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Abstract. A self-transverse immersion of a smooth manifold M2n in
R4n−5 for n > 5 has a double point self-intersection set which is the image of
an immersion of a smooth 5-dimensional manifold, cobordant to Dold manifold
V 5 or a boundary. We will show that the double point manifold of any such im-
mersion is a boundary. The method of proof is to evaluate the Stiefel-Whitney
numbers of the double point self-intersection manifold. By a certain method
these numbers can be read off from spherical elements of H4n−5QMO(2n−5),
corresponding to the immersions under the Pontrjagin-Thom construction.

1. Introduction.

The classification of manifolds and maps is a difficult problem. Recently, some
mathematicians try to classify the immersions up to multiple point manifolds. This
problem is not only equivalent to Hopf invariant one problem in codimension one
(see [9]) but also closely related to Kervaire invariant problem.

The r-fold point manifold problem comes back to Banchoff’s work about im-
mersion P 2 # R3 given by Boy’s surface (see [4]). More generally P. J. Eccles
in [8] describes the problem when the r-fold point manifold is 0-dimensional. For
more information in this dimension see also [9] and [10]. Since the cobordism
classes of 1-dimensional manifolds are boundaries, the problem when the r-fold
point manifold of an immersion is 1-dimensional is clear up to cobordism. The
problem has been investigated by A. Szucs in [17], when the r-fold point man-
ifolds are surfaces; with correction by the author and P. J. Eccles in [3]. In
this paper we will consider the problem when the double point manifolds are
5-dimensional. The cobordism class of 5-dimensional manifolds is generated by
boundaries, and 5-dimensional Dold manifold, denoted by V 5. We will show that
the Dold manifold V 5 cannot occur as a double point manifold for a given even
dimensional manifold Mn and any immersion f : Mn # R2n−5. We use the al-
gebraic topology and in particular the correspondence between cobordism groups
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and homotopy groups of Thom complexes. In [2] we have described a general ap-
proach to these problems which gives a method for determining the bordism class
of the self-intersection manifold of any immersion. The unoriented bordism class of
a manifold can be detected by its Stiefel-Whitney numbers and the Stiefel-Whitney
numbers of the self-intersection manifolds of an immersion can be read off from
certain homological information about the immersion. Although the introduction
for this problem can be found in [3], we will give a short introduction.

Let f : Mn # R2n−5 be a self-transverse immersion of a compact closed
smooth n-dimensional manifold M in (2n − 5)-dimensional Euclidean space. A
point of R2n−5 is an r-fold self-intersection point of the immersion if it is the
image under f of r distinct points of the manifold. The self-transversality of
f implies that the set of r-fold self-intersection points is itself the image of an
immersion

θr(f) : ∆r(f) # R2n−5

of a compact manifold ∆r(f), the r-fold self-intersection manifold, of dimension
n − (n − 5)(r − 1). Since we have supposed n > 10, the above number will be
negative if r > 2. Therefore, we will investigate the problem when r = 2. In
the cases n ≤ 10, we have the multiple point manifolds and detecting of spherical
elements needs different techniques. Note that this problem is valid for n ≥ 6,
the cases n = 6, 8, 9, 10 has been investigated. If n = 6, 8, 10 the double point
manifolds are boundaries, but for n = 9 there is an immersion of a boundary with
double point cobordant to Dold manifold V 5. The cases when the dimension of a
manifold is odd and n > 10 is still open, but if n ≡ 1 mod 8, I have some idea to
solve the problem. If n ≡ 3, 5, 7 mod 8, the problem should be difficult. However,
here we will work with arbitrary dimension to find some general results for future
references. Our main result is the following.

Theorem 1.1. Let f : M2n # R4n−5 be a self-transverse immersion. Then,
for n > 5 the double point manifolds of such immersions are boundaries.

The paper is organized as follows: In Section 2 we will describe how we can
use the general technique introduced in [2] to solve this problem. In Section 3
we will calculate the primitive and A2-annihilated elements of H2n−5QMO(n−5)
and finally in Section 4 we will prove Theorem 1.1 and we will detect the spherical
elements which involve height tow elements.

Acknowledgements. The author thanks Vice Chancellor for Research of
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2. The Stiefel-Whitney numbers.

Let Imm(n, k) denote the group of bordism classes of immersions Mn #
Rn+k of compact closed smooth manifolds in Euclidean (n+ k)-space. By general
position every immersion is regularly homotopic and so bordant to a self-transverse
immersion and so each element of Imm(n, k) can be represented by a self-transverse
immersion. In the same way bordism between self-transverse immersion can be
taken to be self-transverse; it is clear that such a bordism will induce a bordism
of the immersions of the double point self-intersection map

θ2 : Imm(n, k) → Imm(n− k, 2k).

Let MO(k) denote the Thom complex of a universal O(k)-bundle γk : EO(k) →
BO(k). Using the Pontrjagin-Thom construction, Wells in [19] describes an iso-
morphism

φ : Imm(n, k) ∼= πS
n+kMO(k).

But the stable homotopy group πS
n+kMO(k) is isomorphic to the homotopy group

πn+kQMO(k), where QX denotes the direct limit Ω∞Σ∞X = lim ΩnΣnX, where
Σ denotes the reduced suspension functor and Ω denotes the loop space functor.
By considering the Z/2-homology Hurewicz homomorphism

h : πS
n+kMO(k) ∼= πn+kQMO(k) −→ Hn+kQMO(k)

we describe in [3] how for a self-transverse immersion f : Mn # Rn+k correspond-
ing to α ∈ πS

n+kMO(k), the Hurewicz image h(α) ∈ Hn+kQMO(k) determines
the normal Stiefel-Whitney numbers of the self-intersection manifold ∆r(f). In
the case of double point self-intersection manifold may be outlined as:
The quadratic construction on a pointed space X is defined to be

D2X = X ∧X oZ/2 S∞ = X ∧X ×Z/2 S∞/∗ ×Z/2 S∞,

where the non-trivial element of the group Z/2 acts on X ∧ X by permuting
the coordinates and on the infinite sphere S∞ by the antipodal action. There is
a natural map h2 : QX → QD2X known as the stable James-Hopf map which
induces stable Hopf invariant h2

∗ : πS
nX → πS

nD2X (see [5] and [6]). If the self-
transverse immersion f : Mn # Rn+k corresponds to an element α ∈ πS

n+kMO(k),
then the immersion of the double point self-intersection manifold θ2(f) : ∆2(f) #
Rn+k corresponds to the element h2

∗(α) ∈ πS
n+kD2MO(k) given by the stable
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Hopf invariant (see [12], [15], [16], [18]). The immersion θ2(f) corresponds to an
element in the stable homotopy of D2MO(k) because the immersion of the double
point self-intersection manifold automatically acquires additional structure on its
normal bundle, namely at each point f(x1) = f(x2) the normal 2k-dimensional
space is decomposed as the direct sum of the two (unordered) k-dimensional normal
spaces of f at the points x1 and x2. The universal bundle for this structure is

γk × γk ×Z/2 1 : EO(k)× EO(k)×Z/2 S∞ → BO(k)×BO(k)×Z/2 S∞

which has the Thom complex D2MO(k). We consider the map

ξ∗ : πs
n+kD2MO(k) → πs

n+kMO(2k)

induced by the map of Thom complexes ξ : D2MO(k) → MO(2k) which comes
from the map BO(k) × BO(k) ×Z/2 S∞ → BO(2k) classifying the bundle γk ×
γk ×Z/2 1. In homology, observe that by adjointness, the stable James-Hopf map
h2 : QX → QD2X gives a stable map Σ∞QX → Σ∞D2X inducing a map in
homology Hn+kQX → Hn+kD2X. These give the following commutative diagram.

Imm(n, k)
θ2 //

φ∼=
²²

Imm(n− k, 2k)

φ∼=
²²

πS
n+kMO(k)

h2
∗ //

h

²²

πS
n+kD2MO(k)

ξ∗ //

hS

²²

πS
n+kMO(2k)

hS

²²
Hn+kQMO(k)

h2
∗ // Hn+kD2MO(k)

ξ∗ // Hn+kMO(2k)

Diagram (1).

In this diagram the vertical maps φ are the Wells isomorphisms, second and third
vertical maps in the bottom squares are the stable Hurewicz homomorphism de-
fined by using the fact that the Hurewicz homomorphism commutes with suspen-
sion. The first square on the bottom commutes by the definition of the stable
Hurewicz map and by naturality, and the second square commutes by natural-
ity. Notice that the normal Stiefel-Whitney numbers (and so bordism class) of the
double point self-intersection manifold ∆2(f) of an immersion f : Mn−k # Rn cor-
responding to α ∈ πS

n+kMO(k) are determined by (and determine) the Hurewicz
image hS(β) of the element β = ξ∗h2

∗(α) ∈ πS
n+kMO(2k) corresponding to the

immersion θ2(f). To recognize this we recall the structure of H∗MO(k).
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Homology of MO(k) and QMO(k).
Let ei ∈ HiBO(1) ∼= Z2 be the non-zero element (for i ≥ 0). For each

sequence I = (i1, i2, . . . , ik) of non-negative integers we define

eI = ei1ei2 . . . eik
= (µk)∗

(
ei1 ⊗ ei2 ⊗ · · · ⊗ eik

) ∈ H∗BO(k)

where µk : BO(1)k → BO(k) is the map which classifies the product of the
universal line bundles. The dimension of eI is |I| = i1 + i2 + · · ·+ ik.

From the definition of µk, ei1ei2 . . . eik
= eσ(1)eσ(2) . . . eσ(k) for each σ ∈ Σk,

where Σk denotes the permutation group on k elements. Thus each such element
can be written as ei1ei2 . . . eik

where i1 ≤ i2 ≤ · · · ≤ ik and it follows by counting
argument that {ei1ei2 . . . eik

| 0 ≤ i1 ≤ i2 ≤ · · · ≤ ik} is a basis for H∗BO(k).
The sphere bundle of the universal O(k)-bundle γk is given up to homotopy by
the inclusion BO(k− 1) → BO(k) and so the Thom complex MO(k) is homotopy
equivalent to the quotient space BO(k)/BO(k− 1). It follows that {ei1ei2 . . . eik

|
1 ≤ i1 ≤ i2 ≤ · · · ≤ ik} is a basis for H̃∗MO(k).

Dyer and Lashof (see [7] or [13]) make use of the Kudo-Araki operations
Qi : HmQX → Hm+iQX to describe the homology of QX. These operations are
trivial for i < m and equal to the Pontrjagin square for i = m. If I denotes the
sequence (i1, i2, . . . , ir) then we write QIx = Qi1Qi2 . . . Qirx. The sequence I is
admissible if ij ≤ ij+1 for 1 ≤ j < r and its excess is given by e(I) = i1−i2−· · ·−ir.
With this notation we can give the description of H∗QX as a polynomial algebra: if
{xλ | λ ∈ Λ} is a homogeneous basis for H̃∗X ⊆ H∗QX where X is path-connected
space, then

H∗QX = Z2

[
QIxλ | λ ∈ Λ, I admissible of excess e(I) >

dim
xλ

]
.

We may define a height function ht on the monomial generators of H∗QX by
ht(xλ) = 1, ht(Qiu) = 2ht(u) and ht(u · v) = ht(u) + ht(v) (where u · v represents
the Pontrjagin product).

Now by Diagrams (1), the double point self-intersection manifold of an immer-
sion Mn # R2n−5 may be identified up to bordism by using the stable Hurewicz
homomorphism

hS : πS
2n−5MO(2n− 10) → H2n−5MO(2n− 10).

To determine these note that from the above, H2n−5MO(2n− 10) has a basis
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e2n−11
1 e6, e2n−12

1 e2e5, e2n−12
1 e3e4, e2n−13

1 e2
2e4,

e2n−13
1 e2e

2
3, e2n−14

1 e3
2e3, e2n−15

1 e5
2.

On the other hand, since H̃∗MO(k) ∼= wkZ2[w1, w2, . . . , wk], where wi ∈ HiBO(k)
is the i-th universal Stiefel-Whitney classes (see [14, Theorem 7.1]). So the coho-
mology group H2n−5MO(2n− 10) has a basis

w2n−10w
5
1, w2n−10w

3
1w2, w2n−10w

2
1w3, w2n−10w1w4

w2n−10w1w
2
2, w2n−10w2w3, w2n−10w5.

Now from the vector space duality H2n−5MO(2n− 10) has the dual basis

(
w2n−10w

5
1

)∗
,

(
w2n−10w

3
1w2

)∗
,

(
w2n−10w

2
1w3

)∗
, (w2n−10w1w4)∗

(
w2n−10w1w

2
2

)∗
, (w2n−10w2w3)∗, (w2n−10w5)∗,

By using [Theorem 3.4 of [2]] we can show that

(
w2n−10w

5
1

)∗ = e2n−11
1 e6,

(
w2n−10w

3
1w2

)∗ = e2n−11
1 e6 + e2n−12

1 e2e5,

(
w2n−10w

2
1w

2
2

)∗ = e2n−11
1 e6 + e2n−12

1 e2e5 + e2n−12
1 e3e4,

(
w2n−10w

2
1w3

)∗ = e2n−11
1 e6 + e2n−12

1 e2e5 + e2n−13
1 e2

2e4,

(w2n−10w2w3)∗ = e2n−11
1 e6 + e2n−12

1 e2e5 + e2n−12
1 e3e4 + e2n−13

1 e2e
2
3,

(w2n−10w1w4)∗ = e2n−11
1 e6 + e2n−12

1 e2e5 + e2n−12
1 e3e4 + e2n−13

1 e2
2e4

+ e2n−13
1 e2e

2
3 + e2n−14

1 e3
2e3,

(w2n−10w5)∗ = e2n−11
1 e6 + e2n−12

1 e2e5 + e2n−12
1 e3e4 + e2n−13

1 e2
2e4

+ e2n−13
1 e2e

2
3 + e2n−14

1 e3
2e3 + e2n−15

1 e5
2.

Note that the cohomology group H5(V 5;Z2) = 〈cd2〉, where c ∈ H1(V 5;Z2) and
d ∈ H2(V 5;Z2) so by vector space duality, H5(V 5;Z2) ∼= 〈(cd2)∗〉. It is well
known that the total normal Stiefel-Whitney class of V 5 is

w = 1 + d + cd.
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So w1 = 0, w2 = d, w3 = cd and wi = 0, for all i ≥ 4. Since the only nonzero
class in dimension 5 is w2w3 we have w2w3[V 5] = 1 and the other normal Stiefel-
Whitney numbers are zero, by Whitney duality theorem. Note that w1 = 0 means
that V 5 is oriented up to cobordism. We collect the above in the following theorem.

Theorem 2.1. Let f : Mn −→ R2n−5 be a self-transverse immersion. Then
the double point manifold of f is the Dold manifold V 5, (i.e. is not null-cobordant)
if and only if

ξ∗h2
∗(h(α)) = e2n−11

1 e6 + e2n−12
1 e2e5 + e2n−12

1 e3e4 + e2n−13
1 e2e

2
3,

And it is a boundary, (i.e. is null-cobordant) if and only if ξ∗h2
∗(h(α)) = 0. Where

α denotes the representation of f in πS
2n−5MO(n−5) ∼= π2n−5QMO(n−5) under

the Wells isomorphism.

Proof. Since by Diagram (1), ξ∗h2
∗(h(α)) represents the double point man-

ifold of immersion f : Mn −→ R2n−5 in H2n−5MO(2n− 10) and from the above
calculations the only non zero normal Stiefel-Whitney number corresponding to
Dold manifold V 5 is the element w2w3, dual to e2n−11

1 e6+e2n−12
1 e2e5+e2n−12

1 e3e4+
e2n−13
1 e2e

2
3, the theorem follows. ¤

For the evaluation of ξ∗h2
∗(h(α)) from Diagram (1) and then the cobordism

class of the manifold ∆2(f) from Theorem 2.1, we need the following lemma which
is the special case of Lemma 2.3 in [3].

Lemma 2.2. The homomorphism h2
∗ : H̃∗QX → H̃∗D2X is given by the

projection onto the monomial generators of height 2. The kernel is spanned by the
set of height other than 2.

Corollary 2.3. A basis for H2n−5D2MO(n− 5) is given by the following
elements.

en−5
1 · en−6

1 e6, en−5
1 · en−7

1 e2e5, en−5
1 · en−7

1 e3e4, en−5
1 · en−8

1 e2
2e4,

en−5
1 · en−8

1 e2e
2
3, en−5

1 · en−9
1 e3

2e3, en−5
1 · en−10

1 e5
2, en−6

1 e2 · en−6
1 e5,

en−6
1 e2 · en−7

1 e2e4, en−6
1 e2 · en−7

1 e2
3, en−6

1 e2 · en−8
1 e2

2e3, en−6
1 e2 · en−9

1 e4
2,

en−6
1 e3 · en−8

1 e3
2, en−6

1 e3 · en−7
1 e2e3, en−6

1 e3 · en−6
1 e4, en−7

1 e2
2 · en−8

1 e3
2,

en−7
1 e2

2 · en−7
1 e2e3, en−7

1 e2
2 · en−6

1 e4, Qnen−5
1 , Qn−1en−6

1 e2,

Qn−2en−6
1 e3, Qn−2en−7

1 e2
2.

Finally, we should determine the spherical classes in H2n−5QMO(n− 5), i.e.
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the classes in the image of

h : π2n−5QMO(n− 5) → H2n−5QMO(n− 5).

Then, the images of these classes under the map ξ∗ ◦ h2
∗ determine the double

point manifolds, (see Diagram (1)). Although the description of these spherical
classes is so difficult, it is not necessary. For it is sufficient to observe the following
well-known properties of spherical classes which are immediate from H∗Sn by
naturality. Note that this is not sufficient to find the spherical elements but it is
helpful to reduce the number of elements to be checked.

Lemma 2.4.

(a) If a homology class u ∈ HnX is spherical then it is primitive with respect
to the cup coproduct, that is ψ(u) = u⊗1+1⊗u, where ψ : HnX → Hn(X×X) ∼=
ΣiHiX ⊗Hn−iX is the map induced by the diagonal map.

(b) If a homology class u ∈ HnX is spherical (or stably spherical, i.e. in the
image of hS : πS

nX → HnX) then it is A2-annihilated by the reduced Steenrod
algebra, i.e. Sqi

∗(u) = 0, for all i > 0, where Sqi
∗ : HnX → Hn−iX is the vector

space dual of the usual Steenrod square cohomology operation Sqi : Hn−iX →
HnX.

Remark. Since the r-fold intersection manifold of any immersion Mn #
R2n−5 for n > 10 is empty for all r ≥ 3 we have,

H2n−5QMO(n− 5) = H2n−5MO(n− 5)⊕H2n−5D2MO(n− 5).

The homology group H2n−5MO(n− 5) is generated by ei1ei2 · · · ein−5 where, 1 ≤
i1 ≤ i2 ≤ · · · ≤ in−5 and i1 + i2 + · · · + in−5 = 2n − 5 and the homology group
H2n−5D2MO(n − 5) is described in Corollary 2.3. So for n > 10 the homology
group H2n−5QMO(n−5) corresponding to immersions Mn # R2n−5 is completely
determined.

3. Primitive A 2-annihilated elements.

In order to find the spherical elements of H2n−5QMO(n − 5) using Lemma
2.4, first we try to find its primitive submodule. Let ψ denote the cup coproduct
and note that a ∈ H∗X is primitive if and only if

ψ(x) = (x⊗ 1 + 1⊗ x).

We need the following lemma from [1].



Double point of self-transverse immersions of M2n # R4n−5 1265

Lemma 3.1. A height one element is primitive if and only if the element
contains e1. Moreover if a is primitive, then Qka is also primitive.

But it is possible the linear combination of non-primitive elements to be prim-
itive element. To see which linear combination of non-primitive elements is prim-
itive, note that the height one non-primitive elements by Lemma 3.1 are the fol-
lowing elements. Note that ψ(en) =

∑
ei ⊗ ej and external and internal Cartan

formula hold (see [13, Theorem 1.1]).

en−6
2 e7, en−7

2 e3e6, en−7
2 e4e5, en−8

2 e2
3e5, en−8

2 e3e
2
4, en−9

2 e3
3e4, en−10

2 e5
3.

And the height two non-primitive elements are the elements of Corollary 2.3 except
the following primitive elements.

Qnen−5
1 , Qn−1en−6

1 e2, Qn−2en−6
1 e3, Qn−2en−7

1 e2
2,

The action of ψ on these elements shows that the following combinations are
primitive. Note also that the calculations are so long and therefore we omit them.

A = en−5
1 · en−6

1 e6 + en−6
1 e2 · en−6

1 e5 + en−6
1 e3 · en−6

1 e4 + en−6
2 e7,

B = en−5
1 · en−7

1 e2e5 + en−6
1 e2 · en−7

1 e2e4 + en−6
1 e3 · en−7

1 e2e3

+ en−6
1 e4 · en−7

1 e2
2 + en−6

1 e5 · en−6
1 e2 + en−7

2 e3e6,

C = en−5
1 · en−7

1 e3e4 + en−6
1 e2 · en−7

1 e2
3 + en−6

1 e3 · en−7
1 e2e3 + en−6

1 e4 · en−6
1 e3

+ en−6
1 e2 · en−7

1 e2e4 + en−7
1 e2

2 · en−7
1 e2e3 + en−7

2 e4e5,

D = en−5
1 · en−8

1 e2
2e4 + en−6

1 e2 · en−8
1 e2

2e3 + en−6
1 e3 · en−8

1 e3
2 + en−6

1 e4 · en−7
1 e2

2

+ en−8
2 e2

3e5,

E = en−5
1 · en−8

1 e2e
2
3 + en−7

1 e2
2 · en−8

1 e3
2 + en−7

1 e2
3 · en−6

1 e2 + en−8
2 e3e

2
4,

F = en−5
1 · en−9

1 e3
2e3 + en−6

1 e2 · en−9
1 e4

2 + en−6
1 e3 · en−8

1 e3
2 + en−9

2 e3
3e4

+ en−6
1 e2 · en−8

1 e2
2e3 + en−7

1 e2
2 · en−8

1 e3
2 + en−7

1 e2
2 · en−7

1 e2e3,

G = en−5
1 · en−10

1 e5
2 + en−6

1 e2 · en−9
1 e4

2 + en−10
2 e5

3.

Therefore we have the following Corollary.

Corollary 3.2. The primitive submodule of H2n−5(QMO(n− 5)) is gen-
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erated by the following elements.

Qnen−5
1 , Qn−1en−6

1 e2, Qn−2en−7
1 e2

2, Qn−2en−6
1 e3,

A, B, C, D, E, F, G, δ.

Here δ runs over a basis of primitive height one elements.

If a height one element is spherical, then the double point manifold is a bound-
ary. So we are going to show which of the elements involving height two element of
the above Lemma are A2-annihilated. The action of Steenrod Algebra is given by
the Nishida relation and external and internal Cartan formula hold (see [13, The-
orem 1.1]). Since the mod 2 Steenrod Algebra is generated by Sq2i

and because
of dimensional reason the action of Sq2i

∗ on the above elements are zero for i ≥ 3
we will look them, when i = 0, 1, 2. Note that this action preserves the height and
the following formulas are useful in calculations.

Sqi
∗Q

j(a) =
∑

2k≤i

(
j − i

i− 2k

)
Qj−i+k(Sqk

∗ (a)); Sqi
∗ej =

(
j − i

i

)
ej−i

where Sqi
∗ denotes the dual of Sqi.

From now on we suppose that n ≡ 0 mod 2.

Lemma 3.3. Let n ≡ 0 mod 2. The action of Sq1
∗ on the elements of

Corollary 3.2 is given by

Sq1
∗Q

nen−5
1 = Qn−1en−5

1 ,

Sq1
∗Q

n−1en−6
1 e2 = 0,

Sq1
∗Q

n−2en−7
1 e2

2 = en−7
1 e2

2 · en−7
1 e2

2,

Sq1
∗Q

n−2en−6
1 e3 = en−6

1 e3 · en−6
1 e3,

Sq1
∗(A) = en−6

1 e3 · en−6
1 e3 + δ,

Sq1
∗(B) = en−5

1 · en−7
1 e2e4 + en−6

1 e2 · en−6
1 e4 + en−6

1 e2 · en−7
1 e2e3

+ en−6
1 e3 · en−7

1 e2
2 + en−6

1 e3 · en−6
1 e3 + δ,

Sq1
∗(C) = en−5

1 · en−7
1 e2e4 + en−6

1 e2 · en−6
1 e4 + en−6

1 e2 · en−7
1 e2e3

+ en−6
1 e3 · en−7

1 e2
2 + δ,
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Sq1
∗(D) = δ,

Sq1
∗(E) = en−7

1 e2
2 · en−7

1 e2
2 + δ,

Sq1
∗(F ) = en−5

1 · en−9
1 e4

2 + en−7
1 e2

2 · en−7
1 e2

2 + δ,

Sq1
∗(G) = δ.

Here δ denotes a linear combination of primitive height one elements.

Proof. Just use the formulas mentioned before the lemma. ¤

From Lemma 3.3 one can show the following elements to be A2-annihilated.

Qn−1en−6
1 e2, E + Qn−2en−7

1 e2
2, A + Qn−2en−6

1 e3, A + B + C, D, G.

Lemma 3.4. The action of Sq2
∗ on the remaining elements are as follows:

Sq2
∗
(
Qn−1en−6

1 e2

)
=

{
Qn−2en−5

1 if n ≡ 0 mod 4

Qn−3en−6
1 e2 + Qn−2en−5

1 if n ≡ 2 mod 4

Sq2
∗
(
Qn−2en−7

1 e2
2

)
= 0,

Sq2
∗
(
Qn−2en−6

1 e3

)
= 0,

Sq2
∗(A) = δ,

Sq2
∗(B) = en−6

1 e3 · en−6
1 e2 + δ,

Sq2
∗(C) = en−5

1 · en−6
1 e4 + en−6

1 e2 · en−7
1 e2

2 + en−5
1 · en−7

1 e2e3 + δ,

Sq2
∗(D) = en−7

1 e2
2 · en−6

1 e2 + en−5
1 · en−8

1 e3
2 + δ,

Sq2
∗(E) = en−7

1 e2
2 · en−6

1 e2 + en−5
1 · en−8

1 e3
2 + δ,

Sq2
∗(G) = δ.

Here δ denotes a linear combination of primitive height one elements.

According to the above lemma one can show the following elements to be
A2-annihilated.

Qn−2en−6
1 e3 + A + δ, Qn−2en−7

1 e2
2 + D + E + δ, G + δ.

Lemma 3.5. The action of Sq4
∗ on the remaining elements are as follows:
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Sq4
∗
(
Qn−2en−7

1 e2
2

)
= Qn−4en−5

1 ,

Sq4
∗
(
Qn−2en−6

1 e3

)
= 0,

Sq4
∗(A) = δ,

Sq4
∗(D) = δ,

Sq4
∗(E) = en−5

1 · en−6
1 e2 + δ,

Sq4
∗(G) = δ.

Here δ denotes a linear combination of height one elements.

We sum up all of the above in the following theorem.

Theorem 3.6. Let n ≡ 0 mod 2, then the primitive A2-annihilated sub-
module of H2n−5QMO(n− 5) is generated by the following elements.

Qn−2en−6
1 e3 + A + δ, G, δ,

Here δ denotes a primitive combination of height one elements.

4. Detecting spherical elements.

Corollary 4.1. Let n ≡ 0 mod 2. If the element Qn−2en−6
1 e3 + A + δ is

spherical, then the double point manifolds are boundaries.

Proof. By Theorem 3.6 it is primitive and A2-annihilated. Now if it is
spherical then there is an element α ∈ π2n−5QMO(n − 5) such that h(α) =
Qn−2en−6

1 e3 + A + δ. But by Theorem 3.1 of [2] we have

ξ∗Qn−2en−6
1 e3 = e2n−12

1 e3e4 + e2n−12
1 e2e5 + e2n−11

1 e6,

ξ∗A = e2n−12
1 e3e4 + e2n−12

1 e2e5 + e2n−11
1 e6.

Now from Diagram (1)

ξ∗
(
h2
∗(h(α))

)
= ξ∗

(
Qn−2en−6

1 e3 + A
)

= 0.

Therefore, by Theorem 2.1 the double point manifolds are boundaries. ¤

Corollary 4.2. If the element G is spherical then the double point mani-
folds are boundaries.
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Proof. It is primitive and A2-annihilated. If it is spherical, then there is
an element α ∈ π2n−5QMO(n− 5) such that

h(α) = en−5
1 · en−10

1 e5
2 + en−6

1 e2 · en−9
1 e4

2 + en−10
2 e5

3 + δ,

So by Theorem 3.1 of [2] we have ξ∗h2
∗h(α) = 0. Then the corollary follows from

Theorem 2.1. ¤

Proof of Theorem 1.1.
It follows from Corollaries 4.1 and 4.2.

Some Comments. It is good idea to know these elements are spherical or
not. We claim that the element G + δ is spherical for some height one element δ.
The element Qn−2en−6

1 e3 + A + δ is not spherical for any height one element δ,
when the corresponding manifold is embedded.

Lemma 4.3. The element G + δ is spherical for some height one element δ.

Proof. We prove this lemma in two cases. If n is odd, write n = 5 + 2r1 +
2r2 +2r3 , then consider the manifold Mn = V 5×P 2r1×P 2r2×P 2r3 . This manifold
is immersed in R2n−5 since w(V 5) = 1 + d + cd and w(P 2ri ) = (1 + ai)2

ri−1 for
i = 1, 2, 3, where c ∈ H1(V 5;Z), d ∈ H2(V 5;Z) and ai ∈ H1(P 2ri ). Therefore
wn−5(M) = cd⊗ a2r1−1

1 ⊗ a2r2−1
2 ⊗ a2r3−1

3 and w5(M) = d ⊗ a1 ⊗ a2 ⊗ a3. From
which we deduce that wn−5w5(M) = cd2 ⊗ a2r1

1 ⊗ a2r2

2 ⊗ a2r3

3 6= 0. This shows
that the Hurewicz image of this immersion involves the element en−10

2 e5
3. Let α

represent this immersion in π2n−5QMO(n− 5). So necessarily we have

h(α) = G + δ.

This proves lemma in this case. If n is even we write n = 2r1 +2r2 +2r3 +2r4 +2r5 .
Then by a similar argument as above we can show that G + δ is also spherical. ¤

To prove the element Qn−2en−6
1 e3+A+δ is not spherical we need the following

theorem.

Theorem 4.4. Given α ∈ π2m(QX) ∼= πS
2m(X), if h(α) = (u∗m)2 and u∗m ∈

Hm(X), then Sqm+1um 6= 0 ∈ H2m+1Cα. Here the stable space Cα is the mapping
cone of the stable map α : Sn → X.

Proof. See [11] notes of Proposition 4.4 and for more details when X =
P∞ see [10]. Also the interested readers can see the proof of Proposition 5.8 of
[3]. ¤
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Let Qn−2en−6
1 e3 + A + δ be spherical. Then there is an element α ∈

π2n−5QMO(n− 5) such that

h(α) = Qn−2en−6
1 e3 + A + δ.

If we put this immersion in R2n−4, then we will have another immersion with
Hurewicz image

en−5
1 e3 · en−5

1 e3 + e1e
n−6
2 e7 + e1δ,

Now if the corresponding manifold M is embedded up to cobordism in R2n−4,
there is an embedding Mn ↪→ R2n−4 with Hurewicz image equal to e1e

n−6
2 e7 +

e1δ. This shows that when n is even the element en−5
1 e3 · en−5

1 e3 is spherical
in H2n−4QMO(n − 4). But the following lemma shows that if the manifold is
embedded, the element Qn−2en−6

1 e3 + A + δ can not to be spherical.

Lemma 4.5. Let n = 2m. Then the element en−5
1 e3 · en−5

1 e3 is primitive
A2-annihilated but it is not spherical.

Proof. It is clearly primitive A2-annihilated. Suppose it is spherical. Since
en−5
1 e3 · en−5

1 e3 = (wn−4w
2
1)
∗ · (wn−4w

2
1)
∗, then by Theorem 4.4 en−5

1 e3 · en−5
1 e3 is

spherical if and only if Sqn−1wn−4w
2
1 6= 0 in H2n−3Cα, where Cα is the mapping

cone of stable map of α. But since n = 2m we have

Sqn−1wn−4w
2
1 = Sq2m−1w2m−4w

2
1

= Sq1Sq2m−2w2m−4w
2
1 (Adem)

= Sq1w2
2m−4w

4
1 (dimension)

= Sq1Sq1w2
2m−4w

3
1

= 0 (Adem).

This is a contradiction. So it is not spherical. ¤
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