modular form φ4 ∈
S4(U2(OK), χK det)skew such that
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φ4 |S2≡ 0.

(2) The graded ring

⊕

k∈2Z

Mk(U2(OK),detk/2)sym

is generated by

E4, E6, φ2
4, E10 and E12

which are algebraically independent.

Remark. The form φ4 is constructed by the Borcherds product. Namely,
it has an infinite product expression and the divisor can be specified exactly.

For later purposes, we replace some of the above generators by modular forms
with integral Fourier coefficients.

4.2.1. Form of weight 4 over Q(
√−1).

Lemma 4.1.

(1) E4 ∈ M4(U2(OK),det2)sym
Z .

(2) E4 |S2= G4 where G4 is the Siegel-Eisenstein series of weight 4.

Proof.

(1) If rank(H) = 2,

4k(k − 1)
Bk ·Bk−1,χK

=
4 · 4 · 3

B4 ·B3,χ−4

= −960 ∈ Z.

Hence we have

aE4(H) ∈ Z if rank(H) = 2.

If rank(H) = 1, then aE4(H) = 240σ3(ε(H)). These facts imply integrality:

E4 ∈ M4(U2(OK),det−2)sym
Z = M4(U2(OK),det2)sym

Z .

(2) Noting that E4 |S2∈ M4(Γ2) and dimM4(Γ2) = 1, we have E4 |S2= G4. ¤
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4.2.2. Form of weight 6 over Q(
√−1).

Lemma 4.2.

(1) E6 ∈ M6(U2(OK),det3)sym
Z .

(2) E6 |S2= G6 where G6 is the Siegel-Eisenstein series of weight 6.

Proof.

(1) If rank(H) = 2,

aE6(H) =
4 · 6 · 5

B6 ·B5,χK

∑

0<d|ε(H)

d5GK

(
4,

4 det(H)
d2

)

= −2016
5

∑

0<d|ε(H)

d5GK

(
4,

4 det(H)
d2

)
, (cf. (4.1)).

Noting that 4 det(H) 6≡ 1 (mod 4) and Fermat’s congruence, we obtain

GK

(
4,

4 det(H)
d2

)
≡ 0 (mod 5).

This implies aE6(H) ∈ Z if rank(H) = 2. In the case that rank(H) = 1, we
have

aE6(H) = −2 · 6
B6

σ5(ε(H)) = −504σ5(ε(H)) ∈ Z.

These statements imply that aE6(H) ∈ Z. Namely, we have

E6 ∈ M6(U2(OK),det−3)sym
Z = M6(U2(OK),det3)sym

Z .

(2) The proof is similar to the case of weight 4. ¤

4.2.3. Form of weight 8 over Q(
√−1).

Lemma 4.3. We define

χ8 := φ2
4,

where φ4 is the skew-symmetric Hermitian modular form given in Theorem 4.2.
Then we have the following results:

(1) χ8 ∈ S8(U2(OK), 1)sym
Z .
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(2) aχ8

( 1 (1+i)/2
(1−i)/2 1

)
= 1, namely vp(χ8) = 0 (cf. (2.1)).

(3) χ8 |S2≡ 0.
(4) χ8 = −(61/(210 · 32 · 52))(E8 − E2

4) = −(61/230400)(E8 − E2
4).

Proof. The facts (1) and (2) are consequences of [4, Corollary 4]. Namely,
they come from the fact that φ4 is constructed by the Borcherds product. Here
we give another proof.

Let Mk(Γ0(4), χk
−4) be the space of modular forms of weight k on the con-

gruence subgroup Γ0(4) ⊂ SL2(Z) with character χk
−4. We define the subspace

M∗
k (Γ0(4), χk

−4) by

M∗
k

(
Γ0(4), χk

−4

)

:=
{

f =
∑

af (n)qn ∈ Mk(Γ0(4), χk
−4) | af (n) = 0, if χ−4(n) = 1

}
.

This is an analogue of Kohnen’s plus space (cf. [10, p. 670]). Krieg constructed
an isomorphism

Ω : Mk(U2(OK), 1) −→ M∗
k−1

(
Γ0(4), χk−1

−4

)
(4.3)

(cf. [10, p. 676, Theorem]), where Mk(U2(OK), 1) ⊂ Mk(U2(OK), 1)sym is the
Hermitian Maass space defined in [10, p. 667]. Moreover, F ∈ Mk(U2(OK), 1) is
a cusp form if and only if Ω(F ) is a cusp form.

We know that

θ(z) := 1 + 2
∞∑

n=1

qn2
and F2(z) :=

∑

n≥1
n:odd

σ1(n)qn

are generators of the graded ring

⊕

k∈Z

Mk

(
Γ0(4), χk

−4

)
.

If we set

h7(z) := θ6(z)F 2
2 (z)− 16θ2(z)F 3

2 (z)

=
∞∑

n=1

a7(n)qn,
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then h7 ∈ S∗7 (Γ0(4), χ−4) (the space of cusp forms). We see that

χ8 ∈ S8(U2(OK), 1)sym

and, moreover

Ω(χ8) = −2
i
h7 (cf. (4.3)).

From this, we obtain

aχ8(H) =
∑

0<d|ε(H)

d7 1

1 +
∣∣∣∣χ−4

(
4 det(H)

d2

)∣∣∣∣
a7

(
4 det(H)

d2

)
.

We must show the integrality of χ8. We shall prove

1

1 +
∣∣∣∣χ−4

(
4 det(H)

d2

)∣∣∣∣
a7

(
4 det(H)

d2

)
∈ Z. (4.4)

To prove this, we note the q-expansion of F2(z). We see that

h7 ≡ F 2
2 (mod 2Z[[q]]).

This means that, if a7(n) is odd, then n must be even. This implies (4.4) and
proves (1). Since a7(2) = 1, we have (2). The fact (3) comes from φ4 |S2≡ 0. The
identity (4) is obtained by calculations of the Fourier coefficients of E8 and E2

4 . ¤

4.2.4. Form of weight 10 over Q(
√−1).

Lemma 4.4. We define

F10 := − 277
29 · 33 · 52 · 7f10 = − 277

2419200
(E10 − E4E6),

where f10 is the cusp form of weight 10 defined in (4.2). Then we have the following
results:

(1) F10 ∈ S10(U2(OK),det5)sym
Z .

(2) F10 |S2= 6X10, where X10 ∈ S10(Γ2) is Igusa’s cusp form of weight 10 defined
in (3.1).
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Proof. We set

h9(z) := θ10(z)F 2
2 (z)− 12θ6(z)F 3

2 (z)− 64θ2(z)F 4
2 (z)

=
∞∑

n=1

a9(n)qn ∈ M∗
9 (Γ0(4), χ−4).

If we consider Krieg’s isomorphism Ω (cf. (4.3)), then we have

F10 ∈ S10(U2(OK),det5)sym

and

Ω(F10) = −2
i
h9.

From this, we have

aF10(H) =
∑

0<d|ε(H)

d9 1

1 +
∣∣∣∣χ−4

(
4 det(H)

d2

)∣∣∣∣
a9

(
4 det(H)

d2

)
.

By the similar argument to that of Lemma 4.3, we can prove the integrality of
F10. This proves (1). The Siegel modular form F10 |S2 is a cusp form of weight
10. Since dimS10(Γ2) = 1, F10 |S2 is a constant multiple of X10. If we note that

aF10|S2

(
1 1

2

1
2 1

)
= aF10

(
1 1−i

2

1+i
2 1

)
+ aF10

(
1 1

2

1
2 1

)
+ aF10

(
1 1+i

2

1−i
2 1

)

= 1 + 4 + 1 = 6,

we have

F10 |S2= 6X10. ¤

4.2.5. Form of weight 12 over Q(
√−1).

Lemma 4.5. We define

F12 := − 19 · 691 · 2659
211 · 37 · 53 · 72 · 73

(
f12 +

29 · 34 · 52 · 72 · 6791
19 · 691 · 2659

E4χ8

)



226 T. Kikuta and S. Nagaoka

= − 34910011
2002662144000

E12 − 34801
1009152000

E3
4 +

414251
9082368000

E4E8

+
50521

8010648576
E2

6 ,

where f12 is the cusp form of weight 12 defined in (4.2). Then we have the following
results:

(1) F12 ∈ S12(U2(OK), 1)sym
Z .

(2) F12 |S2= X12, where X12 ∈ S12(Γ2) is Igusa’s cusp form of weight 12 defined
in (3.1).

Proof. We set

h11(z) := 2θ10(z)F 3
2 (z)− 32θ6(z)F 4

2 (z)

=
∞∑

n=1

a11(n)qn ∈ M∗
11(Γ0(4), χ−4).

If we consider Krieg’s isomorphism Ω (cf. (4.3), then we have

F12 ∈ S12(U2(OK), 1)sym

and

aF12(H) =
∑

0<d|ε(H)

d11 1

1 +
∣∣∣∣χ−4

(
4 det(H)

d2

)∣∣∣∣
a11

(
4 det(H)

d2

)
.

This implies (1). The Siegel modular form F12 |S2 is a cusp form of weight 12.
Since dimS12(Γ2) = 1, F12 |S2 is a constant multiple of X12. If we note that

aF12|S2

(
1 1

2

1
2 1

)
= aF12

(
1 1−i

2

1+i
2 1

)
+ aF12

(
1 1

2

1
2 1

)
+ aF12

(
1 1+i

2

1−i
2 1

)

= 0 + 1 + 0 = 1,

we obtain

F12 |S2= X12. ¤

Summarizing these results, we obtain the following theorem.
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Theorem 4.3. Let K = Q(
√−1).

(1) The graded ring

⊕

k∈2Z

Mk

(
U2(OK),detk/2

)sym

is generated by

E4, E6, χ8, F10 and F12

which are algebraically independent. Moreover, all of these forms have integral
Fourier coefficients.

(2) E4 |S2= G4, E6 |S2= G6, χ8 |S2≡ 0, F10 |S2= 6X10, F12 |S2= X12,

where Gk is the Siegel-Eisenstein series and Xk is Igusa’s cusp form defined
in (3.1).

4.3. The graded ring over Q(
√−3).

In this section, we deal with the case K = Q(
√−3). The following result is

due to Dern and Krieg.

Theorem 4.4 (Dern-Krieg [4]). Let K = Q(
√−3).

(1) There exists a skew-symmetric Hermitian modular form φ9 ∈
S9(U2(OK), 1)skew such that

φ9 |S2≡ 0.

(2) The graded ring

⊕

k∈2Z

Mk(U2(OK),detk)sym

is generated by

E4, E6, E10 E12 and φ2
9

which are algebraically independent.

Remark. The form φ9 is constructed by the Borcherds product.

As in the case that Q(
√−1), we replace some of the generators.
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4.3.1. Form of weight 4 over Q(
√−3).

Lemma 4.6.

(1) E4 ∈ M4(U2(OK),det4)sym
Z .

(2) E4 |S2= G4.

Proof.

(1) In this case, we have

4k(k − 1)
Bk ·Bk−1,χK

=
4 · 4 · 3

B4 ·B3,χ−3

= −2160 ∈ Z.

Hence, by Theorem 4.1, we have

aE4(H) ∈ Z if rank(H) = 2.

If rank(H) = 1, then aE4(H) = 240σ3(ε(H)). These facts imply

E4 ∈ M4(U2(OK),det−2)sym
Z = M4(U2(OK),det4)sym

Z .

A direct calculation shows (2). ¤

4.3.2. Form of weight 6 over Q(
√−3).

Lemma 4.7.

(1) E6 ∈ M6(U2(OK),det6)sym
Z .

(2) E6 |S2= G6.

Proof.

(1) If k = 6, then

4k(k − 1)
Bk ·Bk−1,χK

=
4 · 6 · 5

B6 ·B5,χ−3

= −1512 ∈ Z.

Hence, by the similar argument to the weight 4 case, we have

E6 ∈ M6(U2(OK),det−3)sym
Z = M6(U2(OK),det6)sym

Z .

We have (2) by a direct calculation. ¤

4.3.3. Form of weight 10 over Q(
√−3).

Lemma 4.8. We define
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F10 := − 809
29 · 35 · 52 · 7f10 = − 809

21772800
(E10 − E4E6).

Then we have

(1) F10 ∈ S10(U2(OK),det10)sym
Z .

(2) F10 |S2= 2X10.

Proof.

(1) We give an explicit formula for the Fourier coefficient of F10. Note that

E1(z) := 1 + 6
∞∑

n=1

( ∑

0<d|n
χ−3(d)

)
qn ∈ M1(Γ0(3), χ−3)

and

∆3(z) :=
∞∑

n=1

( ∑

0<d|n
χ−3(d)

(
n

d

)2)
qn ∈ M3(Γ0(3), χ−3)

generate the graded ring

⊕

k∈Z

Mk

(
Γ0(3), χk

−3

)
.

If we set

h9(z) := E3
1(z)∆2

3(z)− 27∆3
3(z) =

∞∑
n=1

a9(n)qn,

then h9 ∈ M∗
9 (Γ0(3), χ−3) (the Kohnen plus-subspace), where

M∗
k (Γ0(3), χ−3)

:=
{

f =
∑

af (n)qn ∈ Mk(Γ0(3), χ−3) | af (n) = 0, if χ−3(n) = 1
}

.

If we consider Krieg’s isomorphism (cf. (4.3)), then we have

F10 ∈ S10(U2(OK),det10)sym

and
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aF10(H) =
∑

0<d|ε(H)

d9 2

1 +
∣∣∣∣χ−3

(
3 det(H)

d2

)∣∣∣∣
a9

(
3 det(H)

d2

)
.

A similar calculation in Lemma 4.4 shows (2). ¤

4.3.4. Form of weight 12 over Q(
√−3).

Lemma 4.9. We define

F12 := − 691 · 1847
213 · 36 · 53 · 72

f12 = − 1276277
36578304000

(
E12 − 441

691
E3

4 −
250
691

E2
6

)
.

Then we have

(1) F12 ∈ S12(U2(OK), 1)sym
Z .

(2) F12 |S2= 2X12.

Proof.

(1) If we define

h11(z) := E5
1(z)∆2

3(z)− 27E2
1(z)∆3

3(z) =
∞∑

n=1

a11(n)qn,

then

h11 ∈ M∗
11(Γ0(3), χ−3).

If we consider Krieg’s isomorphism, then

F12 ∈ S12(U2(OK), 1)sym

and

aF12(H) =
∑

0<d|ε(H)

d11 2

1 +
∣∣∣∣χ−3

(
3 det(H)

d2

)∣∣∣∣
a11

(
3 det(H)

d2

)
.

Hence we get (1).
A similar calculation in Lemma 4.5 shows (2). ¤
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4.3.5. Form of weight 18 over Q(
√−3).

Lemma 4.10. We define

χ18 := φ2
9.

Then we have the following results:

(1) χ18 ∈ S18(U2(OK), 1)sym
Z .

(2) aχ18

(
2 2i/

√
3

−2i/
√

3 2

)
= 1, namely vp(χ18) = 0 (cf. (2.1)).

(3) χ18 |S2≡ 0.

Proof. The facts (1) and (2) come from [4, Corollary 3]. The fact (3) is a
consequence of φ9 |S2≡ 0. ¤

From these results, we have the following theorem.

Theorem 4.5. Let K = Q(
√−3).

(1) The graded ring

⊕

k∈2Z

Mk(U2(OK),detk)sym

is generated by

E4, E6, F10, F12 and χ18

which are algebraically independent. Moreover all of these forms have integral
Fourier coefficients.

(2) E4 |S2= G4, E6 |S2= G6, F10 |S2= 2X10, F12 |S2= 2X12, χ18 |S2≡ 0
where Gk is the Siegel-Eisenstein series and Xk is Igusa’s cusp form given in
(3.1).

5. Main theorem for the case of K = Q(
√−1).

Throughout this section we assume that K = Q(
√−1) and determine the

structure of the Hermitian modular forms mod p. To do this, we begin with some
results in the first two subsections.
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5.1. Graded ring over Z(p) for Q(
√−1).

In this subsection, we determine the structure of the graded ring of Hermitian
modular forms with p-integral Fourier coefficients in the case K = Q(

√−1).
We shall show the following.

Theorem 5.1. Let K = Q(
√−1). Assume that p ≥ 5. If F ∈

Mk(U2(OK), νk)sym
Z(p)

(k : even), then there exists a polynomial P (x1, x2, x3,

x4, x5) ∈ Z(p)[x1, x2, x3, x4, x5] such that

F = P (E4, E6, χ8, F10, F12),

in other words,

⊕

0≤k∈2Z

Mk(U2(OK), νk)sym
Z(p)

= Z(p)[E4, E6, χ8, F10, F12].

Proof. Let F ∈ Mk(U2(OK), νk)sym
Z(p)

. By Theorem 4.3, there exist two
polynomials P1 ∈ C[x1, x2, x3, x4] and P2 ∈ C[x1, x2, x3, x4, x5] such that

F = P1(E4, E6, F10, F12) + χ8 · P2(E4, E6, χ8, F10, F12).

If we restrict both sides to S2, then we obtain

F |S2= P1(G4, G6, 6X10, X12)

because of Theorem 4.3, (2). Since F |S2∈ Mk(Γ2)Z(p) , there exists a unique
polynomial Q ∈ Z(p)[x1, x2, x3, x4] such that

F |S2= P1(G4, G6, 6X10, X12) = Q(G4, G6, X10, X12).

We note that the modular forms G4, G6, X10, and X12 are algebraically indepen-
dent (cf. Theorem 4.3) and 6−1 is p-integral. Therefore we see that

P1 ∈ Z(p)[x1, x2, x3, x4].

This implies that

χ8 · P2(E4, E6, χ8, F10, F12)

= F − P1(E4, E6, F10, F12) ∈ Mk(U2(OK), νk)sym
Z(p)

.
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If we apply Lemma 2.1 of Section 2.2 to the left-hand side, then

P2(E4, E6, χ8, F10, F12) ∈ Mk−8(U2(OK), νk−8)
sym
Z(p)

.

(Note that vp(χ8) = 0.) Using an inductive argument on the weight, we see that

P2 ∈ Z(p)[x1, x2, x3, x4, x5].

This completes the proof of Theorem 5.1. ¤

5.2. Existence of some modular form in the case K = Q(
√−1).

In [8], the authors showed the existence of a Hermitian modular form with
trivial character which is congruent to 1 modulo p under the condition that K =
Q(
√−1) or Q(

√−3). H. Hentschel and G. Nebe [5] have constructed such modular
forms in a more general setting.

In the case of degree 2 and p ≥ 5, we can construct such a modular form in
another way.

Proposition 5.1. Let K = Q(
√−1). Assume that p ≥ 5. Then there

exists a Hermitian modular form Fp−1 ∈ Mp−1(U2(OK), νp−1)
sym
Z(p)

such that

Fp−1 ≡ 1 (mod p).

Proof. Let φ4,1 and φ6,1 be the normalized Hermitian Jacobi-Eisenstein
series of index 1 and respective weights 4, 6. In the case of K = Q(

√−1), all of
the Fourier coefficients of φk (k = 4, 6) are rational integral and the constant term
is equal to 1 (e.g. cf. [8, Section 6]). We set

ψp−1,1 :=





g
(p−5)/4
4 · φ4,1 if p ≡ 1 (mod 4),

g
(p−7)/4
4 · φ6,1 if p ≡ 3 (mod 4),

where g4 is the normalized Eisenstein series of weight 4 for SL2(Z). Then we have

ψp−1,1 ∈ Jp−1,1(U1(OK), νp−1),

where Jk,1(U1(OK), νk) is the space of the Jacobi forms of weight k and index
1 with character νk. (For the precise definition, we refer to [2, Section 1.3].)
Moreover all of the Fourier coefficients of ψp−1,1 are rational integral and the
constant term is equal to 1. We now take the Maass lift M from Jk,1(U1(OK), νk)
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to Mk(U2(OK), νk) as in [2, p. 80, (4.3)]. Then

Fp−1 := −2(p− 1)
Bp−1

M (ψp−1,1)

satisfies

Fp−1 ∈ Mp−1(U2(OK), νp−1)
sym
Z(p)

and Fp−1 ≡ 1 (mod p). ¤

5.3. Structure of the algebra of mod p Hermitian modular forms
over Q(

√−1).
In this subsection, we determine the structure of the ring of Hermitian mod-

ular forms mod p. The following theorem is one of our main results.

Theorem 5.2. Let K = Q(
√−1) and p ≥ 5. We take a modular form

Fp−1 ∈ Mp−1(U2(OK), νp−1)
sym
Z(p)

such that Fp−1 ≡ 1 (mod p).

(The existence of such a form is guaranteed by Proposition 5.1.)
If B(x1, x2, x3, x4, x5) ∈ Z(p)[x1, x2, x3, x4, x5] is the polynomial defined by

Fp−1 = B(E4, E6, χ8, F10, F12),

then the polynomial B̃ − 1 is irreducible in Fp[x1, x2, x3, x4, x5] and

M̃ (e)(U2(OK), ν)sym
p

∼= Fp[x1, x2, x3, x4, x5]/(B̃ − 1). (5.1)

Proof. First we show the irreducibility of B̃−1. We restrict the Hermitian
modular form Fp−1 to S2. Then it still satisfies the congruence

Fp−1 |S2≡ 1 (mod p).

By Theorem 3.2, there exists a polynomial A ∈ Z(p)[x1, x2, x3, x4] such that
Fp−1 |S2= A(G4, G6, X10, X12) and Ã− 1 is irreducible in Fp[x1, x2, x3, x4]. Seek-
ing a contradiction, we suppose that B̃ − 1 is decomposed in Fp[x1, x2, x3, x4, x5]:

B̃(x1, x2, x3, x4, x5)− 1 = P̃1(x1, x2, x3, x4, x5)P̃2(x1, x2, x3, x4, x5).
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This implies that

Ã(x1, x2, x3, x4)− 1 = B̃(x1, x2, 0, 6̃x3, x4)− 1

= P̃1(x1, x2, 0, 6̃x3, x4)P̃2(x1, x2, 0, 6̃x3, x4).

This contradicts the irreducibility of Ã− 1.
Secondly, we show the isomorphism (5.1). We consider the following diagram:

Fp[x1, x2, x3, x4, x5]
ϕH //

ρ

²²

M̃ (e)(U2(OK), ν)sym
p

ψ

²²
Fp[x1, x2, x3, x4]

ϕS // M̃ (e)(Γ2)p

where

ϕH

(
P̃ (x1, x2, x3, x4, x5)

)
:= P̃

(
Ẽ4, Ẽ6, χ̃8, F̃10, F̃12

)
,

ϕS

(
Q̃(x1, x2, x3, x4)

)
:= Q̃

(
G̃4, G̃6, X̃10, X̃12

)
,

ρ
(
P̃ (x1, x2, x3, x4, x5)

)
:= P̃

(
x1, x2, 0, 6̃x3, x4

)
,

ψ
(
F̃

)
:= F̃ |S2 ∈ M̃ (e)(Γ2)p.

We shall show that

KerϕH =
(
B̃ − 1

)
. (5.2)

The inclusion (B̃ − 1) ⊂ KerϕH is a consequence of Fp−1 ≡ 1 (mod p). Assume
that

(
B̃ − 1

)
( KerϕH . (5.3)

Since the map ϕH is surjective, we have

Fp[x1, x2, x3, x4, x5]/KerϕH
∼= M̃ (e)(U2(OK), ν)sym

p .

By the assumption (5.3), we have
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Krull dim M̃ (e)(U2(OK), ν)sym
p

= Krull dimFp[x1, x2, x3, x4, x5]/KerϕH ≤ 3. (5.4)

On the other hand, the map ψ is surjective and

M̃ (e)(U2(OK), ν)sym
p /Kerψ ∼= M̃ (e)(Γ2)p.

We note that Kerψ 6= 0. In fact χ̃8 is a non-zero element of Ker ψ. Since

Krull dim M̃ (e)(U2(OK), ν)sym
p /Kerψ = 3 (cf. Theorem 3.2),

we have

3 = Krull dim M̃ (e)(U2(OK), ν)sym
p /Kerψ

< Krull dim M̃ (e)(U2(OK), ν)sym
p .

This contradicts (5.4) and completes the proof of (5.1). ¤

6. Main theorem in the case K = Q(
√−3).

In this section, we assume that K = Q(
√−3) and determine the structure

of the corresponding algebra of Hermitian modular forms mod p. The proof is
carried out by similar argument as in the case Q(

√−1).

6.1. Graded ring over Z(p) for Q(
√−3).

As in Section 5.1, we determine the structure of the graded ring of Hermitian
modular forms with p-integral Fourier coefficients in the case K = Q(

√−3).

Theorem 6.1. Assume that p ≥ 5. If F ∈ Mk(U2(OK), νk)sym
Z(p)

(k : even),
then there exists a polynomial P (x1, x2, x3, x4, x5) ∈ Z(p)[x1, x2, x3, x4, x5] such
that

F = P (E4, E6, F10, F12, χ18),

in other words

⊕

0≤k∈2Z

Mk(U2(OK), νk)sym
Z(p)

= Z(p)[E4, E6, F10, F12, χ18].
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Here νk := detk (cf. (2.2)).

Proof. In the argument in Theorem 5.1, we replace χ8 by χ18. ¤

6.2. Existence of some modular form in the case K = Q(
√−3).

We present the corresponding result to Proposition 5.1.

Proposition 6.1. Let K = Q(
√−3) and p ≥ 5. Then there exists a

Hermitian modular form Fp−1 ∈ Mp−1(U2(OK), νp−1)
sym
Z(p)

such that

Fp−1 ≡ 1 (mod p).

Proof. The proof of Proposition 5.1 is essentially valid in this case after
making a minor change. Let φ4,1 and φ6,1 be the normalized Hermitian Jacobi-
Eisenstein series of index 1 and respective weight 4, 6. In the case of K = Q(

√−3),
all of the Fourier coefficients of φk (k = 4, 6) are rational integral and the constant
term is equal to 1. Following the argument in Proposition 5.1, we set

ψp−1,1 :=





g
(p−7)/6
6 · φ6,1 if p ≡ 1 (mod 6),

g
(p−5)/6
6 · φ4,1 if p ≡ 5 (mod 6),

where g6 is the normalized Eisenstein series of weight 6 for SL2(Z). Then we can
construct Fp−1 by taking the Maass lift as in the proof of Proposition 5.1. ¤

6.3. Structure of the algebra of mod p Hermitian modular forms
over Q(

√−3).
We state the structure theorem of Hermitian modular forms mod p in the case

Q(
√−3).

Theorem 6.2. Let K = Q(
√−3) and p ≥ 5. We take a modular form

Fp−1 ∈ Mp−1(U2(OK), νp−1)
sym
Z(p)

such that Fp−1 ≡ 1 (mod p).

(The existence of such form is guaranteed by Proposition 6.1.)
If B(x1, x2, x3, x4, x5) ∈ Z(p)[x1, x2, x3, x4, x5] is the polynomial defined by

Fp−1 = B(E4, E6, F10, F12, χ18),

then the polynomial B̃ − 1 is irreducible in Fp[x1, x2, x3, x4, x5] and



238 T. Kikuta and S. Nagaoka

M̃ (e)(U2(OK), ν)sym
p

∼= Fp[x1, x2, x3, x4, x5]/(B̃ − 1).

Proof. The proof is similar to that of Theorem 5.2. ¤
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