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Abstract. We analyze the expansions in terms of the approximate roots
of a Weierstrass polynomial f ∈ C{x}[y], defining a plane branch (C, 0), in
the light of the toric embedded resolution of the branch. This leads to the def-
inition of a class of (non-equisingular) deformations of a plane branch (C, 0)
supported on certain monomials in the approximate roots of f , which are es-
sential in the study of Harnack smoothings of real plane branches by Risler and
the author. Our results provide also a geometrical approach to Abhyankar’s
irreducibility criterion for power series in two variables and also a criterion to
determine if a family of plane curves is equisingular to a plane branch.

Introduction.

The use of approximate roots in the study of plane algebraic curves, initiated
by Abhyankar and Moh in [A-M], was essential in the proof of the famous embed-
ding line theorem in [A-M2]. Let (C, 0) ⊂ (C2, 0) be a germ of analytically irre-
ducible plane curve, a plane branch in what follows. Certain approximate roots of
the Weierstrass polynomial defining (C, 0) are semi-roots, i.e., they define curvettes
at certain exceptional divisors of the minimal embedded resolution. A’Campo and
Oka describe the embedded resolution of a plane branch by a sequence of toric
modifications using approximate roots in [A’C-Ok] and give topological proofs of
some of the results of Abhyankar and Moh. See [Abh3], [PP], [G-P], [As-B],
[Pi] for an introduction to the notion of approximate root and its applications.

We consider canonical local coordinates at an infinitely near point of the
toric embedded resolution, which are defined by the strict transform of a suitable
approximate root (or more generally a semi-root) and the exceptional divisor. In
Section 2 we introduce an injective correspondence between monomials in these
coordinates and monomials in the approximate roots (see Proposition 2.4). From
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this natural correspondence we derive two applications.
The first application, given in Section 3, is based on the relations of the

expansions in terms of semi-roots and Abhyankar’s straight line condition for the
generalized Newton polygons associated to a plane branch. These relations are
better understood by passing through the toric embedded resolution of the branch
(see Theorem 3.1 and Corollary 3.6). In particular, we prove that the generalized
Newton polygons arise precisely from the Newton polygons of the strict transform
of (C, 0) at the infinitely near points of the toric embedded resolution of (C, 0)
(see Remark 3.9). We have revisited Abhyankar’s irreducibility criterion for power
series in two variables (see [Abh4]). We give a proof of Abhyankar’s criterion by
using the toric geometry tools we have previously introduced. As an application we
obtain an algorithmic procedure to decide if family of plane curves is equisingular
to a plane branch (see Algorithm 3.10). This procedure generalizes the criterion
given by A’Campo and Oka in [A’C-Ok].

The second one is the definition of a class of (non equisingular) multi-
parametric deformations Ct of the plane branch, which we call multi-semi-quasi-
homogeneous (msqh). We explain its basic properties in Section 4. The terms
appearing in this deformation are monomials in the semi-roots of f . The deforma-
tion may be seen naturally as a deformation of Teissier’s embedding of the plane
branch C in a higher dimensional affine space (see [T2]). If the deformation Ct is
generic the Milnor number of (C, 0) is related to the sum of the Milnor numbers
of some curves defined from Ct at the infinitely near points of the toric resolution
of (C, 0) (see Proposition 4.6). As a consequence we obtain a formula for the
Milnor number, which can be seen as a geometrical realization of the delta in-
variant of the singularity in terms of this class of deformations. In a recent joint
work with Risler we apply this class of deformations in the study of the topological
types of smoothings of real plane branches with the maximal number of connected
components (see [GP-R]).

The paper is organized as follows: Section 1 introduce basic results and defi-
nitions. Section 4 only depends on Sections 1 and 2.

1. Plane branches, semi-roots and toric resolution.

See [Z2], [W], [PP], [T2], [Abh3], [C], [Ca], [T3], for references on singu-
larities of algebraic or analytic curves.

Notation 1.1. The ring of formal (resp. convergent) power series in x, y

is denoted by C[[x, y]] (resp. by C{x, y}). The Newton polygon N (h) of a
non zero series h =

∑
i,j αi,jx

iyj ∈ C[[x, y]] is the convex hull of the set⋃
αi,j 6=0{(i, j) + R2

≥0}. If Λ ⊂ R2 the symbolic restriction of h to Λ is the polyno-
mial

∑
(i,j)∈Λ∩Z2 αi,jx

iyj .
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If (Ci, 0) ⊂ (C2, 0), i = 1, 2 are plane curve germs defined by hi(x, y) = 0, for
hi ∈ C{x, y}, we denote by (C1, C2)0 or by (h1, h2)0 the intersection multiplicity
dimC C{x, y}/(h1, h2).

1.1. Expansions and approximate roots.
Abhyankar and Moh have applied and developed the expansions using ap-

proximate roots in the study of algebraic curves (see for instance [A-M], [Abh4],
[Abh2], [A-M2]). See the surveys [PP], [Pi], [A’C-Ok], [G-P] on the applica-
tions of the approximate roots in the study of plane curves.

Let A be a integral domain. Let H ∈ A[y] be a monic polynomial in y of
degree deg H > 0. Any polynomial F ∈ A[y] has a unique H-adic expansion of
the form:

F = as + as−1H + · · ·+ a1H
s−1 + a0H

s, (1)

where ai ∈ A[y], deg ai < deg H and s = [deg F/ deg H]. The symbol [a] denotes
the integral part of a ∈ R. This expansion is obtained by iterated Euclidean
division by H (see [Z2]).

Proposition 1.2 (see [Abh2] and [PP]). Let n1, . . . , ng be integers > 1.
If F1, . . . , Fg+1 ∈ A[y] are polynomials of degrees 1, n1, n1n2, . . . , n1 · · ·ng respec-
tively, then any polynomial F ∈ A[y] has a unique expansion of the form:

F =
∑

I

αIF
i1
1 · · ·F ig

g F
ig+1
g+1 , with αI ∈ A, (2)

where the components of the index I = (i1, . . . , ig+1) verify that 0 ≤ i1 <

n1, . . . , 0 ≤ ig < ng, 0 ≤ ig+1 ≤ [degy F/ degy Fg+1]. Moreover, the degrees in
y of the terms F i1

1 · · ·F ig+1
g+1 are all distinct.

Proof. Consider the Fg+1-adic expansion, of the form (1), of the poly-
nomial F . Iterate the procedure by taking recursively Fj-adic expansions of the
coefficients obtained for j = 1, . . . , g in decreasing order. The assertion of the
degrees in y is consequence of the following elementary property of the sequence
of integers (n1, . . . , ng) (see [PP, proof of Corollary 1.5.4]). ¤

Remark 1.3. Let n1, . . . , ng be integers greater than 1. We set

Ag+1 := {I = (i1, . . . , ig+1) | 0 ≤ i1 < n1, . . . , 0 ≤ ig < ng, 0 ≤ ig+1}.

The map Ag+1 → Z, given by I 7→ qI := i1 +n1i2 + · · ·+n1 · · ·ngig+1, is injective.
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Suppose that the integral domain A contains Q. Denote by Bm ⊂ A[y] the set
of monic polynomials of degree m > 0 in y. Let F ∈ A[y] be a monic polynomial
of degree N divisible by m. Suppose that N = mk for some integer k ≥ 1.
The Tschirnhausen operator τF : Bm → Bm is defined by τF (H) = H + a1/k

where a1 is the coefficient of Hk−1 in the H-adic expansion (1) of F (in this case
notice that s = k in (1) since deg H = m). For instance, if m = 1, H = y and
y′ := y + a1/N , then the coefficient of (y′)N−1 in the y′-expansion of F is zero.
Setting y′ = τF (y) defines a change of coordinates, which is classically called the
Tschirnhausen transformation.

Definition 1.4. Let A a domain containing Q. Let F ∈ A[y] a monic
polynomial of degree N and suppose N = mk. An approximate root G of degree m

of the polynomial F is a monic polynomial in A[y] such that deg(F−Gk) < N−m.

The approximate root G of degree m of F exists and is unique. It is determined

algorithmically in terms of Euclidean division of polynomials by: G = τF ◦
(m)· · ·

◦τF (H), ∀H ∈ Bm.

1.2. Local toric embedded resolution of a plane branch.
In this paper (C, 0) denotes a germ of analytically irreducible plane curve, a

plane branch for short, defined by an irreducible element in the ring C{x, y} of
germs of holomorphic functions at the origin of C2. We recall the construction of
a local toric embedded resolution of singularities of the plane branch (C, 0) by a
sequence of monomial maps. For a complete description see [A’C-Ok]. See [Ok1],
[Ok2], [L-Ok], [G-T] for more on toric geometry and plane curve singularities.

We define a sequence of birational monomial maps πj : Zj+1 → Zj , where
Zj+1 is an affine plane C2 for j = 1, . . . , g, such that the composition Π :=
π1 ◦ · · · ◦ πg is a local embedded resolution of the plane branch (C, 0), that is,
Π is an isomorphism over C2 \ {(0, 0)} and the strict transform C ′ of the plane
branch C (defined as the closure of the pre-image by Π−1 of the punctured curve
C \ {0}) is a smooth curve on Zg+1 which intersects the exceptional fiber Π−1

1 (0)
transversally. Notice that the map Π is not proper. The map Π can be seen as an
affine chart of certain sequence of blow-ups of points.

We consider local coordinates (x, y) for (C2, 0). We say that y′ ∈ C{x, y} is
good with respect to (C, 0) and {x = 0} if setting (x1, y1) := (x, y′) defines a pair
of local coordinates at the origin and the germ (C, 0) is defined by an equation
f = 0 where,

f =
(
yn1
1 − θ1x

m1
1

)e1 + · · · , (3)

in such a way that θ1 ∈ C∗, gcd(n1,m1) = 1 and the terms which are not written
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have exponents (i, j) such that in1 + jm1 > n1m1e1, i.e., they lie above the
compact edge Γ1 := [(0, n1e1), (m1e1, 0)] of the Newton polygon of f . Notice that
e0 := e1n1 is the intersection multiplicity of (C, 0) with the line {x1 = 0}.

Such a choice of y1 is not unique. The choice y1 := y + τf (y), defined by the
Tschirnhausen transformation, is good with respect to {x1 = 0} and (C, 0). We
assume without loss of generality that f is a Weierstrass polynomial in y1.

The vector ~p1 = (n1,m1) is orthogonal to Γ1 and defines a subdivision of the
positive quadrant R2

≥0, which is obtained by adding the ray ~p1R≥0. The quadrant
R2
≥0 is subdivided in two cones, τi := ~eiR≥0 + ~p1R≥0 for i = 1, 2 where {~e1, ~e2}

is the canonical basis of Z2. We define the minimal regular subdivision Σ1 of R2
≥0

which contains the ray ~p1R≥0 by adding the rays defined by those integral vectors
in R2

>0, which belong to the boundary of the convex hull of the sets (τi∩Z2)\{0},
for i = 1, 2. There is a unique cone σ1 = ~p1R≥0 + ~q1R≥0 in the subdivision Σ1

such that ~q1 = (c1, d1) satisfies that:

c1m1 − d1n1 = 1. (4)

By convenience we denote C2 by Z1, the coordinates (x, y) by (x1, y1) and
the origin 0 ∈ C2 = Z1 by o1. We also denote f by f (1) and C by C(1). The map
π1 : Z2 → Z1 is defined by

x1 = uc1
2 xn1

2 ,

y1 = ud1
2 xm1

2 ,
(5)

where u2, x2 are coordinates in the affine plane Z2 := C2. The components of the
exceptional fiber π−1

1 (0) are {x2 = 0} and {u2 = 0}. The pull-back of C(1) by π1

is defined by f (1) ◦ π1 = 0. The term f (1) ◦ π1 decomposes as:

f (1) ◦ π1 = Exc(f (1), π1) f̄ (2)(x2, u2), where f̄ (2)(0, 0) 6= 0, (6)

and Exc(f (1), π1) := ye0
1 ◦ π1 = ud1e0

2 xm1e0
2 . The polynomial f̄ (2)(x2, u2)

(resp. Exc(f (1), π1)) defines the strict transform C(2) of C(1) (resp. the excep-
tional divisor). By formula (3) we find that f̄ (2)(x2, 0) = 1, hence the exceptional
line {u2 = 0} does not meet the strict transform. Since

f̄ (2)(0, u2) =
(
1− θ1u

c1m1−d1n1
2

)e1 (4)
= (1− θ1u2)e1 ,

it follows that {x2 = 0} is the only component of the exceptional fiber of π1
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which intersects the strict transform C(2) of C(1), precisely at the point o2 with
coordinates x2 = 0 and u2 = θ−1

1 and with intersection multiplicity equal to e1.
If e1 = 1 then the map π1 is a local embedded resolution of the germ (C, 0). If
e1 > 1 we consider a pair of coordinates (x2, y2) at the point o2, with y2 good for
{x2 = 0} and (C(2), o2). It follows that C(2) is defined by a term, which we call
the strict transform function, of the form:

f (2)(x2, y2) =
(
yn2
2 − θ2x

m2
2

)e2 + · · · , (7)

where θ2 ∈ C∗, gcd(n2,m2) = 1 and the terms which are not written have expo-
nents (i, j) such that in2 + jm2 > n2m2e2. Notice that e1 = e2n2.

We iterate this procedure defining for j > 2 a sequence of monomial birational
maps πj−1 : Zj → Zj−1, which are described by replacing the index 1 by j−1 and
the index 2 by j above. In particular when we refer to a formula, like (4) at level
j, we mean after making this replacement. We denote by Exc(f (1), π1 ◦ · · · ◦ πj)
the exceptional function defining the exceptional divisor of the pull-back of C by
π1 ◦ · · · ◦ πj . Notice that

Exc
(
f (1), π1 ◦ · · · ◦ πj

)
=

(
ye0
1 ◦ π1 ◦ · · · ◦ πj

) · · · (yej−1
j ◦ πj

)
. (8)

Since by construction we have that ej |ej−1| · · · |e1|e0 (for | denoting divides), at
some step we reach a first integer g such that eg = 1 and then the process stops.
The composition π1◦· · ·◦πg is a local toric embedded resolution of the germ (C, 0).

Remark 1.5. Given e0 = (x1, f)0, the sequence of pairs {(mj , nj)}g
j=1 de-

termines and it is determined by the characteristic pairs or the Puiseux exponents
of the plane branch (C, 0), which are obtained when the line {x1 = 0} is not
tangent to C at the origin (see [A’C-Ok] and [Ok1]). These pairs classify the
embedded topological type of the germ (C, 0) ⊂ (C2, 0), or equivalently its complex
equisingularity type.

Notation 1.6. We set n0 := 1. We denote by f ′j the approximate root of
the polynomial f ∈ C{x1}[y1], of degree n0 · · ·nj−1 in y1, for j = 1, . . . , g. The
integers ni are those of Remark 1.5. We consider the sequence of intersection
multiplicities given by:

b̄0 := e0 = (x, f)0, b̄j := (f ′j , f)0, for j = 1, . . . , g. (9)

Definition 1.7. A jth -semi-root (Cj , 0) of (C, 0) with respect to the line
{x1 = 0}, is a germ (Cj , 0) of curve such that (Cj , C)0 = b̄j and (Cj , x1)0 =
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n0 · · ·nj−1, for 0 ≤ j ≤ g. We convey that Cg+1 := C. The sequence {(Cj , 0)}g+1
j=1

is called the characteristic sequence of semi-roots of (C, 0) with respect to {x1 = 0}.

Remark 1.8. For simplicity we have defined semi-roots in terms of approx-
imate roots, i.e., without passing by Abhyankar and Moh Theorem ([A-M]). For
a definition of semi-roots in terms of Puiseux exponents and related results see
[PP], for instance.

Notation 1.9. Let us fix a sequence of semi-roots (Cj , 0) of the plane branch
(C, 0) with respect to {x1 = 0}, for j = 1, . . . , g + 1. Each curve Cj is defined
by a Weierstrass polynomial fj ∈ C{x1}[y1] of degree n0 · · ·nj−1, which we call
also semi-root by a slight abuse of terminology. We will assume that f1 = y1 and
fg+1 = f .

Definition 1.10. Let us fix 2 ≤ j ≤ g. A germ (D, 0) ⊂ (C2, 0) is called
a jth-curvette for (C, 0) and {x1 = 0} if it is analytically irreducible and the
strict transform of D by π1 ◦ · · · ◦ πj−1 is smooth and intersects transversally the
exceptional divisor {xj = 0} at the point oj ∈ {xj = 0}. The branch (D, 0) is a
jth-curvette with maximal contact if in addition the strict transform of (D, 0) by
π1 ◦ · · · ◦ πj−1 is defined by y′j = 0 where y′j is good with respect to {xj = 0} and
(C(j), 0).

Proposition 1.11 (see [Z1], [A’C-Ok], [PP] and [GP, Section 3.4]).

( i ) If Cj is a jth -semi-root of (C, 0) with respect to {x1 = 0} then (Cj , 0) is a
jth-curvette with maximal contact, for j = 2, . . . , g.

( ii ) We denote by C
(2)
2 , . . . , C

(2)
g , C

(2)
g+1 = C(2) the strict transforms by the mono-

mial map π1 of the semi-roots C2, . . . , Cg, Cg+1 = C of the plane branch
(C, 0). The sequence C

(2)
2 , . . . , C

(2)
g+1 is a characteristic sequence of semi-roots

of the branch (C(2), o2) with respect to the line {x2 = 0}.

Remark 1.12. We will assume in the rest of the paper that the local co-
ordinate yj , in the local embedded resolution of (C, 0) introduced above, is the
strict transform function of the semi-root fj , for j = 2, . . . , g (we can do this by
Proposition 1.11). This implies that yj is of the form:

yj = 1− θjuj + xjRj(xj , uj) for some Rj ∈ C{xj , uj}. (10)

As a consequence of Proposition 1.11 we have the following:

Remark 1.13.

( i ) If 2 ≤ j ≤ g the Newton polygons of f(x1, y1) and of f
ej−1
j (x1, y1) have only
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one compact edge Γ1, defined in Section 1.2, and the symbolic restrictions of
f and of f

ej−1
j coincide on this edge.

( ii ) If 2 < j ≤ g similar statement holds for f (2)(x2, y2) and of (f (2)
j )ej−1(x2, y2)

and Γ2.

Definition 1.14. The semigroup of the plane branch (C, 0) is ΛC :=
{(f, h)0 | h ∈ C{x, y} − (f)}.

The semigroup ΛC is generated by the elements in the sequence (9). The
sequence (9) is called the characteristic sequence of generators of the semigroup
ΛC with respect to the line {x1 = 0}. If the line {x1 = 0} is not tangent to C at
the origin then the set (9) is a minimal set of generators of the semigroup ΛC and
the notation, β̄j instead of b̄j , is the usual one in the literature. The semigroup
ΛC has the following properties (see [T2], for instance).

Lemma 1.15. Any b̄ ∈ ΛC has a unique expansion of the form:

b̄ = η0b̄0 + η1b̄1 + · · ·+ ηg b̄g, (11)

where 0 ≤ η0 and 0 ≤ ηj < nj, for j = 1, . . . , g. The image of b̄j in the group
Z/(

∑j−1
i=0 Z b̄i) is of order nj. We have that :

nj b̄j ∈ Z≥0b̄0 + · · ·+ Z≥0b̄j−1 and nj b̄j < b̄j+1, for j = 1, . . . , g. (12)

The following proposition states some numerical relations between the se-
quences {(nj ,mj)}g

j=1 and (b̄j)
g
j=0 (see for instance [GP, Section 3.4]).

Proposition 1.16. We have that

(
xj , f

(j)
)
oj

= ej−1 = njej and

(
yj , f

(j)
)
oj

= b̄j − nj−1b̄j−1 = mjej , for 1 ≤ j ≤ g.

The following proposition shows the relations between the characteristic se-
quences of generators of the semigroups of the plane branch (C, 0) and of its
semi-root Cj+1.

Proposition 1.17. Let Cj+1 be a (j + 1)th -semiroot of the plane branch
(C, 0), for some j = 1, . . . , g (see Definition 1.7). The characteristic sequence of
the semigroup of the plane branch Cj+1 with respect to the line {x1 = 0} is equal
to (1/ej)b̄0, . . . , (1/ej)b̄j, for j = 1, . . . , g (see (9)).
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The normalization map (C, 0) → (C, 0) of the branch (C, 0), which is of the
form τ 7→ (x1(τ), y1(τ)), may be defined explicitly in terms of a Newton Puiseux
parametrization of the branch. If h(x1, y1) ∈ C{x1}[y1] defines a plane curve
germ, we have that (f, h)0 = ordτ (h(x1(τ), y1(τ))), where ordτ denotes the τ -adic
valuation of the field C((τ)) of Laurent series. We abuse the notation by denoting
with the same letter the functions uj , xj and yj and their images uj(τ), xj(τ) and
yj(τ), induced by the normalization map, in the field C((τ)).

Lemma 1.18. We have that ordτ (uj+1) = 0 and ordτ (Exc(f, π1 ◦ · · ·◦πj)) =
ej−1b̄j for 1 ≤ j ≤ g.

Proof. Notice that ordτ (x1) = (x1, f)0 = e1n1 and ordτ (y1) = (y1, f)0 =
e1m1. We deduce from (5) that u2 = xm1

1 y−n1
1 . It follows that ordτ (u2) = 0. The

equality ordτ (Exc(f, π1)) = e0b̄1, follows from formula (8). We conclude the proof
by an easy induction on j using Proposition 1.16 and formula (8). ¤

Example 1.19. A local embedded resolution of the real plane branch sin-
gularity (C, 0) defined by F = (y2

1 − x3
1)

3 − x10
1 = 0 is as follows. The morphism

π1 of the toric resolution is defined by

x1 = u1
2x

2
2,

y1 = u1
2x

3
2.

We have that f2 := y2
1 − x3

1 is a 2nd-curvette for (C, 0) and {x1 = 0}. We have
f2 ◦ π1 = u2

2x
6
2(1 − u2) = u2

2x
6
2y2, where y2 := 1 − u2 defines the strict transform

function of f2, and together with x2 defines local coordinates at the point of
intersection o2 with the exceptional divisor {x2 = 0}. Notice in this case that the
term R2 in (10) is zero. For F we find that:

F ◦ π1 = u6
2x

18
2

(
(1− u2)3 − u4

2x
2
2

)
.

Hence Exc(F, π1) := y6
1 ◦ π1 = u6

2x
18
2 is the exceptional function associated to F ,

and F (2) = y3
2 − (1− y2)4x2

2 is the strict transform function. Comparing to (7) we
see that e2 = 1, n2 = 3, m2 = 2 and the restriction to F (2)(x2, y2) to the compact
edge of its local Newton polygon is equal to y3

2 − x2
2. The map π2 : Z3 → Z2 is

defined by x2 = u2
3x

3
3 and x3 = u3x

2
3. The composition π1 ◦ π2 defines a local

embedded resolution of (C, 0).
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2. Monomials in the semi-roots from the embedded resolution.

We keep notations of the previous section (cf. Notation 1.9 and Remark 1.5).
For 2 ≤ j ≤ g we consider a sequence of integers of the form

0 ≤ i0, 0 ≤ i1 < n1, . . . , 0 ≤ ij−1 < nj−1, 0 ≤ ij < ej−1.

Notice that by Proposition 1.2 the term

M = xi0f i1
1 f i2

2 · · · f ij

j (13)

may appear in the (f1, f2, . . . , fj)-expansion of f . For any integer 2 ≤ j ≤ g we
define below a map which associates to a monomial of the form,

xr
jy

s
j , with 0 ≤ r, s < ej−1

a monomial in x, f1, . . . , fj of the form (13). We study conditions for a term of
the form (13) to appear in the (f1, . . . , fj)-expansion of f . We use these ideas to
analyze equisingular (and non equisingular) classes of deformations of the branch
(C, 0) in the following sections.

Remark 2.1. To avoid cumbersome notations if 2 ≤ j ≤ g + 1 we denote
simply by ui the term ui ◦ πi−1 ◦ · · · ◦ πj−1, whenever i < j and the integer j is
clear from the context. The function ui ◦ πi−1 ◦ · · · ◦ πj−1 has an expansion as a
series in C{xj , yj} with non-zero constant term (see (10) at level i < j).

The following lemma is an elementary observation which is useful to motivate
our results:

Lemma 2.2. Given a monomial M = xi0
1 f i1

1 f i2
2 · · · f ij

j of the form (13) there
exists unique integers r, s = ij and k2, . . . , kj such that

uk2
2 · · ·ukj

j xr
j ys

j = (M ◦ π1 ◦ · · · ◦ πj−1) (Exc(f, π1 ◦ · · · ◦ πj−1))−1. (14)

The integer r depends only on M and the sequences {(ni,mi)}j−1
i=1 and {ei}j−1

i=0 .
The term u

kj

j · · ·uk2
2 is a unit in C{xj , yj}.

Proof. By formulas (8) and (5) we have that (Exc(f, π1))−1(M ◦ π1) =
uk2

2 x
i′0
2 yi2

2 (f (2)
3 )i3 · · · (f (2)

j )ij for some integer k2 where i′0 = n1i0 + m1(−e0 + i1 +
n1i2 + · · · + n1 · · ·nj−1ij). By Remark 2.1 the term uk2

2 is a unit in the ring
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C{x2, y2}. The result is proved if j = 2. If j > 2 we find that (Exc(f, π1 ◦
π2))−1(M ◦ π1 ◦ π2) = uk2

2 uk3
3 x

i′′0
3 yi3

3 (f (3)
4 )i4 · · · (f (3)

j )ij for some integer k3 where
i′′0 = n2i

′
0 + m2(−e1 + i2 + n2i3 + · · ·+ n2 · · ·nj−1ij). The assertion follows by an

easy induction on j. ¤

Remark 2.3. Notice that the condition r ≥ 0 is not guaranteed by Lemma
2.2. See Example 2.9.

The following key proposition shows that given (r, s) ∈ Z≥0 with s < ej−1

there is a unique way to determine a suitable monomial Mj(r, s) in x1 and the
semi-roots y1 = f1, f2, . . . , fj , such that the composite Mj(r, s) ◦ π1 ◦ · · · ◦ πj−1 is
equal to the product of the exceptional divisor function Exc(f, π1 ◦ · · · ◦ πj−1) by
the monomial xr

jy
s
j times a unit in the ring C{xj , yj}.

Proposition 2.4. Let us fix a real plane branch (C, 0) together with a local
toric embedded resolution π1 ◦ · · · ◦ πg (cf. notations of Section 1.2). If 2 ≤ j ≤ g

and (r, s) ∈ Z2
≥0 with s < ej−1 then there exists unique integers

0 < i0, 0 ≤ i1 < n1, . . . , 0 ≤ ij−1 < nj−1, ij = s, (15)

and k2, . . . , kj > 0 such that (14) holds.

Recall that the integers c1, d1 are defined by (4) in terms of the pair (m1, n1).

Lemma 2.5. If r ≥ 0, l > 0 are integers there exist unique integers k, i0, i1
such that uk

2xr
2 = ((xi0

1 yi1
1 ) ◦ π1)(yln1

1 ◦ π1)−1 with 0 < i0, k and 0 ≤ i1 < n1. We
have that :

k = l + [c1r/n1], i0 = km1 − rd1 and i1 = c1r − n1[c1r/n1]. (16)

In particular, i1 = 0 if and only if r = pn1 for some integer p.

Proof. By (5) we deduce that u2 = xm1
1 y−n1

1 and x2 = x−d1
1 yc1

1 . The term

(
yln1
1 ◦ π1

)
uk

2xr
2 =

(
xkm1−rd1

1 y
rc1+(l−k)n1
1

) ◦ π1

is the transform of a holomorphic monomial by π1 if and only if:

0 ≤ i′0 := km1 − rd1 and 0 ≤ i′1 := rc1 + (l − k)n1,

or equivalently, (d1/m1)r ≤ k ≤ (c1/n1)r + l. By (4) we have that m1c1 −
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d1n1 = 1. This implies that d1/m1 < c1/n1, thus the interval of the real line
[(d1/m1)r, (c1n1)r + l] is of length greater than l ≥ 1. Any integer k lying on this
interval is convenient to define a holomorphic monomial. The condition i′1 < n1, is
equivalent to (c1/n1)r+l−k < 1, and it is verified if and only if k = [(c1/n1)r+l] =
l + [(c1/n1)r] > 0. We denote the integers i′0 and i′1 corresponding to this choice
of k by i0 and i1 respectively. We have that:

i0 =
(

c1

n1
r + l

)
m1 − rd1 >

(
c1

n1
r + l − 1

)
m1 − rd1

= rm1

(
c1

n1
− d1

m1

)
+ (l − 1)m1 ≥ (l − 1)m1 ≥ 0.

For the last assertion, we have that i1 = c1r − n1[c1r/n1] = 0 if and only if
n1 divides r, since gcd(c1, n1) = 1 by (5). ¤

Lemma 2.6. If (r, s) ∈ Z≥0 with s < e1 there exist unique integers
k, i0, i1 with 0 < k, i0 and 0 ≤ i1 < n1 such that : uk

2x2
ry2

s = ((x1
i0yi1fs

2 ) ◦
π1)(Exc(f, π1))−1. These integers are

k = e1 − s + [c1r/n1], i0 = km1 − rd1, and i1 = c1r − n1[c1r/n1]. (17)

In particular, i1 = 0 if and only if r = pn1 for some integer p.

Proof. We use that Exc(f, π1) = yn
1 ◦ π1 by (8) and that fs

2 ◦ π1 = (ysn1
1 ◦

π1)y2
s. Hence we deduce that Exc(f, π1)y2

s = (yn−sn1
1 fs

2 ) ◦ π1. Since s < e1

we have that n − sn1 = n1(e1 − s). Then we apply Lemma 2.5 for r ≥ 0 and
l = e1 − s > 0. ¤

Proof of Proposition 2.4. We prove the result by induction on the
number g of monomial maps in the local toric embedded resolution, with respect
to the line {x1 = 0}. The case g = 1 is proved in Lemma 2.6. By induction
using (8), we have that if (r, s) ∈ Z2

≥0 and if s < ej−1 there exist unique integers
k3, . . . , kj , i

′
0, i2, . . . ij with 0 < i′0, 0 ≤ i2 < n2, . . . , 0 ≤ ij−1 < nj , ij = s such

that

uk3
3 · · ·ukj

j xr
jy

s
j =

((
x

i′0
2 yi2

2 (f (1)
3 )i3 · · · (f (1)

j )ij
) ◦ π2 ◦ · · · ◦ πj−1

)

· (Exc(f (2), π2 ◦ · · · ◦ πj−1)
)−1

. (18)

We show that there exist unique integers 0 < k2, i0 and 0 ≤ i1 < n1 such that
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uk2
2 x

i′0
2 yi2

2

(
f

(2)
3

)i3 · · · (f (2)
j

)ij =
((

xi0
1 yi1

1 f i2
2 · · · f ij

j

) ◦ π1

) (
Exc(f (1), π1)

)−1
. (19)

By (8) we have that: yi2
2 (f (2)

3 )i3 · · · (f (2)
j )ij = ((yq

1f
i2
2 · · · f ij

j )◦π1) (Exc(f (1), π1))−1,
where the integer

q := n1(e1 − i2 − n2i3 − n2 · · ·nj−1ij)

= n1(n2(· · · (nj−1(ej−1 − ij)− ij−1) · · · )− i2) (20)

is a positive multiple of n1 by the inequalities (15). Then we apply Lemma 2.5. ¤

Remark 2.7. Given the integer ej−1 and the pairs (n1,m1), . . . ,

(nj−1,mj−1) then a pair (r, s) with r ≥ 0 and s < ej−1, and the integers (15)
such that (14) holds, determine each other by Lemma 2.2 and the proof of Propo-
sition 2.4.

Definition 2.8. If 0 ≤ r and if 0 ≤ s < ej−1 we define a monomial in
x, f1, . . . , fj by:

Mj(r, s) := xi0f i1
1 · · · f ij

j (21)

by relation (14) in Proposition 2.4. We use the notation M1(r, s) for xr
1y

s
1. We

denote the term f
ej−1
j by Mj(0, ej−1). We denote the term Mj(r, s) by Mj,f (r, s)

to emphasize the dependency with the series f(x1, y1) defining the plane branch
(C, 0).

Example 2.9. The following table indicates some terms M2(r, s) in the case
of Example 1.19.

(r, s) (0, 0) (0, 1) (0, 2) (1, 1) (1, 0)

M2(r, s) x9
1 x6

1f2 x3
1f

2
2 x5

1y1f2 x8
1y1

For instance, we have that M2(1, 1) = x5
1y1f2, since x5

1y1f2 ◦ π1 =
Exc(F (1), π1)u2

2x2y2, where Exc(F (1), π1) = u6
2x

18
2 by Example 1.19. Notice also

that the analytic function x2y2Exc(F, π1) on Z2 is equal to (x−1
1 y5

1f2) ◦ π1, i.e., it
is the transform by π1 of a meromorphic function. Both of the following formulas

y6
1 ◦ π1 = Exc(F (1), π1) and x9

1 ◦ π1 = Exc(F (1), π1)u3
2

seem to correspond to (14) in the case (r, s) = (0, 0), however the term y6
1 is not
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of the form prescribed by the inequalities (15), hence the first formula is not the
one considered by Lemma 2.4.

Lemma 2.10. If 0 ≤ r and s < ej−1, we have that :

(Mj(r, s), f)0 = ej−2b̄j−1 + rej−1 + s (b̄j+1 − nj b̄j), for j = 2, . . . , g + 1.

Proof. By Lemma 2.4 we have that:

Mj(r, s) ◦ π1 ◦ · · · ◦ πj−1 = Exc(f, π1 ◦ · · · ◦ πj−1) uk2
2 · · ·ukj

j xr
jy

s
j .

By Proposition 1.16 and Lemma 1.18 we deduce that:

(Mj(r, s), f)0 = ordτ (Exc(f, π1 ◦ · · · ◦ πj−1)) + rej−1 + s (b̄j+1 − nj b̄j). ¤

Lemma 2.11. If 0 ≤ r and 0 ≤ s < ej−1 the Newton polygon of a term
Mj(r, s), with respect to the coordinates (x1, y1), is contained in the Newton poly-
gon N (f(x1, y1)) for 2 ≤ j ≤ g+1. It is contained in the interior of N (f(x1, y1))
unless j = 2, r = 0 and 0 ≤ s < e1.

Proof. If j = 2 we have that M2(r, s) = xi0
1 yi1

1 fs
2 by Lemma 2.6. The

vector ~v := (i0 + sm1, i1) is a vertex of the Newton polygon of M2(r, s) and
~w := (b̄1, 0) is a vertex of the only compact edge Γ1 of N (f(x1, y1)). Notice that
if s = 0 then Newton polygon of M2(r, s) has only one compact face {~v}, otherwise
it has only one compact edge which is parallel to Γ1 (see Subsection 1.2). The
vector ~p1 = (n1,m1) is orthogonal to Γ1 hence we deduce the inequality:

n1b̄1 = 〈~p1, ~w〉 ≤ 〈~p1, ~v〉 = n1i0 + sn1m1 + m1i1

= e1n1m1 + r(m1c1 − n1d1)
(4)
= n1b̄1 + r,

using (17). Equality holds in formula above if and only if r = 0.
If j > 2 we follow the proof of Proposition 2.4: there exist integers 0 < i1 ≤ n1,

0 < i′0, k2 such that (19) holds. By Lemma 2.5 we have that k2 = l + [c1i
′
0/n1]

where the integer l is l := e1 − i2 − n2i3 − · · · − n2 · · ·nj−1ij . The vector ~v :=
(i0 + m1(e1 − l), i1) is a vertex of N (Mj(r, s)). By the construction the Newton
polygon of Mj(r, s) has at most one compact edge, which is in addition parallel
to Γ1. We deduce from a simple calculation using (16) that:

n1b̄1 ≤ 〈~p1, ~v〉 = n1b̄1 + i′0. (22)
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By the proof of Proposition 2.4 we have that i′0 > 0, hence the inequality (22) is
strict. ¤

Remark 2.12. By induction using the same arguments as in Lemma 2.11
we check that if 1 ≤ i < j, 0 ≤ r, and 0 ≤ s < ej−1 that the Newton polygon of
(Mj(r, s)◦π1 ◦· · ·◦πi−1) (Exc (f, π1 ◦· · ·◦πi−1))−1 with respect to the coordinates
(xi, yi), is contained in N (f (i)). It is contained in the interior of N (f (i)) unless
j = i + 1, r = 0 and 0 ≤ s < ei.

3. Irreducibility and equisingularity criterions.

Abhyankar’s irreducibility criterion gives an affirmative answer to a question
of Kuo mentioned in [Abh4]: “Can we decide the irreducibility of a power series
F (x, y) without blowing up and without getting into fractional power series ?” We
have revisited the Abhyankar’s criterion in the light of toric geometry methods.
In particular, our proof explains that if F is irreducible, some information on the
Newton polygons of the strict transform of F at the infinitely near points of the
toric resolution can be read from the expansions in certain semi-roots of F . See
[C-M2] and [C-M1], for an extension of this criterion to the case of base field of
positive characteristic. As an application we give an equisingularity criterion for
an equimultiple family of plane curves to be equisingular to a plane branch (See
Section 3.3).

3.1. Straight line conditions in the toric resolution.
We consider a plane branch (C, 0) together with its local toric resolution. We

keep notations of Section 1.2 (see also Notation 1.9). We give some precisions on
the (f1, . . . , fj)-expansion of f (see Proposition 1.2). We have that the (f1, . . . , fj)-
expansion of f is of the form:

f = f
ej−1
j +

∑

I=(i1,...,ij)

αI(x1)f i1
1 · · · f ij

j , with αI(x1) ∈ C{x1}, (23)

with 0 ≤ i1 < n1, . . . , 0 ≤ ij−1 < nj−1, 0 ≤ ij < ej−1, for 2 ≤ j ≤ g.
By expanding the coefficients of the terms in (23), as series in x1, we obtain

the following expansion

f = f
ej−1
j +

∑

J=(i0,...,ij)

βJ xi0
1 f i1

1 · · · f ij

j with βJ ∈ C, (24)

which we call the (x1, f1, . . . , fj)-expansion of f . The main result of this section
is the following (see Definition 2.8).



990 P. D. González Pérez

Theorem 3.1. The (x, f1, . . . , fj)-expansion of f , for j = 2, . . . , g, is of the
form:

f = f
ej−1
j +

∑

(r,s)

cr,s Mj(r, s),

where cr,s ∈ C and the pairs (r, s) ∈ Z2 verify that

0 < r, 0 ≤ s < ej−1, ej−1(b̄j − nj−1b̄j−1) ≤ rej−1 + s(b̄j − nj−1b̄j−1).

Among the terms of this expansion with minimal intersection multiplicity with f

there exist f
ej−1
j and Mj(b̄j+1 − nj b̄j , 0). Moreover, if j = g − 1 these two terms

are exactly the terms with minimal intersection multiplicity with f .

Before entering into the proof of Theorem 3.1 we discuss the following propo-
sitions.

Proposition 3.2. If j > 1 and the coefficient αI(x1) in (23) does not vanish
then the Newton polygon of the term αI(x1)f i1

1 · · · f ij

j is contained in the interior
of the Newton polygon of f .

Proof. Since deg f = ej−1 deg fj and both are monic polynomials we have
that the term f

ej−1
j appears in the (f1, . . . , fj)-expansion of f with coefficient one.

For an index I = (i1, . . . , ij) appearing in (23) we denote by MI the term
αI(x)f i1

1 · · · f ij

j . By Remark 1.13, the Newton polygon N (MI) of MI has only
one compact face ΓI of maximal dimension which is parallel to the compact face
Γ1 of N (f(x1, y1)). The vector ~p1 = (n1,m1), which was defined in Section 1.2,
is orthogonal Γ1.

We set also the numbers

BI := min{〈~p1, ~u〉 | ~u ∈ N (MI)} and qI := ordy1

(
f i1
1 · · · f ij

j

)
|x1=0

,

for I appearing in the expansion (23) with non-zero coefficient. The numbers qI

defined above, are all distinct by Remark 1.3 applied to 0 ≤ i1 < n1, . . . , 0 ≤
ij−1 < nj−1 and 0 ≤ ij < ej−1.

Suppose that there exists an index Ĩ = (̃ı1, . . . , ı̃j) with αĨ 6= 0, such that
the polygon N (MĨ) is not contained in N (f(x1, y1)). This holds if and only if
BĨ < min{〈~p1, ~u〉 | ~u ∈ N (f)}. Hence MĨ is not equal to f

ej−1
j , since N (f) =

N (fej−1
j ) by Remark 1.13. We can suppose in addition that BĨ is the minimal

number of this form. Moreover, we can assume that Ĩ has the following property:
if the index I = (i′1, . . . , i

′
j) 6= Ĩ, which appears in (23) with non zero coefficient,
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verifies that BĨ = BI then qĨ > qI . If (r, s) ∈ ΓĨ ∩ Z2, the sum Kr,s of the
coefficients of the term xrys in αIMI , for those indices I with BI = BĨ , must
vanish. But if (r, s) is the vertex of ΓĨ with s = qĨ then we obtain that Kr,s is the
initial coefficient of the series αĨ , a contradiction. Thus, for all index I appearing
in (23) we have the inclusion N (MI) ⊂ N (f(x1, y1)).

By Remark 1.13 the symbolic restrictions of f and of f
ej−1
j , to the compact

face Γ1 of the Newton polygon coincide. Suppose that there exists an index I

appearing in the expansion (23) with non zero coefficient such that MI 6= f
ej−1
j

and BI = min{〈~p1, u〉 | u ∈ N (f)}. In this case for any (r, s) ∈ Γ1 ∩ Z2 the
sum of the coefficients of the terms xrys in MI′ , for those I ′ with BI = BI′ and
MI′ 6= f

ej−1
j , must vanish. We argue as in the previous case to prove that this

cannot happen. ¤

Lemma 3.3. Let MJ = xi0
1 f i1

1 · · · f ij

j be a term in the expansion (24) with
non-zero coefficient corresponding to the index J = (i0, . . . , ij). Set qJ := i1 +
n1i2 + · · ·+ n1 · · ·nj−1ij. We can factor MJ ◦ π1 as:

(MJ ◦ π1) (Exc(f, π1))−1 = u
k2(J)
2 x

i′0(J)
2

(
f

(2)
2

)i2 · · · (f (2)
j

)ij
, (25)

where i′0(J) = n1i0 −m1(e0 − qJ) > 0 and k2(J) = c1i0 − d1(e0 − qJ) > 0.

Proof. Notice that qJ is the degree in y of the term MJ . By Proposition
3.2 the Newton polygon of the term MJ is contained in the interior of the Newton
polygon of f . This implies that ~vJ = (i0, qJ) is a vertex of the Newton polygon of
MJ and 〈~p1, ~vJ〉 > e0m1. This implies that i′0(J) > 0. We deduce from this that
k2(J) > 0 and (25) holds. ¤

We obtain the following expansion from (24), by factoring out Exc(f, π1) from
f ◦ π1:

f (2) =
(
f

(2)
j

)ej−1 +
∑

J=(i0,...,ij)

cJ u
k2(J)
2 x

i′0(J)
2

(
f

(2)
2

)i2 · · · (f (2)
j

)ij
. (26)

The following expansion is obtained from (26) by collecting the terms with
the same index I ′ = (i2, . . . , ij):

f (2) =
(
f

(2)
j

)ej−1 +
∑

I′=(i2,...,ij)

α
(2)
I′ (x2, u2)

(
f

(2)
2

)i2 · · · (f (2)
j

)ij
. (27)

By (10) the coefficient α
(2)
I′ (x2, u2), viewed in C{x2, y2}, is of the form:
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α
(2)
I′ = ε

(2)
I′ x

r2(I
′)

2 with r2(I ′) > 0 and ε
(2)
I′ a unit in C{x2, y2}. (28)

Definition 3.4. We call the expansion (26) (respectively (27)) the (u2, x2,

f
(2)
2 , . . . , f

(2)
j )-expansion (respectively (f (2)

2 , . . . , f
(2)
j )-expansion) of f (2).

Proposition 3.5. Suppose that 2 ≤ j ≤ g. Let us consider an index
I ′ = (i2, . . . , ij) appearing in the expansion (27) with coefficient α

(2)
I′ (x2, u2) 6= 0.

Denote by qI′ the order in y2 of the series ((f (2)
2 )i2 · · · (f (2)

j )ij )|x2=0.

( i ) For any pair I ′1 6= I ′2 of indexes in (27) with α
(2)
I′1

α
(2)
I′2

6= 0 we have that
qI′1 6= qI′2 .

( ii ) If j > 2 and α
(2)
I′ (x2, u2) 6= 0 the Newton polygon of the term α

(2)
I′ (x2, u2)

·(f (2)
2 )i2 · · · (f (2)

j )ij (with respect to the coordinates (x2, y2)) is contained in
the interior of N (f (2)(x2, y2)).

Proof. The assertion on the orders in y2 of the series ((f (2)
2 )i2 · · ·

(f (2)
j )ij )|x2=0 is consequence of Remark 1.3 with respect to the integers

n2, . . . , nj−1 > 1.
For the second assertion notice that the Newton polygon with respect to

the coordinates (x2, y2) of a term M
(2)
I′ := α

(2)
I′ (x2, u2) (f (2)

2 )i2 · · · (f (2)
j )ij , ap-

pearing in the expansion (27), has at most one compact face which is parallel
to Γ2. We deduce that the Newton polygon of M

(2)
I′ is contained in the interior

of N (f (2)(x2, y2)) by repeating the argument of Proposition 3.2 combined with
Remark 1.13 (ii). ¤

Proof of Theorem 3.1. Let MI := xi0f i1
1 · · · f ij

j be a monomial ap-
pearing in (24). Using Proposition 3.2, Proposition 3.5 and Lemma 3.3 we
deduce inductively that (MI ◦ π1 ◦ · · · ◦ πj−1) (Exc(f, π1 ◦ · · · ◦ πj−1))−1 =
u

k2(I)
2 · · ·ukj(I)

j x
r(I)
j y

s(I)
j , where k2(I), . . . , kj(I), r(I) > 0 and s(I) = ij . It fol-

lows that we have an expansion:

f (j) = y
ej−1
j +

∑

I

cI u
k2(I)
2 · · ·ukj(I)

j x
r(I)
j y

s(I)
j . (29)

By the unicity statement in Proposition 2.4 it follows that MI = M (r(I), s(I)),
hence, if I 6= I ′ are two different indices appearing in (24), then (r(I), s(I)) 6=
(r(I ′), s(I ′)). By (10) the term u

k2(I)
2 · · ·ukj(I)

j is a unit viewed in C{xj , yj},
therefore the Newton polygon of f (j)(xj , yj) is equal to the convex hull of the set,⋃

I(r(I), s(I)) + R2
≥0. By Proposition 1.16 this polygon has vertices (0, ej−1) and

(b̄j−nj−1b̄j−1, 0). If j = g, these two vertices are the unique integral points in the
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Newton polygon. By Lemma 2.10, the exponents (r, s) ∈ Γj correspond to terms
Mj(r, s) with minimal intersection multiplicity with f at the origin. ¤

We deduce from Theorem 3.1 the following Corollary, where the coefficient θj

is the same as the one appearing in formula (7) at level j.

Corollary 3.6. If j ∈ {2, . . . , g}, the (x, f1, . . . , fj)-expansion of fj+1 is
of the form (cf. Definition 2.8)

fj+1 = f
nj

j − θjMj,fj+1(mj , 0) +
∑

(r,s)

cr,s Mj,fj+1(r, s), (30)

where (r, s) above verify that 0 < r, 0 ≤ s < nj and njmj < njr + mjs.

Remark 3.7. In some cases it may be useful to have θ1 = · · · =
θg = 1. We can reduce to this case by replacing the terms (x1, f1, . . . , fg) by
(η0x1, η1f1, . . . , ηgfg) for some suitable constants η0, . . . , ηg ∈ C∗.

To see this, by a change of coordinates of this form, we can assume that the
image of x1, f1, . . . , fg in the integral closure C{τ} of the algebra of (C, 0) are
series with constant term equal to one. By Lemma 2.10 we have that b̄j+1 =
ordτfj+1(x1(τ), y1(τ)) > nj b̄j = ordτ (fnj

j (x1(τ), y1(τ))) = ordτ (Mj,fj+1(mj , 0))
and nj b̄j < ordτ (Mj,fj+1(r, s)), for those pairs (r, s) appearing in (30). We deduce
by a standard valuative argument that in this case θj = 1.

3.2. Abyankar’s generalized Newton polygons, straight line condi-
tion and irreducibility criterion.

We follow the presentation given by Assi and Barile in [As-B] of results in
[Abh4].

3.2.1. Generalized Newton polygons.
Given a sequence B̄ := (B̄0, B̄1, . . . , B̄G) of positive integers with B̄1 < · · · <

B̄G, we associate to them sequences Ej = gcd(B̄0, B̄1, . . . , B̄j) and N0 = 1, Nj =
Ej−1/Ej , for j = 0, . . . , G. Notice that if B̄ a characteristic sequence of generators
of the semigroup ΛC associated to a plane branch (C, 0), we set g = G and we have
with the notations of the first section that Ej = ej and Nj = nj , for j = 0, . . . , g.

Let F be a Weierstrass polynomial of the form:

F = yN +
N∑

i=2

Ai(x)yN−i ∈ C{x}[y] (31)
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We assume that y is an approximate root of F since the coefficient of yN−1 is
equal to zero. We denote by Fj the approximate root of F of degree N0 · · ·Nj−1,
and by F j the sequence (F1, . . . , Fj) for j = 1, . . . , G + 1 and F = FG+1.

Let P ∈ C{x}[y] be a monic polynomial. The (F1, . . . , FG+1)-expansion of P

is of the form P =
∑

I αI(x)F i1
1 · · ·F iG

G F
iG+1
G+1 (see Proposition 1.2). The formal

intersection multiplicity of P and F , with respect to the sequence B̄ is defined as

formal B̄(P, F ) := min
{ G∑

j=0

ijB̄j | I = (i1, . . . , iG, 0), αI(x) 6= 0
}

. (32)

Notice that when this value is < +∞, it is reached at only one coefficient.
Let P, Q ∈ C{x}[y] be two monic polynomials of degrees p, q with p = mq.

We have the Q-adic expansion of P is of the form: P = Qm +α1Q
m−1 + · · ·+αm.

The generalized Newton polygon N (P, Q, B̄, F ) of P with respect to Q and the
sequences B̄ and F̄ is the convex hull of the set:

m⋃

k=0

(
formal B̄(αk, F ), (m− k)formal B̄(Q,F )

)
+ R2

≥0. (33)

3.2.2. Abhyankar’s irreducibility criterion.
To a monic polynomial F of the form (31) it is associated a sequence B̄ as

follows: Set B̄0 = E0 := N , F1 = y, B̄1 = (F1, F )0, E1 = gcd (B̄0, B̄1) and
N1 := E0/E1. Then, for j ≥ 2 the integers E0, . . . , Ej = gcd (B̄0, . . . , B̄j) and
N1, . . . , Nj−1 are defined by induction. We set Bj+1 = (F, Fj)0, where Fj denotes
the approximate root of F of degree N1 · · ·Nj−1.

Theorem 3.8 ([Abh4]). With the above notations the polynomial F ∈
C{x}[y] is irreducible if and only if the following conditions hold :

( i ) there exists an integer G ∈ Z>0 such that EG = 1,
( ii ) B̄j+1 > NjB̄j for j = 1, . . . , G− 1,
(iii) (straight line condition) the generalized Newton polygon N (Fj+1, Fj ,

(1/Ej)B̄j , F j) has only one compact edge with vertices ((1/Ej)NjB̄j , 0) and
(0, (1/Ej)NjB̄j).

Proof. We prove first that if F verifies the conditions of the theorem then
F is irreducible. By the straight line condition the vertices of the generalized
Newton polygon, N (Fj+1, Fj , (1/Ej)B̄j , F j), correspond to the terms F

nj

j and

α
(j)
0 (x)F η

(j)
1

1 · · ·F η
(j)
j−1

j−1 of the (F1, . . . , Fj)-expansion of Fj+1, where ordxα
(j)
0 (x) =
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η
(0)
0 ≥ 0 and 0 ≤ η

(j)
i < Ni for i = 1, . . . , j− 1. The straight line condition implies

that (1/Ej)NjB̄j = (1/Ej)(η
(j)
0 B̄0 + · · · + η

(j)
j−1B̄j−1). It follows that NjB̄j be-

longs to the semigroup generated by B̄0, . . . , B̄j−1. By Lemma 1.15 this numerical
condition together with (i) and (ii) guarantee that the semigroup generated by
B̄0, . . . , B̄G is the semigroup of a plane branch. Let 0 6= F ′ ∈ C{x}[y] be any
polynomial of degree < N = deg F . We consider the (F1, . . . , FG)-expansion of
F ′:

F ′ =
∑

I

αI(x)F i1
1 · · ·F iG

G with αI(x) ∈ C{x}. (34)

Set i0 = ordxαI(x). The intersection multiplicities (F, αI(x)F i1
1 · · ·F iG

G )0 =∑G
j=0 ijB̄j obtained for the different terms in the expansion (34) are all differ-

ent (this reduces to an arithmetical property which can be proved similarly as
Lemma 1.15). We deduce that (F, F ′)0 = min{∑G

j=0 ijB̄j | αI(x) 6= 0} < +∞.
The polynomial F is irreducible, otherwise there is an irreducible factor of F ′ of
F of degree < deg F and then (F, F ′)0 = +∞, a contradiction.

Suppose now that F is irreducible. Then B̄0, . . . , B̄G are the generators of
the semigroup of the branch F = 0 with respect to the line {x = 0}. By
Lemma 1.15, the first two conditions in the statement of the theorem hold au-
tomatically. By Proposition 1.17 the approximate root Fj+1 is irreducible and
define a plane branch with semigroup generated by (1/Ej)B̄0, . . . , (1/Ej)B̄j . By
Theorem 3.1 the Newton polygon of F

(j)
j+1(xj , yj) has only two vertices (0, Nj)

and (Mj , 0) which correspond respectively to the terms F
Nj

j and Mj,Fj+1(0,Mj)
of the (x, F1, . . . , Fj)-expansion of Fj+1 (see Definition 2.8). By Proposition
1.16 and induction the vertices of the Newton polygon of the strict transform
function F (j)(xj , yj) are (B̄j − Nj−1B̄j−1, 0) and (0, EjNj). It follows that
Mj = (1/Ej)(B̄j −Nj−1B̄j−1). By Lemma 1.18 we have that ordt(Exc(Fj+1, π1 ◦
· · · ◦ πj−1)) = (Ej−2/Ej) (B̄j−1/Ej) = (1/Ej)Nj−1NjB̄j . By Lemmas 2.10 and
1.18 we deduce the equality:

(Fj+1,Mj,Fj+1(0,Mj))0 =
1
Ej

Nj−1NjB̄j−1 +
Ej−1

Ej
Mj

=
1
Ej

(
NjNj−1B̄j−1 + Nj

(
B̄j −Nj−1B̄j−1

))

=
1
Ej

NjB̄j

=
(
Fj+1, F

Nj

j

)
0
.
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A similar computation using Lemmas 2.10 and 1.18 proves that if Mj,Fj+1(r, s)
appears in the (x, F1, . . . , Fj)-expansion of Fj+1 then (Fj+1,Mj,Fj+1(r, s))0 >

(1/Ej)NjB̄j . ¤

Remark 3.9. We keep notations of the proof of Theorem 3.8. Suppose that
F is irreducible. Let φj : R2 → R2 be the linear function given by φj(r, s) =
(rNj , sMj). We denote by Rj the number Rj := (1/Ej)Nj−1NjB̄j . Then we have
that:

N

(
Fj+1, Fj ,

1
Ej

B̄j , F j

)
= (Rj , Rj) + φj

(
N (F (j)

j+1(xj , yj))
)
.

3.3. Equisingularity criterions.
Let F ∈ C{t, x}[y] be a Weierstrass polynomial in y. We suppose that y is

an approximate root of F , i.e., F is of the form:

F = yN +
N∑

i=2

Ai,t(x)yN−i ∈ C{x, t}[y]. (35)

Set Ft(x, y) = F (t, x, y) and consider the family of germs (Ct, 0) defined by Ft = 0.
We assume that (x, Ft)0 = e0 > 1, for 0 ≤ |t| ¿ 1.

We give an algorithm to check whether a family of curves (Ct, 0) of the form
(35) is equisingular at t = 0 to a plane branch (irreducible and reduced). If the
answer of the algorithm is no, then either (C0, 0) is not analytically irreducible
or (Ct, 0) is not equisingular at t = 0. The proof follows from the discussion in
Section 3.1.

Algorithm 3.10.

Step 1: Set N1 the Newton polygon of F =
∑

α
(1)
r,s(t)xrys (with respect to

(x, y)).

(1.a) Check that N1 has only one edge Γ1 with vertices (e1m1, 0) and (0, e1n1)
with e1 ≥ 1, gcd(n1,m1) = 1 and e1 ≥ 1. If e1 = 1 answer yes, otherwise
verify that min{n1,m1} > 1. Notice that e0 = e1n1.

(1.b) Check that the polynomial
∑e1

k=0 α
(1)
e1m1−km1,kn1

(t) zk ∈ C{t}[z] is of the
form (z − θ1(t))e1 for some series θ1(t) ∈ C{t} with θ1(0) 6= 0.

Step 2: If e1 > 1 and conditions (1.a) and (1.b) hold, set F2 for the
approximate root of F of degree n1. Compute the (y, F2)-expansion F =∑

finite A
(2)
i1,i2

(t, x) yi1 F i2
2 . From the data (n1,m1) and e0 each triple
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(i0, i1, i2), for i0 := ordx(A(2)
i1,i2

(t, x)),

determines (r, s) with r > 0 and s < e1 or (r, s) = (0, e1) (36)

and the converse also holds. (This follows by Remark 2.7 and the method given
in the proof of Lemma 3.3). For (r, s) and (i0, i1, i2) in (36) denote xi0yi1F i2

2 by
M2(r, s).

(2.a) Denote by N2 for the convex hull of the set
⋃

(r,s){(r, s) + R2
≥0}, for (r, s)

those of (36). Check that N2 has only one edge Γ2 with vertices (e2m2, 0)
and (0, e2n2) with gcd(n2,m2) = 1 and e2 ≥ 1. Verify that n2 > 1 and
m2 ≥ 1.

(2.b) If i0 = ordxA
(2)
i1,i2

(t, x) we denote by α
(2)
r,s(t) the coefficient of xi0 in the ex-

pansion of A
(2)
i1,i2

(t, x) as a series in x, where (r, s) is determined by (i0, i1, i2)
in terms of (36). Set

FΓ2 :=
e2∑

k=0

α
(2)
e2m2−km2,kn2

(t)M2(e2m2 − km2, kn2).

Compute the approximate root F3 of degree n1n2 of F . Check that F e2
3

is of the form F e2
3 = FΓ2 +

∑
n2r+m2s>e2n2m2

γ
(2)
r,s (t) M2(r, s), for some

γ
(2)
r,s (t) ∈ C{t}.

(2.c) Check that the polynomial
∑e2

k=0 α
(2)
e2m2−km2,kn2

(t) zk ∈ C{t}[z] is of the
form (z − θ2(t))e2 , for some series θ2(t) ∈ C{t} with θ2(0) 6= 0.

Step j > 2: If the conditions (j-1.a), (j-1.b) and (j-1.c), corresponding to
(2.a), (2.b) and (2.c) respectively are verified and ej−1 > 1 compute (y, F2, . . . , Fj)-
expansion of F and check the conditions (j.a), (j.b) and (j.c), corresponding to
(2.a), (2.b) and (2.c) respectively.

The algorithm stops whenever some condition is not verified, answering NO,
or when all conditions are verified and eg = 1 for some integer g, answering then
YES.

Remark 3.11. Our criterion extends the one given by A’Campo and Oka
in [A’C-Ok]. They assume that certain approximate roots of Ft do not depend
on t. We do not need this hypothesis. We do not compute intersection numbers
as in Abhyankar’s irreducibility criterion [Abh4] nor resultants as in [GB-G] (see
Subsection 3.3.1.).

Example 3.12. We consider F of the form (35).
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F := y12 + (−6x3 + 6tx4)y10 + (15x6 − 30tx7)y8 + (−20x9 + (60t− 2)x10)y6

+ (15x12 + (6− 60t)x13 + (−6t + λ)x14)y4 − x16y3

+ (−6x15 + (−6 + 30t)x16 + (−2λ + 12t)x17)y2 + x19y + x18

+ (2− 6t)x19 + (1− 6t + λ)x20.

The approximate roots of F of degrees 2 and 6 are F2 := y2 − x3 + tx4 and F3 :=
F 3

2 − (15/2)t2x8F2 + x10(−1 + 20t3x2). Notice that both polynomials depend on
the parameter t hence we cannot apply the equisingularity criterion of [A’C-Ok].
We check that the Newton polygon of F has only two vertices (0, 12) and (18, 0).
We set e1 = 6, n1 = 2 and m1 = 3. The conditions (1.a) and (2.a) are verified for
F2. We compute the (y, F2)-expansion of F and we find:

F = F 6
2 − 15t2x8F 4

2 + (−2 + 40t3x2)x10F 3
2 + (λ− 45t4x2)x14F 2

2 − x16yF2

+ (−2λt + 6t2 + 24t5x2)x18F2 + tx20y + (1 + (λt2 − 4t3)x2 + 5t6x4)x20.

With the notations introduced above we have that N2 only two vertices (0, 6)
and (4, 0), hence e2 = 2, n2 = 3 and m2 = 2. We have that FΓ2 = M2(0, 6) −
2M2(3, 2) + M2(0, 4), where M2(0, 6) = F 6

2 , M2(3, 2) = x10F 3
2 and M2(0, 4) =

x20
1 . We check that the conditions (2.b) and (2.c) are satisfied. We compute the

(y, F2, F3)-expansion of F , for F3 the approximate root of degree 6 of F . We
obtain that

F = F 2
3 +

(
λ− 405

4
t4x2

)
x14F 2

2 − x16yF2 + (−2λt− 9t2 + 324t5x2)x18F2

+ tx20y + (λt2 + 36t3 − 405t6x2)x22.

In order to compute the polygon N3 we consider the leading terms in the expan-
sion above and we use the method of Lemma 3.3. We have that xi0yi1F i2

2 F i3
3 =

M2(r1, s1)F i3
3 where s1 = i2 and r1 = i0n1 + m1(−e0 + i1 + n1i2 + n1n2i3).

We have then that M2(r1, s1)F i2
3 = M3(r, s) where s = i2 and r = n2r1 +

m1(−e1 +s1 +n2i3). For instance, we have that x14F 2
2 = M2(4, 2) = M3(4, 0) and

x16yF2 = M2(5, 1) = M3(5, 0). We distinguish two cases in terms of the constant
λ ∈ C.

(a) If λ 6= 0 then we check that N3 is a polygon with vertices (0, 2) and (4, 0). We
have that e3 = 2, n3 = 1 and m3 = 2 hence {Ft = 0} is not equisingular at
t = 0.
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(b) If λ = 0 then N3 is a polygon with vertices (0, 2) and (5, 0). We have that
e3 = 1 and the conditions (2.a), (2.b) and (2.c) are verified, hence {Ft = 0} is
equisingular at t = 0.

3.3.1. Equisingularity criterion by Jacobian Newton polygons.
Let f ∈ C{x}[y] be a Weierstrass polynomial. The Jacobian Newton polygon

of f with respect to the line {x = 0} is the Newton polygon of Jf (s, x) :=
Resy(s − f, ∂f/∂y) ∈ C{x, s}, where Resy denotes the resultant with respect to
y. The Jacobian Newton polygon appears in more general contexts related to
invariants of equisingularity (see [T1]). Garćıa Barroso and Gwoździewicz have
proved that if f ′ ∈ C{x}[y] is irreducible and Jf (s, x) = Jf ′(s, x) then f is
irreducible. They have given two methods which characterize Jacobian polygons of
plane branches among other Newton polygons by a finite number of combinatorial
operations on the polygons (see [GB-G, Theorems 1, 2 and 3]). The following
algorithm is consequence of their work.

Algorithm 3.13. Input : A family Ft(x, y) of the form (35).

(a) Compute JFt(s, x).
(b) Compute the Newton polygon Nt of JFt

(s, x). Check that Nt = N0.
(c) Test if N0 is a Jacobian Newton polygon of a plane branch by using Theorem

2 or 3 in [GB-G].

If all the steps of the algorithm give a positive answer then Ft = 0 is equisingular
at t = 0 to a plane branch.

4. Multi-semi-quasi-homogeneous deformations.

In this Section we introduce a class of (non equisingular) deformations of a
plane branch (C, 0) and we study some of its basic properties which are essential
for the applications in the real case (see [GP-R]).

We keep notations of Section 1.2. The resolution is described in terms of a
fixed sequence f1, . . . , fg of semi-roots. For simplicity we assume that θ1, . . . , θg =
1 (see Remark 3.7). We introduce the following notations:

Notation 4.1. For j = 1, . . . , g we set:

( i ) Γj = [(mjej , 0), (0, njej)] the compact edge of the local Newton polygon of
f (j)(xj , yj) (see (7)).

( ii ) ∆j the triangle bounded by the Newton polygon of f (j)(xj , yj) and the co-
ordinate axis; we denote by ∆−

j the set ∆−
j = ∆j \ Γj .

(iii) Let ωj : ∆j ∩Z2 → Z be defined by ωj(r, s) = ej(ejnjmj − rnj − smj).

The symbol tj denotes the parameters (tj , . . . , tg) for any 1 ≤ j ≤ g. We
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consider sequences of multiparametric deformations Ct1
, . . . , Ctg

of (C, 0) defined
by Pt1

, . . . , Ptg
of the form (see Definition 2.8):





Ptg
:= F +

∑

(r,s)∈∆−g ∩Z2

a(g)
r,s (tg) Mg(r, s)

. . . . . . . . . . . . . . . . . .

Pt1
:= Pt2

+
∑

(r,s)∈∆−1 ∩Z2

a(1)
r,s(t1) M1(r, s),

(37)

where a
(j)
r,s(tj) ∈ C{tj} for (r, s) ∈ ∆−

j ∩ Z2 and j = 1, . . . , g. Notice that Pt1

determines any of the terms Ptj
for 1 < j ≤ g, by substituting t1 = · · · = tj−1 = 0

in Pt1
. The multiparametric deformation Ct1

is multi-semi-quasi-homogeneous

(msqh) if in addition a
(j)
r,s = A

(j)
r,s t

ωj(r,s)
j , for 1 ≤ j ≤ g and (r, s) ∈ ∆−

j ∩Z2, where

ωj(r, s) ∈ Z≥0 is defined in Notation 4.1, A
(j)
r,s ∈ C and A

(j)
0,0 6= 0, for j = 1, . . . , g.

Remark 4.2. In the real case we have studied the topological types of
the msqh-deformations with real part with the maximal number of connected
components. The hypothesis of being msqh is related in that paper to the study
of the asymptotic scales of the ovals when the parameters tend to zero (joint work
with Risler [GP-R]).

We denote by C
(j)
l,t ⊂ Zj the strict transform of Cl,t by the composition of

toric maps π1 ◦ · · · ◦ πj−1 and by P
(j)
tl

(xj , yj) the polynomial defining C
(j)
tl

in the
coordinates (xj , yj) for 2 ≤ j ≤ l ≤ g. These notations are analogous to those
used for C in Section 1.2, see (6).

Proposition 4.3. If 1 ≤ j < l ≤ g the curves C
(j)
tl

and C(j) meet the
exceptional divisor of π1 ◦ · · · ◦ πj−1 only at the point oj ∈ {xj = 0} and with the
same intersection multiplicity ej−1.

Proof. If j = 1 we have that f and Ptl
have the same Newton polygon and

moreover the symbolic restrictions of these two polynomials to the compact face
Γ1 of the Newton polygon coincide by Lemma 2.11. If j > 1 we show the result
by induction using Remark 2.12. ¤

Proposition 4.4. If 1 < j ≤ g then {xj = 0} is the only irreducible
component of the exceptional divisor of π1 ◦ · · · ◦πj−1 which intersects C

(j)
tj

at ej−1

points counted with multiplicity. More precisely, we have that :

( i ) The symbolic restriction of P
(j)
tj+1

(xj , yj) to the edge Γj of its local Newton
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polygon is of the form: αj

∏ej

s=1

(
y

nj

j −(1+γ
(j)
s t

ej+1mj+1
j+1 )xmj

j

)
, with αj , γ

(j)
s ∈

C∗, for s = 1, . . . , ej.
( ii ) The points of intersection of {xj+1 = 0} with C

(j+1)
tj+1

are those with coordi-
nates xj+1 = 0 and

uj+1 =
(
1 + γ(j)

s t
ej+1mj+1
j+1

)−1
, for s = 1, . . . , ej . (38)

Proof. If j = 2 we have that the terms of the expansion of Pt2
which have

exponents on the compact face of the Newton polygon N (f) are f and M2(0, s)
for 0 ≤ s < e1 by Lemma 2.11. By Proposition 2.4 we have that M2(0, s) =
x

m1(e1−s)
1 fs

2 . The restriction of the polynomial f +
∑e1−1

s=0 A
(2)
(0,s)t

e2m2(e1−s)
2

·xm1(e1−s)
1 fs

2 to the face Γj is equal to:

(
yn1
1 − xm1

1

)e1 +
e1−1∑
s=0

A
(2)
(0,s)

(
te2m2
2 xm1

1

)e1−s(
y1 − xm1

1

)s
. (39)

Let us consider the polynomial Q1(V1, V2) := V e1
1 +

∑e1−1
s=0 A

(2)
(0,s)V

s
1 V e1−s

2 . By hy-

pothesis A
(2)
(0,0) 6= 0 hence the homogeneous polynomial Q1 factors as: Q1(V1, V2) =

∏e1
s=1(V1 − γ

(1)
s V2) for some γ

(1)
s ∈ C∗. The expression (39) is of the form:

Q1(yn1
1 − xm1

1 , tm2e2
2 xm1

1 ) =
∏e1

s=1(y
n1 − (1 + γ

(1)
s tm2e2

2 )xm1
1 ). This proves the first

assertion in this case. The second follows from this by the discussion of Section
1.2.

If j > 2 we deduce by induction, by using Remarks 2.12 and 2.1, that the
restriction of P

(j−1)
tj+1

to the compact face of N (f (j−1)) is of the form (ynj

j −
x

mj

j )ej +
∑ej−1

s=0 A
(j+1)
(0,s) (tej+1mj+1

j+1 x
mj+1
j )ej−s(ynj

j − x
mj

j )s. The result follows by
the same argument. ¤

4.1. Milnor number and generic msqh-smoothings.
If (D, 0) ⊂ (C2, 0) is the germ of a plane curve singularity, defined by h = 0,

for h ∈ C{x, y} reduced, we denote by µ(h)0 or by µ(D)0 the Milnor number
dimC C{x, y}/(hx, hy). We have the following formula (see [R] and [Z2]):

µ(h)0 =
(

h,
∂h

∂y

)

0

− (h, x)0 + 1. (40)

The Milnor number of the plane branch (C, 0) expresses also in terms of the gen-
erators of the semigroup ΛC with respect to the coordinate line {x = 0} (see [M],
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[GB] and [Z2]) by using:

(
f,

∂f

∂y

)

0

=
g∑

j=1

(nj − 1)b̄j . (41)

Definition 4.5. We say that the deformation Pt1
of the plane branch (C, 0)

is generic if the numbers {γ(j)
s }ej

s=1 appearing in Proposition 4.4 are all distinct,
for 1 < j ≤ g.

The following proposition provides a geometrical incarnation in terms of
the sequence of generic msqh-deformations of the Milnor’s formula µ(C)0 =
(1/2)δ(C)0, for δ(C)0 the delta invariant of (C, 0) (see [W], [Ca, Ex. 5.6], see
also [G]).

Proposition 4.6. Let Pt1
be a generic msqh-deformation of a plane branch

(C, 0), then we have that

µ(C)0 =
g∑

j=1

(
µ(C(j)

tj+1
)oj

+ ej − 1
)
.

Proof. We prove the result by induction on g. If g = 1 the assertion is triv-
ial. We suppose the assertion true for branches with g−1 characteristic exponents
with respect to some system of coordinates. By Proposition 1.11 and the induction
hypothesis it is easy to check that µ(C(2))o2 =

∑g
j=2(µ(C(j)

tj+1
)oj

+ ej − 1).
By Proposition 4.4 and the definition of generic msqh-deformation, we have

that the curve C
(1)
t2

, defined by the polynomial P
(1)
t2

(x1, y1), is non-degenerate with

respect to its Newton polygon. By (40) we have that µ(C(1)
t2

)o1 = e0b1−e0−b1+1.
By (41) we have that: µ(C)o1−µ(C(2))o2 = (f, ∂f/∂y)0−(f (2), ∂f (2)/∂y2)o2 +e1−
e0. The assertion holds if and only if (f, ∂f/∂y)0−(f (2), ∂f (2)/∂y2)o2 = b1(e0−1).
Using (41) and Lemma 1.18 we verify that (f, ∂f/∂y)0−(f (2), ∂f (2)/∂y2)o2 is equal
to:

∑g
j=1(nk−1)b̄j−

∑g
j=2(nk−1)(b̄j−b̄1e0/ej−1) = (n1−1)b̄1+

∑g
j=2b̄1e0/ej−1 =

(n1 − 1 + (n2 − 1)n1 + · · ·+ (ng − 1)n1 · · ·ng−1)b̄1 = (e0 − 1)b1. ¤

Corollary 4.7.

µ(C)0 = 2
( g−1∑

j=0

(
#(

◦
∆j ∩Z2) + ej+1 − 1

))
.
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[C-M1] V. Cossart and G. Moreno-Soćıas, Irreducibility criterion: a geometric point of view,

Valuation theory and its applications, II, Saskatoon, SK, 1999, Fields Inst. Commun.,

33, Amer. Math. Soc., Providence, RI, 2003, pp. 27–42.
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branches, Ann. Sci. École Norm. Sup. (4), 43 (2010), 143–183.
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