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A compactly generated pseudogroup which is not realizable

By Gaël Meigniez

(Received Sep. 5, 2009)

Abstract. We exhibit a pseudogroup of smooth local transformations of
the real line, which is compactly generated, but not realizable as the holonomy
pseudogroup of a foliation of codimension 1 on a compact manifold. The proof
relies on a description of all foliations with the same dynamic as the Reeb
component.

1. Introduction.

To every foliated manifold (M, F ) of arbitrary dimension and codimension,
one associates, following Ehresmann, a pseudogroup Hol(F ) of local transforma-
tions, called the holonomy pseudogroup, that represents its “dynamic” or “trans-
verse structure”. The holonomy pseudogroup is well-defined up to some natural
equivalence between pseudogroups: Haefliger equivalence.

The inverse realization problem has been raised: make a foliation with pre-
scribed dynamic, the ambient manifold not being prescribed (but it must be com-
pact.) More precisely, given a pseudogroup G, make if possible a compact foliated
manifold (M, F ) such that Hol(F ) is Haefliger-equivalent to G.

Note that if one drops the compactness condition, the question vanishes: every
pseudogroup which admits a denumerable generating subset is easily seen to rep-
resent the dynamic of some foliated open manifold.

André Haefliger made the realization problem precise by exhibiting a neces-
sary condition, compact generation. Is it sufficient? Some partial positive answers
have been given for rather rigid species of pseudogroups [1], [3], [6], [7].

The object of this paper is to answer negatively in general. We give a coun-
terexample among pseudogroups of smooth local transformations of the real line.
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2. Pseudogroups.

We recall briefly the definitions and the basic properties, now classical. See
also [5].

An arbitrary differentiability class is understood. Let T be a manifold, not
necessarily compact. A boundary is allowed.

A local transformation of T is a diffeomorphism between two nonempty open
subsets Dom(γ), Im(γ) of T . The compose γ′γ is defined whenever Im(γ) meets
Dom(γ′), and its domain is γ−1(Dom(γ′)). If A, B denote two sets of local
transformations, then as usual AB denotes the set of their composes. If U ⊂ T ,
then A | U denotes the set of the elements of A whose domains and images are
both contained in U .

Note that ∂T is necessarily preserved by every local transformation.

Definition 2.1 ([9]). A pseudogroup on T is a set G of local transformations
such that:

(1) For every nonempty open U ⊂ T the identity map 1U belongs to G;
(2) GG = G−1 = G;
(3) For every local transformation γ of T , if Dom(γ) admits an open cover (Ui)

such that every restriction γ | Ui belongs to G, then γ belongs to G.

Then, by (1) and (2), G is also stable by restrictions: if γ belongs to G and
if U ⊂ Dom(γ) is nonempty open, then γ | U belongs to G.

For example, every set S of local transformations of T is contained in a small-
est pseudogroup 〈S〉 containing S. Call 〈S〉 the pseudogroup generated by S.

Every point t in T has under a pseudogroup G:

(1) An orbit : the set of the images γ(t) through the local transformations γ ∈ G

defined at t;
(2) An isotropy group: the group of the germs at t of the local transformations

γ ∈ G defined at t and fixing t.

Let (M, F ) be a manifold foliated in codimension q. By a transversal one
means a q-manifold T immersed into M transversely to F , not necessarily com-
pact, and such that ∂T = T ∩ ∂M . One calls T exhaustive (or total) if it meets
every leaf.

Definition 2.2 ([2]). The holonomy pseudogroup Hol(F , T ) of a folia-
tion F on an exhaustive transversal T is the pseudogroup generated by the local
transformations of T of the form f(x, 0) 7→ f(x, 1), where:

(1) Dq is the open q-disk;
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(2) f : Dq × [0, 1] → M is a map transverse to F ;
(3) f∗F is the foliation on Dq × [0, 1] by the first projection;
(4) f embeds Dq × 0 and Dq × 1 into T .

This holonomy pseudogroup does represent the dynamic of the foliation in
the sense that there is a one-to-one correspondance L 7→ L∩T between the leaves
of F and the orbits of Hol(F , T ). A topologically closed orbit corresponds to a
closed leaf. The isotropy group of Hol(F , T ) at any point is isomorphic with the
holonomy group of the corresponding leaf; etc.

Definition 2.3 ([3]). A Haefliger equivalence between two pseudogroups
(Ti, Gi) (i = 0, 1) is a pseudogroup G on the disjoint union of T0 with T1, such
that G | Ti = Gi (i = 0, 1) and that no orbit of G in entirely contained in T0 or in
T1.

For example, obviously, the two holonomy pseudogroups of a same foliation
on two exhaustive transversals are Haefliger equivalent.

A Haefliger equivalence between (T1, G1) and (T2, G2) induces a one-to-one
correspondance between the orbit spaces Ti/Gi (i = 0, 1); a closed orbit corre-
sponds to a closed orbit; the isotropy groups at points on corresponding orbits are
isomorphic; etc.

Let (T,G) be a pseudogroup. Call a subset T ′ ⊂ T exhaustive if it meets
every orbit. Call γ ∈ G extendable if it is the restriction to Dom(γ) of some γ̄ ∈ G

such that Dom(γ) is relatively compact in Dom(γ̄).

Definition 2.4 ([4]). A pseudogroup (T, G) is compactly generated if there
are an exhaustive, relatively compact, open subset T ′ ⊂ T , and finitely many
elements of G | T ′ which are extendable in G and which generate G | T ′.

This property is invariant by Haefliger equivalence [4], [5]. The holonomy
pseudogroup of every foliated compact manifold is compactly generated [4]. Also,
recently N. Raimbaud has given a natural generalization of compact generation in
the realm of Lie groupoids, where it is a Morita-equivalence invariant [8].

3. The example.

In this paper, to fix ideas one works in the smooth (C∞) differentiability class;
all foliations and pseudogroups are transversely orientable; all diffeomorphisms are
orientation-preserving.

In the realization problem, one may allow that M have some boundary com-
ponents transverse to F , or not. This has no influence on the answer. Indeed
assume that some pseudogroup G is realized by (M, F ) which has some trans-
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verse boundary components ∂trM . Let D2 denote the compact 2-disk. Then G

is also realized by (M ′, pr∗1F ) where M ′ is, in ∂(M ×D2), the union of M × S1

with ∂trM ×D2.

The counterexample to realizability is as follows. Let α, β be two global
diffeomorphisms of the real line such that:

(1) α is a contraction fixing 0, that is, |α(t)| < |t| for every t 6= 0;
(2) The support of β is compact and contained in (−1, 0];
(3) The germs of α and β at 0 generate a nonabelian free group.

The third condition is in some sense generically fulfilled; one can also make an
explicit example by the following classical method.

Let A,B ∈ PSL(2,R) generate a free group. Regard them as diffeomorphisms
of the real projective line. Lift them into two diffeomorphisms Ã, B̃ of the real line
commuting with the unit translation. Composing if necessary Ã with some integral
translation, Ã(t) > t for every t. After a conjugation by the exponential map, one
has two diffeomorphisms a, b of (0,+∞) generating a free group. Moreover they
verify the tameness property:

Ct ≤ a(t), b(t) ≤ C ′t

for some constants 0 < C < C ′. After a new conjugation by φ : t 7→
exp(− exp(1/t)), one has two germs of diffeomorphisms f := φ−1aφ and g :=
φ−1bφ on the right-hand side of 0. It is easily verified that:

∣∣∣∣
φ−1(Ct)
φ−1(t)

− 1
∣∣∣∣ = o(φ−1(t)n)

for every C > 0, n, and t → 0. Thus f and g are flat on the identity at 0; and it
remains only to change the orientation on the line, and to extend both germs in
an obvious way, to get to diffeomorphisms α, β with the prescribed properties.

Theorem 3.1. The pseudogroup G := 〈α, β〉 generated by the above diffeo-
morphisms is compactly generated and is not realizable.

The first affirmation is actually easy:

Lemma 3.2. G is compactly generated.

Proof. Take T ′ := (−1, 1) and α′ := α | T ′ and β′ := β | T ′. Then
obviously T ′ is exhaustive and α′, β′ are extendable in G. It remains to verify
that they do generate G | T ′.
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Let be given the germ, denoted γ(t)
γ← t, of some element γ of G | T ′ at some

point t in its domain. Thus t, γ(t) ∈ T ′. We have to write this germ as a compose
of germs of the diffeomorphisms α±1 and β±1 all taken at points of T ′ — and this
is the marrow of bone of compact generation.

But here it is easy: since G is generated by α and β, by definition the given
germ decomposes as a composable sequence:

(
γ(t)

γ← t
)

=
(
tn

γn← tn−1
γn−1←− · · · t1 γ1← t0

)

of germs of α±1 and β±1 at some points t0 = t, . . . , tn ∈ R.
Take such a decomposition of minimal length n. Then we claim that

t0, . . . , tn ∈ T ′. Indeed, if not, one has for example

t` := sup{t0, . . . , tn} ≥ 1.

By maximality of t`, and since α(t`) < t`, one has either γ` = β±1 or
γ`+1 = β±1 or γ`

−1 = α = γ`+1, contrarily to the minimality of the length of
the decomposition. ¤

Observe that the halfline [0,+∞) is saturated for G, and that the restriction
G | [0,+∞) is actually the transverse structure of a Reeb component. The proof
that G is not realizable will rely on a precise description of all the foliations with
the same transverse structure as a Reeb component, from which it will then follow
that the boundary leaf cannot present such a free holonomy group on the side
exterior to the component.

4. Generalized Reeb components.

Fix a contraction η of the halfline R+ := [0,+∞), and consider the generated
pseudogroup 〈η〉.

Of course, this pseudogroup has a canonical realization in dimension 3: the
classical Reeb foliation on D2 × S1, obtained as follows. Having foliated (R2 ×
R+) \ 0 by its projection onto the halfline, one passes to the quotient by the
foliation-preserving diffeomorphism (x, t) 7→ (x/2, η(t)).

This obvious construction has a natural generalization (Alcalde-Cuesta-He-
ctor-Schweitzer, unpublished). One is given a compact connected (n−1)-manifold
C with smooth connected boundary and a self-embedding

φ : C → Int(C)

(In the classical case, C would be D2; and φ(x) = x/2). From these data, one
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makes a generalized Reeb component as follows.
Consider the projective limit:

P := ∩i∈Nφi(C)

and the inductive limit:

I := C ×Z/(x, i + 1) ∼ (φ(x), i).

Denote [x, i] the class of the pair (x, i). One has a diffeomorphism:

Φ : I → I : [x, i] 7→ [φ(x), i].

Identify C with a subset of I through the embedding x 7→ [x, 0]. Thus Φ | C = φ.
It is also convenient to fix a smooth function f0 on C \ Int(φ(C)) such that
f0
−1(0) = ∂C and that f0

−1(1) = φ(∂C). It extends uniquely into a function f

on I \ P such that f ◦ Φ = f + 1. Obviously, f is proper. Set f = +∞ on P .
Also, let g be a function on (0,+∞) such that g(η(t)) = g(t) + 1. Set g(0) =

+∞.
Define:

R̃ := (I ×R+) \ (P × 0).

Foliate it by its projection onto R+. Also endow it with the foliation-preserving
diffeomorphism:

γ : R̃ → R̃ : (x, t) 7→ (Φ(x), η(t))

and with the function:

F (x, t) := min{f(x), g(t)}.

It is immediately verified that F is finite and proper, and that F ◦ γ = F + 1. It
follows that γ acts freely, properly discontinuously and cocompactly on R̃. Thus
the quotient is a foliated, compact, Hausdorff manifold (R, R).

Definition 4.1. Call (R, R) the generalized Reeb component associated to
the self-embedding (C, φ).

Obviously (R, R) realizes 〈η〉. Conversely:
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Theorem 4.2. Every realization of the pseudogroup generated by a contrac-
tion of the halfline is diffeomorphic to some generalized Reeb component in the
sense of Alcalde-Cuesta-Hector-Schweitzer.

Here “realization” is understood without transverse boundary components.

Proof of theorem 4.2. Given a realization (M, F ) of the contraction η,

Lemma 4.3. The foliation F is developable over R+ and complete . . .

. . . which means the following: there is an infinite cyclic covering:

π : M̃ → M

a generator γ of the deck transformation group, and a “developing map”:

D : M̃ → R+

such that:

(1) The map D is a surjective submersion;
(2) The fibres of D are connected and are the leaves of π∗F ;
(3) One has η ◦D = D ◦ γ.

Proof of lemma 4.3. One can either call to the general theory of trans-
versely affine foliations, or deduce these properties from the corresponding ones
observed on an explicit classifying space, as follows.

Changing 3 and 2 into +∞ in the above construction of the classical Reeb com-
ponent, one gets an infinite-dimensional Reeb component (R∞,R). The holonomy
covering of each leaf is weakly contractible. That foliation thus being the classi-
fying space of its pseudogroup 〈η〉 [3], there exists a classifying map c : M → R∞

transverse to R such that F = c∗R, and that c induces a Haefliger equivalence
between the holonomy pseudogroups of F and of R.

In particular c induces a bijection of the leaf spaces; and, for every leaf L of
R, the map c also induces a group isomorphism from the holonomy group of the
leaf c−1(L) onto the holonomy group of L.

Thence c maps the holonomy group of ∂M onto the holonomy group of ∂R∞.
Thus c maps the fundamental group π1M onto π1R

∞ ∼= Z, hence an infinite cyclic
covering M̃ and a lifting c̃ : M̃ → R̃∞. Define D as c̃ followed by the projection to
R+. The above properties of c immediately translate into the demanded properties
for D. ¤
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(Continuation of the Proof of theorem 4.2) Fix in M an arbitrary smooth
foliation N of dimension 1 transverse to F . In particular N is transverse to ∂M .
Lift it into a foliation Ñ of the covering M̃ . Consider the canonical projection
onto the space of orbits:

pr : M̃ → I := M̃/Ñ

and the homeomorphism Φ : I → I such that:

pr ◦ γ = Φ ◦ pr

and the Φ-invariant, topologically closed subset:

P := I \ pr(∂M̃).

Lemma 4.4. The space of orbits I is a connected Hausdorff manifold. More-
over, there is a diffeomorphism:

M̃ ∼= (I ×R+) \ (P × 0)

through which γ(x, t) = (Φ(x), η(t)) and D(x, t) = t and pr(x, t) = x.

Proof. The halfline bears an η-invariant vector field u(t)∂/∂t, smooth and
nonsingular in (0,+∞), null at 0. It needs not to be differentiable at 0. Clearly it is
complete. Let (ηs)s∈R be the associated 1-parameter group of homeomorphisms of
the halfline. Consider the unique vector field X̃ in M̃ tangent to Ñ and projecting
onto u(t)∂/∂t through D. Since Ñ is γ-invariant, since u(t)∂/∂t is η-invariant and
since D is equivariant, X̃ is γ-invariant. In other words X̃ is the pullback into M̃

of some vector field X on the compact manifold M , which is smooth in the interior
of M and null on ∂M . The vector field u(t)∂/∂t being complete, one concludes
easily that X is complete. Thus X̃ is complete. Let (ξs)s∈R be the associated
1-parameter group of homeomorphisms of M̃ . Then D ◦ ξs = ηs ◦ D. From this
equivariance follows easily that the following map is one-to-one and onto:

ψ : D−1(1)×R∗
+ → Int(M̃) : (x, t) 7→ ξ

R t
1

dτ
u(τ) (x).

Being obviously etale, it is a diffeomorphism.
In particular I is diffeomorphic to D−1(1), thus a connected Hausdorff man-

ifold.
It remains to extend ψ to the boundary. For every x ∈ I \ P , set ψ(x, 0) :=
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lims→−∞ ξs(x) ∈ ∂M̃ . Obviously this extends ψ into a global diffeomorphism from
(I ×R+) \ (P × 0) onto M̃ , through which γ(x, t) = (Φ(x), η(t)) and D(x, t) = t

and pr(x, t) = x. ¤

It seems that a little more work is necessary to make the dynamic of Φ, and its
relation to P , precise; and thus to achieve the proof of theorem 4.2. For example,
at this point it is not obvious that P is compact.

One identifies M̃ with (I ×R+) \ (P × 0).
It is a well-known property of infinite cyclic coverings that M̃ admits a proper

smooth function F such that F ◦ γ = F + 1. To fix ideas, one can arrange that 0
is a regular value of F and of F | ∂M̃ . Also, by 4.3, ∂M̃ is connected. Thence one
can arrange also that ∂(F−1(0)) is connected.

Lemma 4.5.

( i ) For every x ∈ I, one has:

lim
t→+∞

F (x, t) = −∞,

( ii ) For every p ∈ P , one has:

lim
t→0

F (p, t) = +∞,

(iii) More precisely, for every p ∈ P , one has:

lim
(x,t)∈M̃,(x,t)→(p,0)

F (x, t) = +∞.

Proof.

(i) Let T be the maximum of D(x, t) = t on the compact fundamental domain
F−1([−1, 0]). Let g be a decreasing function on (0,+∞) such that g(T ) = 0 and
g ◦ η = g + 1. Then F (x, t) ≤ g(t) at every point (x, t) of M̃ . Thus F (x, t) → −∞
for t → +∞.

(ii) The halfline p × (0, 1] being properly embedded in M̃ , the limit exists,
either −∞ or +∞. By contradiction, assume that it is −∞. For every i large
enough:

F (γi(p, 1)) = F (p, 1) + i > 0

thus the halfline γi(p × (0, 1]) = Φi(p) × (0, ηi(1)] would meet F−1(0) in at least
one point (Φi(p), ti). The level set F−1(0) being compact, some subsequence of
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the sequence (Φi(p), ti) converges to some (q, t) ∈ F−1(0). Since ti ≤ ηi(1), one
has t = 0. Since P is Φ-invariant and topologically closed in I, one has q ∈ P .
Thus (q, t) ∈ P × 0, the desired contradiction.

(iii) Consider a fundamental sequence (Vi) of connected neighborhoods of p

in I, and:

Wi :=
(

Vi ×
[
0,

1
i

])
∩ M̃

and fix a large positive T . Since F−1[−T, +T ] is compact and does not contain
(p, 0), it is disjoint from Wi for every i large enough. Since Wi is connected, either
F > T on Wi or F < −T on Wi. The second possibility being ruled out by (ii),
the lemma is proved. ¤

On I \ P one has the proper function f(x) := F (x, 0) and one defines:

C := P ∪ f−1[0,+∞) ⊂ I

Corollary 4.6. The subset C ⊂ I is a compact submanifold of codimension
0 with smooth boundary and P is contained in its interior. Both C and ∂C are
connected.

Proof. By Lemma 4.5, firstly C is relatively compact in I. Indeed, for
every x ∈ C, by (i) and (ii) the halfline x × R+ meets F−1(0). That is, C is
contained in pr(F−1(0)) which is compact in I.

Secondly, P is contained in the topological interior of C. This follows at once
from (iii). In particular, the topological boundary of C in I is f−1(0) = ∂F−1(0),
a smooth compact connected (n− 2)-manifold. Since I and ∂C are connected, C

is connected. ¤

Now, recalling that one has the diffeomorphism Φ of I such that Φ(P ) = P

and that f ◦ Φ = f + 1 on I \ P , one gets easily:

Φ(C) ⊂ Int(C) and P = ∩i∈ZΦi(C) and I = ∪i∈ZΦi(C)

By Lemma 4.4 the foliated manifold (M, F ) is diffeomorphic to the generalized
Reeb component associated with (C,Φ | C) according to Definition 4.1; and the
Theorem 4.2 is proved. ¤

In general, the cobordism C \ Int(φ(C)) is of course not trivial. Accordingly,
the boundary leaf ∂R of an arbitrary generalized Reeb component (Definition 4.1)
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is not necessarily fibred over the circle. However, we always have the following
finiteness property, well-known e.g. in the classical study of knots:

Lemma 4.7. Let ∂R̃ be the holonomy covering of the boundary leaf of a
generalized Reeb component. Then the homology groups of ∂R̃ with coefficients in
any field k are of finite rank over k.

Proof. (All homology groups are with coefficients in k.) Let C, φ, I,
P , Φ, R be as in Definition 4.1. For every positive i, write Ci = Φ−i(C) and
Wi = Ci \ Int(C−i). In the following commutative diagram (where all arrows are
induced by inclusions):

H∗(Ci) // H∗(Ci, Ci \ Int(Wi))

H∗(Wi)

OO

β // H∗(Wi, ∂Wi)

ρ

OO

the right-hand vertical arrow ρ is invertible by the excision theorem, thus:

rank(β) ≤ rankH∗(Ci).

On the other hand, the long exact relative homology sequence for the couple
(Wi, ∂Wi) gives:

rankH∗(Wi) ≤ rank(β) + rankH∗(∂Wi).

But Ci is diffeomorphic to C and ∂Wi is diffeomorphic to two copies of ∂C, thus:

rankH∗(Wi) ≤ rankH∗(C) + 2 rankH∗(∂C).

An upper bound independant on i. The covering space ∂R̃ being the inductive
limit of the sequence:

W1 ⊂ W2 ⊂ · · · ⊂ Wi ⊂ · · ·

the rank of H∗(∂R̃) admits the same majoration. ¤
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5. Proof of theorem 3.1.

Consider again the pseudogroup G = 〈α, β〉, where α is a contraction of
the real line R fixing 0 and where β is a diffeomorphism of R with compact
support contained in R−, and such that their germs at 0 generate a nonabelian free
group. In the pseudogroup (R, G) one may call R+ a paradoxical Reeb component :
a saturated domain with the same dynamic as a Reeb component, but whose
boundary 0 has a complicated isotropy group outside.

On the contrary, the preceding section has shown us that the correspond-
ing paradoxical Reeb components cannot exist among foliations, and so G is not
realizable.

More precisely, in the isotropy group Iso(G, 0) of G at point 0, one has the
subgroup ExtIso(G, 0) consisting of the germs which are the identity on the right-
hand side of 0. Clearly ExtIso(G, 0) is the normal subgroup generated by β, and
thus a nonabelian free group of infinite rank. Consider its abelianization (quotient
by the derived subgroup) ExtIso(G, 0)ab. Then the vector space

Q⊗ ExtIso(G, 0)ab

is of infinite rank over Q.
On the other hand, assume by contradiction that G has some realization

(M, F ). That is, (M, F ) would be a foliated compact manifold whose holonomy
pseudogroup would be Haefliger-equivalent to G. As aforesaid, one can assume
moreover that M is closed. The halfline R+ being G-invariant, M would contain
a compact saturated domain R that would realize the pseudogroup G|R+, that
is, the pseudogroup on the half line generated by the contraction α. After Theo-
rem 4.2, R would be a generalized Reeb component. Let Hol(F , ∂R) denote the
holonomy group of the leaf ∂R, and ExtHol(F , ∂R) denote the subgroup of germs
which are the identity inside R. Let also ∂̃R be the infinite cyclic covering corre-
sponding to the holonomy inside R. So, π1∂̃R is mapped onto ExtHol(F , ∂R).
In consequence, the vector space

Q⊗ ExtHol(F , ∂R)ab

being a quotient of H1(R̃;Q), which is of finite rank after Lemma 4.7, is also of
finite rank over Q.

But, since the holonomy pseudogroup of F is Haefliger-equivalent to G, the
groups ExtHol(F , ∂R) and ExtIso(G, 0) are of course isomorphic, a contradic-
tion. ¤
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6. Questions.

Haefliger has introduced an interesting stronger notion of compact presenta-
tion for pseudogroups [5]. The holonomy pseudogroup of any foliated compact
manifold is compactly presented, and any compactly presented pseudogroup is
compactly generated. Unfortunately, compact presentation seems difficult to de-
cide on explicit examples such as ours.

Question. Is the above pseudogroup 〈α, β〉 compactly presented?
Presently, I know no pseudogroup which is compactly generated but not com-

pactly presented.

In a direction complementary to the present paper, in a forthcoming one I
will show that actually many compactly generated pseudogroups of codimension
1 are realizable, and even realizable on manifolds of small dimension. The result
is as follows.

Let (T, G) be a compactly generated pseudogroup, with dimT = 1. The
notion of “dead end component”, well-known for codimension one foliations, has
an obvious analogue for pseudogroups. Those components are bounded by closed
orbits, of which we consider the isotropy groups. One can show:

1. If every dead end boundary isotropy group is solvable, then (T, G) is realizable
in a 4-manifold.

2. (T,G) is realizable in a 3-manifold if and only if every dead end boundary
isotropy group is abelian of rank ≤ 2.

In particular, if G has no closed orbit, or more generally no dead end com-
ponent, then it is realizable in dimension 3. If G is PL, or projective (local
transformations of the type t 7→ (at+ b)/(ct+d)) then it is realizable in dimension
4.

Question. Is every real-analytic compactly generated pseudogroup of codi-
mension 1 realizable?

So, one has seen in the present paper a sufficient condition for not being
realizable (some Reeb component boundary isotropy group is nonabelian free) and
one will see also a sufficient condition for being realizable (every dead end boundary
isotropy group is solvable). These two conditions are not exactly complementary,
there remains a little gap. Maybe a good understanding of compact presentation
in codimension 1 would fill the gap.
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