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Abstract. In this paper we study a certain class of Hermitian n-
manifolds whose geodesic flows admit n first integrals of certain kind. It is a
generalization of K&hler-Liouville manifold in [3] and called Hermite-Liouville
manifold. We completely determine the local structure of Hermite-Liouville
manifolds “of type (A)”, and construct global examples over the complex pro-
jective space.

1. Introduction.

It is well known that the geodesic flow of the complex projective space C P™
endowed with the standard Kahler metric is integrable in the sense of Hamiltonian
mechanics (cf. [6]). Actually, the geodesic flow possesses n first integrals which are
fiberwise quadratic polynomials and also n first integrals which are fiberwise linear
forms, and they are mutually commutative with respect to the Poisson bracket.

The notion of a (proper) Kéhler-Liouville manifold was given in [3, Part 2]
by the second author as a class of K&hler manifolds whose geodesic flows can
be integrated in a similar way to that of CP™ (see also [4], [5]). In another
viewpoint, it can be regarded as a complexification (a Hermitian version) of the
notion of Liouville manifold. (Liouville manifold is a class of Riemannian manifolds
whose metrics are of Liouville-Stéckel type. For the precise definition, see [3, Part
1].) The main purpose in [3, Part 2] was to investigate global structures of such
manifolds. A preceding study for the two-dimensional case was made in [2] by the
first author.

By definition, a Ké&hler-Liouville manifold is a pair of a Ké&hler manifold
(M,g,J), dimc M = n, g the metric, J the complex structure, and an n-
dimensional real vector space % of functions on the cotangent bundle 7* M which
satisfies the following conditions.

(1) The Poisson bracket {F, H} vanishes for every F, H € .Z.
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(2) # contains the Hamiltonian E of the geodesic flow.

(3) For every FF € F andp € M, F, :=F 77y s a Hermitian form, i.e., a ho-
mogeneous quadratic polynomial which is invariant by the complex structure
J.

(4) F,, F € &, are simultaneously normalizable for each p € M.

(6) &, :={F,; F € #} is n-dimensional at some point p € M.

In the above definition, n first integrals which are fiberwise quadratic forms
are provided, but first integrals which are fiberwise linear forms are not men-
tioned. This omission in the definition is justified by the fact that, under a certain
nondegeneracy condition, n first integrals which are fiberwise linear forms appear
automatically and yield the integrability ([3, p.94]). Those fiberwise-linear first
integrals are actually infinitesimal automorphisms of the K&hler manifold M and,
if M is compact, then they generate an n torus action and M becomes a toric
variety.

Although Kéhler-Liouville manifolds provide good examples of Hermitian
manifolds with integrable geodesic flows, the Ké&hler condition itself is a priori
unrelated to the integrability of the geodesic flows. Moreover, as is easily ob-
served, if F is the Hamiltonian of the geodesic flow and F' € .% is small enough on
a Kéhler-Liouville manifold, then the metric g’ corresponding to E + F is not nec-
essarily K&hlerian, but the geodesic flow of (M, g¢’) is still integrable. These facts
motivated us to investigate Hermitian manifolds which have similar properties to
Kahler-Liouville manifolds. We call such manifolds Hermite-Liouville manifolds.
The definition is as follows: An Hermite-Liouville manifold is a pair of a Hermitian
manifold (M, g,J) and a real vector space % of functions on T*M satisfying the
five conditions (1)—(5) stated above. Some previous examples have been described
in [1].

The aim of this paper is to investigate local structures of Hermite-Liouville
manifolds and to construct a family of global non-Kéhler examples over complex
projective space C'P™. We shall mainly treat Hermite-Liouville manifolds with
nondegeneracy conditions which are the same as employed with Kéahler-Liouville
manifolds, called Hermite-Liouville manifolds of type (A). We shall give a complete
description of their local structures and then discuss the local integrability of the
geodesic flow and the Kéahler condition. As a consequence, it will turn out that the
following three groups of manifolds are indeed different from one another: Hermite-
Liouville manifolds of type (A); those with n fiberwise-linear first integrals; Kahler-
Liouville manifolds of type (A). The difference of the latter two groups will also
be verified in the global setting.

This paper is organized as follows. In Section 2 we investigate local struc-
tures of Hermite-Liouville manifolds of type (A) and present their basic properties.
Based on a similar procedure to the case of Liouville-Stéckel’s system, we obtain a
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“canonical form” of the system (Theorem 2.4). Different from the Liouville-Stéckel
case, the situation is not completely trivialized in this stage; a matrix-valued func-
tion [k;;], a part of the representation matrix of the complex structure, is involved
in the formula. It turns out that this function [k;;] plays a key role in determin-
ing the local structure. In the subsequent argument, we find a system of partial
differential equations which the functions x;;’s satisfy. In Section 3 we analyze
the function [k;;] completely and thus determine the possible forms of [k;;] by
solving the system of equations. We also have an argument concerning the com-
plete integrability of the geodesic flow and one concerning the Kéahler condition.
In the next section, Section 4, first we verify the existence of Hermite-Liouville
manifold to each solution [k;;]. Then, we concentrate our attention on the case
where the geodesic flow possesses n fiberwise-linear first integrals which yield the
local integrability and present a slightly modified local construction. Finally, in
Section 5, we illustrate how to construct Hermite-Liouville manifolds over C P™
by means of two sets of data for (real) Liouville manifolds defined over RP™. Tt
is shown that those two sets of data parametrize the isomorphism classes of con-
structed Hermite-Liouville manifolds almost effectively. Also, we show that the
constructed Hermite-Liouville manifold is Kahlerian if and only if the two sets of
data coincide.
Throughout this paper, we assume the differentiability of class C*°.

ACKNOWLEDGMENTS. The authors are grateful to the referee for useful sug-
gestions on the readability of the paper.

2. Basic properties.

In the present section we shall describe the basic local properties of the
Hermite-Liouville manifold. Via a similar argument to the case of Liouville-
Stéckel’s system, we shall obtain a canonical coordinate system and a canonical
form of the system (Theorem 2.4). With them we shall obtain a matrix-valued
function [k;;], a key ingredient of the description of the local structure, and find
a system of partial differential equations which the functions k;;’s satisfy (Propo-
sition 2.5 (2)). Throughout this section and the next section, we shall use the
convention that indices 4, j, k, £, s, t take the integer values 1,...,n, unless oth-
erwise stated.

Let (M,g,J;.#) be an n-dimensional Hermite-Liouville manifold and let
Fy,...,F, a basis of #. For any F' € % and for any point p € M, we put
F,=r T M, which is regarded as a quadratic form on the cotangent space T,y M
to p. For each p € M, we set %, = {F},; F € Z}, which forms a real vector space
of dim < n. Let M° denote the set of all points p € M satisfying dim(%,) = n,
which is an open subset in M. We take an arbitrary point pg € M and take
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a sufficiently small open neighborhood Q of py in M°. Let T and T*Q denote
the tangent bundle over 2 and the cotangent bundle over Q) respectively. There

then exist an orthonormal frame Vi, JV4,...,V,, JV, on , and n? functions @i,
1,7 =1,...,n, on £ such that, for each 4,
> aiiFy =Vi3+ (JV;)?  onT*Q, (2.1)
j=1

where V;, JV; are regarded as fiberwise linear forms on T7*(). Note that the n X n-
matrix-valued function [a,;] on  is nonsingular at all points in 2. We also notice
that, for each j,

Z a;; = constant on Q. (2.2)

=1

In fact, by (2.1) we have

2F = é (Vi2+ (JVi)?) = z": (iaz‘j>Fj~

j=1 Ni=1

The fact that E € #, which is the condition (2) in the definition of the Hermite-
Liouville manifold, implies (2.2).

For each i, we define a complex line bundle D; over Q by (D;), =
Span{(V;),,, (JV;),} for every p € €, where Span{(V;),, (JV;),} means the
subspace of the tangent space T, spanned by (Vi)p, (JVi)p. It follows that
TS can be written as the direct sum of the complex line bundles D1,..., Dy;
TQY =D& & D,. Note that the bundles Dy, ..., D, are uniquely determined
except their ordering; the frame V;, JV; is not though.

Let J* be the complex structure in 7% defined by

(J*u, X) = (u, JX)

for any 1-form w and for any vector field X on Q. We can find 1-forms V}*, ..., V*
on ) such that V*, —J*V{*, ..., V¥, —J*V* forms the coframe on {2 which is dual
to the orthonormal frame Vy,JVi,...,V,, JV,, at every point in 2. For each i,
we moreover define the bundle D} over Q2 by V;*, J*V;* as in the same manner in
the definition of D;, which can also be considered as a complex line bundle with
respect to J*. We note that 7*Q = D] & --- @ D}.
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Taking certain n? real constants Tij, 4,J = 1,...,n, we can define n functions
ai,...,a, on ) by
a; = Ti1@i + T2l + A TinGin,  1=1,...,m, (2.3)
so that ay,...,a, are all positive on the whole of 2. We set
aij
bijj=—, 4,j=1,...,n, on{ (2.4)
a;
and
1 ,
W;=—=V;, i=1,...,n, onf. (2.5)

It follows that the n x n-matrix-valued function [b;;] on € is also nonsingular at all
points in 2, and that the vector fields Wy, JW1, ..., W,,, JW,, form an orthogonal
frame on . From (2.1) we obtain

> byFy =W+ (JWi)?, i=1,...,n, onT"Q, (2.6)
j=1

where W;, JW; are also regarded as fiberwise linear forms on 7*{2. We moreover
have the following

PROPOSITION 2.1.

(1) For any two distinct i,j and for any k,
Wibjr = (JW;)bjr =0 on Q. (2.7)
(2) For anyi,j,
(Wi + (JW,)%, W2 + (JW;)?} =0 on T*Q. (2.8)

PRrROOF. We first verify that there exist 2n? — 2n functions Ay, pst, s # t,
s,t =1,...,n, on Q such that, for any two distinct 4, j and for any k,

Viaj, = )\ijaj]g, (J‘/;)ajk = Wijaj; on Q. (2.9)
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In fact, define functions Mgy, ste, S £ t, s,t,0=1,...,n,on ) by
S\stf = Z dml(‘/satm)7 ﬂstf = Z dm@((J‘/;)atm)a
m=1 m=1

where @,,¢ denotes the (m,{)-entry of the inverse matrix of [a;;]. It follows that,
for any two distinct 4, j and for any k,

3

Via]—k = Z S\ijgagk, (JV;)ajk = ﬂijlalk on 2. (2.10)
=1 =1

Taking the Poisson Bracket of Vi + (JV;)? = 3", a; Fy and V;? + (JV;)? =
S ajiFy, both of which represent (2.1), with ¢ # j, we have

(V2 + (V)2 V% + (JV;)?)

Z azt{Ft7a35 ajt{Ft7ais})Fs

1t=1

I
NE

S

M=

({V + (JV;) ajs} {V + JV) ais})FS

s=1

= 22 (S\ijévi + flije(JV;) — NjieVy — fijie(JV;)) (Vi + (JVE)Z) (2.11)
—1

by virtue of the condition that {Fs, F;} =0, (2.1), and (2.10).
Both sides of (2.11) are regarded as polynomials in the variables V,,, JV;,,

m = 1,...,n. Since the left-hand side belongs to the ideal generated by V;V},
Vi(JV;), V;(JV;), and (JV;)(JV;), it follows that

S\ijg = fljje =0 on unless £ = j.
Putting A;; = S\ijj, Wij = [lijj, we thus obtain (2.9) from (2.10), completing the
verification. By the definition (2.3) of a; and (2.9), we also have, for any two
distinct i, 7,

V;aj = )\ijaj, (JV;)GJ = MijG; ON Q. (212)

From (2.4), (2.5), (2.9), and (2.12), we obtain (2.7), thus proving (1). Since
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S\ijg = 04 Nij, flije = Ojeps5, where d;0 denotes Kronecker’s symbol, it follows from
(2.11) that, for any two distinct i, j,

{(Vi2+ (JVi)*, V% + (JV))*}

= 2NV + 5a(IV3) (Vi + (TVi)?) + 2(AigVi o+ pig (TV)) (Vi + (TV5)%).

The assertion (2) thus follows by direct calculation from this relation and (2.12).
(See also [3, pp. 84-85].) O

We now introduce nondegenerecy conditions for Hermite-Liouville manifold,
which are the counterpart of the condition in [3, p.85] appearing in the definition
of type (A) for Kahler-Liouville manifold. We shall denote by [X,Y]p, the D;-
component of the vector field [X, Y] for any vector fields X,Y on Q. An Hermite-
Liouville manifold (M, g, J;.%) is said to be of type (A) if there exists a point p
in M° at which the following (A-i) and (A-ii) hold:

(A-i) For any i, there exists k(# i) such that ([Wg, JWi]p,)p # 0;
(A-ii) For any i, there exists £ such that (db), # 0.

Note that these conditions do not depend on the choice of the functions a1, ..., a,.

Let (M,g,J;.%) be an Hermite-Liouville manifold of type (A). We take a
basis Fi,..., F, of % and fix it in the rest of this section and next section, Section
3. We set

M"'" = {p € M° Both (A-i) and (A-ii) hold at p}. (2.13)

Clearly, M is an open subset of M and hence that of M. Let py be an arbitrary
point in M*'. We take a sufficiently small neighborhood Q of py in M?!, the func-
tions b;;, 7,7 =1,...,n, on Q defined in (2.4), and the vector fields W1y, ..., W, on
) defined in (2.5). Notice that they satisfy the conditions (2.6), (2.7) and (2.8).
It follows that Wy, JWy, ..., W,, JW, form an orthogonal frame on ).

LEMMA 2.2.  For each i,
Span{([Wx, JWi]p,)p} = Ker(dbic|p,), at every p € €,
where k and ¢ are the indices taken in the above (A-i) and (A-ii) respectively, and

where Span{([Wy, JWk|p,)p} denotes the real vector space spanned by the vector
(W, JWi]p,)p-
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PrOOF. By Proposition 2.1 (1), we have

Span{ (Wi, JWi]p,)p} C Ker(db,

D;)p atevery p € .

From (A-i) and (A-ii) we obtain dim(Span{([Wk, JWi|p,)p}) = 1 and
dim(Ker(dbi¢|p,)p) = 1. These imply the desired equality. O

With the notation of Lemma 2.2, we define real line bundles D, , i =1,...,n,
over ) by

(D;)p = Span{ (Wi, JWi]p,)p} = Ker(db,

D)p (2.14)

for each p € Q. It follows that D, is a subbundle of D; and hence that of 7.
We moreover define a real vector bundle D~ over 2 by

D =Dy &---@&D, (2.15)
and a real vector bundle DT over Q by
Dt =JD", (2.16)

both of which are subbundles of T2 with real rank n. It follows that TQ = Dt @
D~. For any vector bundle D over 2, we shall denote by I'(Q2, D) the vector space
of all cross sections of D. We can take an orthogonal frame Wy, JW1, ..., W,,, JW,
on {2 so that it satisfies the condition

JW, eT(Q,D7), i=1,....n. (2.17)

Notice that it also satisfies (2.6), (2.7) and (2.8). We shall call such a frame
Z-adapted orthogonal frame on .

ProroSITION 2.3.  Let Wy, JWq, ..., W,,, JW,, be an % -adapted orthogonal
frame on Q.

(1) For any two distinct i, and for any k,
and, for any i,7j,k,
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(2) For any two distinct 1,7,
[Wi, WJ] = [JWZ‘, JWJ] = [Wl, JWJ] =0 onQ. (2.20)

In particular, by regarding DT and D™ as distributions, both DT and D~ are
involutive.
(3) For any i,

[W;, JWi] € T(Q,D7). (2.21)

Proor.

(1) In Proposition 2.1 (1), we have already proved (2.18) and (JW;)bjr = 0
with ¢ # j. The equality (JW;)b;r = 0 immediately follows from (2.14) and (2.17).
From (2.2) and (2.4), we obtain

n
E atbym = constant, m=1,...,n.
t=1

This implies that a;’s are rational functions of by, t,m = 1,...,n. Therefore we
have (JW;)a; = 0.

(2) Proposition 2.1 (2) is equivalent to the condition that there are 2n% — 2n
functions oy, Bst, S £ t, s,t =1,...,n, such that, for any two distinct i, j,

[Wi, Wj] = OéijJWi — OéjiJWj,
[Wi; JW]] = ﬂ”le + Oéjin,
[JWia JWj] = _ﬂz‘jWi + ﬂﬂWj on €.

Taking the values of the 1-forms dbj, and db;; on both sides of the second and
third equalities respectively, where ¢ is the index taken in (A-ii), we see from (1)
and (A-ii) that all a, Bs: vanish on Q, which implies (2).

(3) We see from Proposition 2.1 (1) that, if ¢ # 4, then [W;, JW;]by, = 0, m =
1,...,n, and hence ([W;, JW;]p,), is a scalar multiple of (JW;), at each p € Q.
In view of this fact, (2.15), and (2.17), it is sufficient to show that ([W;, JW;]p,),
is also a scalar multiple of (JW;), at each p € ). For any j such that j # i,
we consider the vector field [W;, JW;] on Q. By the above arguement, it can be
written as

j—1 n
(Wi, JW5] = Wy, Wi, + Y GadWat+ Y (e W on (2.22)

s=1 s=j+1



904 M. IcArAsHI and K. KIYOHARA

where (55, s # j, are certain functions on €. By (2.20) in (2) we have
(W, [W;, JW;]] = 0 on  and hence

(Wi, [W;, JW;]lp, =0 on Q.

Substituting (2.22) into this relation and again using (2.20) in (2), we obtain, for
any j(# i),

Cii[Wi, IWil D, + (W (i) JW; =0 on Q. (2.23)
In view of (2.22), the condition (A-i) implies that, for each point p € €2,

Cki(p) # 0 for some k(# ). (2.24)

The assertion follows from (2.23) and (2.24). O

We now introduce the .#-adapted coordinate system to the neighborhood Q2
of pg. Let Wy, JWy,..., W, JW, be an .#-adapted orthogonal frame on . Let
S~ be the maximal integral submanifold of D™ in  through pg. We take 1-
forms Wi, ..., W} on Q so that W7, —J*W7,... , W’ —J*W} form a coframe on
Q) which is dual to Wy, JW1q, ..., W, JW,, at every point in 2. From Proposition
2.3 (2), (3), we see that all the 1-forms W7, ..., W are closed on 2. We can then

construct a coordinate system (wi, ..., Wy, Wpt1,-- -, Wsy,) on  such that
Wy =9/0wy,..., W, =9/0w, onQ, (2.25)
JWy = 0/0wnt1,...,JW, = 0/0ws, at all points in S~ (2.26)
0/0wp41,...,0/0ws, € T(Q, D7), (2.27)
(wl(po), ey Wi (P0)s Wnt1(Po)y - - - s wgn(po)) =(0,...,0,0,...,0). (2.28)

In fact, let Wy,41,...,Wa, be the vector fields on  such that W,;, = JW,,
i=1,...,n,0on S~ and that they are invariant under the local R"-action generated
by Wi,...,W,. We then have [W;, W;] =0 on Q for every ,j = 1,...,2n. Since
D~ is invariant under this action, we also have W,,4; € T'(Q,D7), i = 1,...,n.
We thus obtain the desired coordinate system (w1, ..., Wy, Wpt1,.-.,Way,) on .
We shall call such a coordinate system an .%#-adapted coordinate system on €.

In the rest of this section and the next section, we shall assume, without loss
of generality, that the neighborhood 2 is given by
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lwi] < A, ..y we| < A, Jwpi1] < Ay .o Jwey| < A, (2.29)

where A is a certain sufficiently small positive number, and we shall identify 2
with the 2n-dimensional cube-like domain defined by these inequalities (2.29) in
R?". Under this identification, the submanifold S~ in € can be written as

ST ={(0,...,0,Wny1,. .., wop); [wni1| < A, ..., |way| < A} (2.30)

By virtue of (2.17), (2.25), and (2.27), we define a set of functions k;;, ¢,j =
1,...,n,on Q by

J(0/0w;) = Zn” (8/0wny;), i=1,...,n. (2.31)

Jj=1

We then define an n X n-matrix-valued function K on ) by putting
K= [Iiij}, (232)

which is a nonsingular matrix at every point in 2. From (2.26) we see that K is
the identity matrix at every point in S~. We denote by K ~! the inverse matrix of
K, which is also an n x n-matrix-valued function on €2, and define a set of functions
Rij, 4,5 = 1,...,n, on Q as the (i,j)-entries of K~!. It should be noted that, at
each point in 2, the complex structure J is represented by the matrix [IO( 7%_1}
with respect to the frame 9/0w;,...,0/0wy,,d/0w,11,...,0/0ws, on .

We are now in a position to state a canonical expression of the system, which
is analogous to the one for Liouville-Stéackel’s system.

THEOREM 2.4. Let (M,g,J;.%) be an n-dimensional Hermite-Liouville
manifold of type (A) and let Fy, ..., F, a basis of Z. Let ) be a sufficiently small
neighborhood of a point in the subset M' defined by (2.13), let bi;, i,j=1,...,n,
and Kij, 1,5 = 1,...,n, be functions defined in (2.4) and (2.31) respectively, and
let (w1, ..., Wny Wi, .., W) an F-adapted coordinate system on .

Then, for each i, 7, the function b;; is that of one variable w; and the following
relation holds on T*C) :

n

2
> b (wi) Fy = (9/0w;)? (st 8/8wn+5)>, i=1,...,n, (2.33)

Jj=1

where 8/0w;, 0/0wn4s are regarded as fiberwise linear forms on T*S).
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Proor. The fact that the function b;; is that of one variable w; follows from
Proposition 2.3 (1), (2.25), and (2.31). The relation follows from (2.6), (2.25), and
(2.31). O

The functions k;;’s are required some conditions. We then proceed to the
argument for them.

PROPOSITION 2.5.
(1) For eachi, j, the function k;; is that of two variables w;, wy4; on]—A, A [?;
(2) The system of partial differential equations

Okt aﬁjt ..
/fjia :Hija , L t=1,...,n,
Wn+i Wn+j5

holds on €.

PRroor.

(1) By (2.25) and (2.31) we have JW; = Z?=1 Ki;(0/0wn4 ;) on Q. We recall
Proposition 2.3 (2). From the fact that [Wy, JW;] = 0 on Q unless k = i, we see
that, if k # ¢, then x;; does not depend on the variable wy. From the fact that
[JWe, JW;] = 0 on 2, we obtain

Z <nf$ aﬂij — Kis aH[j > =0, ivjag =1...,n, (234)
8wn+s

s=1 awn+s

on ). We here assume that £ # i. Since ks does not depend on w; and since
Kes = Ogs at every point in S—, we have kgs(0,...,0,w;,0,...,0,wp41,. .., Wap) =
dps, s = 1,...,n, where §y5 denotes Kronecker’s symbol. Considering the equa-
tion (2.34) at the point (0,...,0,w;,0,...,0,Wp41,...,Wws,) in Q, we thus have
%(O, oo, 0,w;,0,...,0, Wn41,. .., wan) = 0. This means that, if £ # ¢, then &;;
does not depend on the variable wy, .

(2) By virtue of (1), we immediately obtain the desired system of equations

from (2.34). O
In view of Proposition 2.3 (3), we can define n? functions (;j, i,j = 1,...,n,
on 2 by
(Wi, W] =Y G Wy, i=1,....n. (2.35)
j=1

We then present the condition, say (A-i)’, equivalent to (A-i), which appeared
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in the definition of type (A), as follows:
(A-i)’  For each j, there exists i(#j) such that (;;(p) # 0.

We notice that (A—i)/ holds at every point p € Q since Q2 C M'. From the definition

2.31) of k;;, we see that the functions (;;, i,7 = 1,...,n, on Q can be expressed
J j
by
n
Ok,
Gij = B, i (2.36)
k=1

in terms of the functions s, 4,5 =1,...,n, and &5, 3,5 =1,...,n.

PROPOSITION 2.6.  For each j, there exists i(#j) such that

8/’%1‘]‘

3wi

(0,0) #£ 0.

PROOF. Since K is the identity matrix at the origin o, we obtain, from
(2.36),

OKj
:(0,0) = 20,0
G(0,0) = 52(0,0)
Thus, the assertion follows from the fact that (A-i)" holds at the origin o. O

We conclude this section by mentioning a property of the distribution D*.
The argument for the functions x;; will resume at the beginning of Section 3.

From Proposition 2.3 (2) we obtain, for each p € 2, the maximal integral
submanifold S, of the distribution D* in € through p.

PROPOSITION 2.7.  For any point p € €1, the submanifold S;‘ s totally
geodesic with respect to the metric g.

PROOF. By Proposition 2.3 (2), (3), we have

Wjai Wiaj . . .
— Wi — 5a; W, if i # g,

Vi, W, =

=Y MW it =,

where V is the Riemannian connection with respect to the metric g. The fact that
Vw,W; € D(Q, D) implies the assertion. O
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3. Analyzing the functions k;;.

In this section, based on the argument in Section 2, we shall study the func-
tions k5, 4,7 = 1,...,n, on § introduced in Section 2. Throughout this section,
we shall use the same notation as in Section 2 and, in particular, use the same
convention that indices i, j, k, ¢, s, t run from 1 to n, unless otherwise stated.

We here give a brief of the argument of this section as follows. We first in-
troduce an equivalence relation in the index set I = {1,...,n}. Rearranging the
assignment of the indices if necessary, we can express the matrix K = [x;;] by a
block-triangular form according to the equivalence relation (Proposition 3.3).
After some preparation, we then present the expressions of the functions r;;
in each block in K in terms of the .#-adapted coordinate system (ws,...,w,,
Wnt1,---,Wap) (Theorem 3.6, Theorem 3.7). We also have an argument con-
cerning the complete integrability of the geodesic flow (Theorem 3.10) and one
concerning the Kéhler condition (Theorem 3.11).

We begin with recalling the situation in Section 2. We recall that A is a
positive real number and 2 is considered as the 2n-dimensional cube-like domain

{(wi, - Wy Whg1, - wan)s Wi < A, i=1,...,2n} (3.1)
with the coordinate system (w1, ..., W, Wny1,...,Ws,), and also that k,j, i,j =
1,...,n, are the functions on {2 satisfying the following four conditions:

(CK-1) The matrix K = [k;;] is nonsingular at every point in . In par-
ticular, it is the identity matrix at every point in the slice S~ = {(0,...,0,
Wigl, - Won); [Wnyj| <A, j=1,...,n}in Q.

(CK-2) For each i,j, the function k;; is that of two variables w;, wy4+; on
| — A, A[2.
- e system ol partial differential equations
(CK-3) The sy f ial diffe ial i
amt 8/43]',5

Kig = Kj; ,j,t=1,....n 3.2
J 8wn+i 1] 6wn+j’ 7 ) ( )

holds on €.
(CK-4) For each j, there exists an index (# j) such that

al"il‘j
(’)wi

(0,0) # 0.

In this section, we moreover assume the condition (CK-5) as follows.
(CK-5) The constant A is taken sufficiently small so that, for every distinct
i,7, the function k;; has either of the following two properties:
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(1) ki =0on]—4 A%
(2) For any A such that 0 < A < 4, n”h iz # 0, where ki;];_ 4 j2 denotes the

restriction of ;; to the domain | — 4, [ .

After some preparations we shall actually solve the system of partial differen-
tial equations (3.2) under the conditions (CK-1), (CK-2), (CK-4), and (CK-5).
We first introduce two relations ~ and ~, the latter being an equivalence

relation, in the index set I = {1,2,...,n} as follows We write ¢ ~ j if K ;7é 0 and
kji Z 0 on Q. We then write ¢ ~ j if there exists a finite series i = s1,892,...,8, = J
of indices such that i = s; &~ so &~ --- &~ s, = j with the condition that some of

them may coincide. It is easy to verify that the relation ~ is an equivalence
relation. It follows that the set I can be decomposed into the disjoint union of its
equivalence classes.

LemMmA 3.1.  Takei,j,t € 1.

(1) If 3/&1: Z£0 and i~ j, then (z:{]: Z£0
Wy 44 nTj
Okt . . Okt
2) I = din~j,th L =0.
(2) f@wnﬂ 0 and i ~ j, then D, 0

PrOOF. To prove (1) it is sufficient to show the case where ¢ ~ j. Since

Okit_ g a function of (Wi, Wnyi) and k;; is a function of (w;, wyy;), and since kj;

OWn i

is not identically zero, it follows that there is a point p € €2 such that x;;(p) # 0,
Orit_(p) 2 0. Then, by the equation (3.2), we obtain d”” ;—é 0. (2) is similar.

Own 44

O
Define two subsets 1) and I(9) of I by
N PR
' =23iel # 0 for some t € T (3.3)
awn+i
and
O _ f;eq O _
I =3diel =0foralltel,, (3.4)
awn+i

respectively. The set I then can be written as the disjoint union of I®*) and
IO 1 = 1™ 11 1O, Lemma 3.1 implies that every equivalence class is included
alternatively in I®) or 19, Thus, I is decomposed into the disjoint unions of
the equivalence classes I, ..., I, included in I®); I®) = [, IT-.. 11 I,.. It follows
that =L II--- I 1, 11O,
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LEMMA 3.2.  For each i € I™®), there exists at least one index j € 1)\ {i}
such that i ~ j. Every equivalence class Iy, included in I™) therefore consists of
two or more indices.

PrROOF. From (CK-4) there exists an index j € I'\ {i} such that %5 (0, 0) #

7t
Bwj

0. We then have x;; # 0. Since i € I there exists an index ¢; € I such that

887:"7:2{ # 0. Observing the equation (3.2) with ¢ = 1, we obtain x;; # 0. We thus
obtain ¢ & j. O
Let np denote the number of all elements of I, for each h = 1,...,r and let

n(®) denote the number of all elements of 1?0, Tt follows that nq+- - -+n,+n® = n.
By rearranging the assignment of the indices in I if necessary, we may assume,
without loss of generality, that I, h =1,...,r, and I(9) consist of the consecutive
integers in the following forms:

1{(zn>+1(zn)+2(zn)+} (3.5)
I(O):{(inh>+1,<inh)+2,...,n}, (3.6)

h=0 h=0
where ng = 0. We then observe the matrix-valued function K = [k;;] on .

PrROPOSITION 3.3.  The matriz-valued function K on Q can be expressed in
the following block-triangular form:

_ K O K _

K, KM

K = ; (3.7)

O K©)

1 . . .
where Ky, and K,(l ) are an np X np-matriz and an np X (0 -matriz respectively

for each h =1,...,r and where K© is an n(® x n© -matriz.
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PROOF. According to the decomposition I = I*) I17(9 we have the block-
decomposed expression

K& | g
T |ITKO KO

such that K™ and K© are a (3) _onn) x (X _o na)-matrix and an n(®) x n(©)-
matrix respectively. We first observe the block K. Let k;j be an arbitrary
entry of K. Since i € I©) and j € I*), there exists an index ¢, € I such that
% =0 and 6357:; # 0. Observing the equation (3.2) with ¢t = ¢;, we obtain
ks = 0, which means that K® = 0. We next observe the block K*). Let I;, and
I,, be any two distinct classes in I(*). Take indices i € I, j € I,, and assume that

kij #Z 0. Since i o j, we have k;; = 0. Observing the equation (3.2), we obtain
Ok j
awnjjrj

We thus have k;; = 0 for any ¢ € Iy, j € I,. This implies that K® has the
block-diagonal form whose principal diagonal consists of the blocks K1, ..., K,. O

= 0 for every t = 1,...,n, which contradicts the condition that j € I(*).

We now proceed to the argument for each block matrix in K described in
(3.7). We shall first consider the blocks K}, and K,(Ll), h=1,...,r. We notice that
K, K ’(11) correspond to the class I;,. We consider the following three cases (C1),
(C2), and (C3):

(C1) For every i € Iy, there exist two or more indices j’s € Ij, such that

(C2) For every i € Iy, there exists a unique index A\ € I, such that (fwﬂi& Z 0.
In particular, the index A is determined independently of the choice of i € I, by
Lemma 3.1 (1);

(C3) For every i,j € I,

OKkij __
aw7z+i = O

Notice that, in view of Lemma 3.1, one of the above three cases must occur for
each Ij,. Also, notice that the case (C3) occurs only when I(®) # (). We here give
two preparatory lemmas.

LEMMA 3.4. Let Iy, be an equivalence class in 1) and let i, j distinct indices
in Iy, such that aa#ii #£ 0. Then, i = j and there exists a unique non-zero constant

Cij such that
Clwpysg
Kij (Wi Wnti) = Kij(w;, 0)e™ “n (3.8)

and that
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PROOF. By the same argument as in the proof of Lemma 3.2 we have i ~ j.
In view of the equation (3.2) with ¢t = j, we define a non-zero constant C? by

1 8,‘% 1 8njj

— : Wiy, Whaq) = — .
Hij(wivwn+i) 6wn+z( v nJﬂ) sz’(wj,’wn.ﬂ,.j) 6wn+j

Cl = (W), Wn;),

where (W;,Wp4;) and (W;,Wy1;) are points satisfying k;;(W;, Wn4+:) # 0 and
kji(Wj, Wnyj) # 0 respectively. Again from the equation (3.2) with ¢ = j, we
can derive two equations (3.9) and aa%’i_ = C/k;;. From the latter one, we obtain
(3.8). O

LEMMA 3.5. Let I, be an equivalence class in I'*). Let i, j be distinct indices
in I, such that i ~ j and let t € I(©). Then, there exists a unique constant
Cli(= CL;) such that

8/@#,

_ it
awn_‘_i = Cij"{ij- (310)

PROOF. In view of the equation (3.2), we define a constant Cy;(= C};) by

1 Okt 1 Ok jy

Kij (Wi, Wnyi)  OWn i Kji(Wj, Wnyj) Ownyj

(wja wn+j)7

to_

(wivwnJri) =
where (W;,Wn+;) and (W;,Wn4;) are points satisfying ;;(W;, Wpyi) # 0 and

k;i(Wj, Wnj) # 0 respectively. Again from the equation (3.2), we obtain (3.10).
O

We are now in a position to present the expressions for the functions x;; which
are the entries of the block matrices K} and K}(ll) foreach h=1,...,r.

THEOREM 3.6. Let I, be an equivalence class in I®) and let K}, and K}(LI)
be the corresponding block matrices.

(1) Assume that Iy, is in the case (C1l). Then there exist functions k;(w;),
i € I, of one variable w; € | — A, A[ with k; # 0 and k;(0) = 0, constants Bt(h),
t € 19, and non-zero constants C;, i € I, such that, for each i,j € I, and
t € IO the functions Kij (Wi, Wnti) and ki (Wi, Wot) on ]| — A, A2 are expressed
as follows:
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KJ(Z)Z(’(UZ) + C%}Qi(wi)(eciwnJri _ 1) 'Lf’L — j;

Kij (Wi, Wpps) = (3.11)
T | e i3
] ] N _ 0 ) B(h) . Ciwnyi _ 1 3.12
K’lt(wla wn—H) = I{zt(wl) + by ‘%Z(wl)(e )7 ( ' )
where kY (w;) = ki (w;,0) and kY, (w;) = ki (w;,0).

(2) Assume that Iy, is in the case (C2). Then there exist functions k;(w;),
i € Iy, of one variable w; € | — A, A[ with k; #Z 0 and k;(0) = 0, constants th),
t € 19 and nonzero constants C;, i € Ip,,i # X\, such that, for each i,j € I, and
t € IO, the functions Kij (Wi, Wnti) and ki (Wi, wot;) on ] — A, A are expressed
as follows:

g; (w3) + Gixkr (WA)Wntn ifi=j,

Kig (Wi, W) = 9 5. o (3.13)
(Scj Foa(w) + Gjas(wi)e“ et if i # g
KR (W) + ngh)"f)\(w/\)wn-ﬁ—)\ ifi =M\,

Kit (Wi, Wy 1) = (3.14)

K9 (wi) + B ki(wq) (eTrmti — 1) if i # ),

where kY;(w;) = Kii(w;,0) and kY (w;) = ki (w;,0), and where 0i; is Kronecker’s
symbol.

(3) Assume that I, is in the case (C3). Then there exist functions k;(w;),
i € I, of one variable w; € | — A, A] with k; Z 0 and £;(0) = 0, constants A;j,
1,7 € In,t # j, with Aj; = Aj;, and constants Bt(h), t € IO, such that, for each
i,j €I and t € IO the functions Kij (Wi, Wnti) and K (Wi, wyyi) on ] — A, A[?
are expressed as follows:
gy (wi) ifi =3,
Kij (Wi, Wnyi) = { o (3.15)
Aijri(wi) if i # J;
Rt (Wi, i) = K5y (wi) + BY" ki(wi)wns, (3.16)

where kY (w;) = ki (w;,0) and kY (w;) = ki (w;,0).

Proor.
(1) In this case, we first have

aﬁij

#0 for every i,j € Ip. (3.17)
awn—i—i
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In fact, for each j, we take two distinct ¢, s € Ij, such that ‘%“_ Z0 Orjs £ 0.
J

Own 4 ? OWnij
In the case where ¢ or s is equal to j we obtain (3.17) by Lemma 3.1. We then
consider the case where both ¢ and s are distinct from j. By Lemma 3.1 we have
Okes £ () and 3'%/3 # 0. By Lemma 3.4 we then have Cémj =C Ii@s( = 8”7”)

OWn g )
with Cz #0 and C’[ # 0. We thus have 8w - # 0 and hence have (3.17) by
Lemma 3.1.

We shall now prove (3.11). By Lemma 3.4, we see from (3.17) that, if i # j,
then 7 &~ j and there exists a unique non-zero constant C? such that (3.8) and (3.9)
hold. We now verify that, for each i, the constant C’f is independent of the choice of
J € Ip\{i} as follows. It suffices to verify when I}, consists of three or more indices.
Take any distinct £, s € I, \ {i}. By Lemma 3.4 we have Cjris = Clrs( = a?u’i’;l ).
Substitute above (3.8) with j = ¢, s into this equation and differentiate both sides
of it with respect to wy, ;. Comparing these two equations, we obtain C¢ = C?,
thus verifying the independency.

For each 4, we thus put C; = C¥, where £ € I, \ {i}. It follows from the above

(3.8) and (3.9) that, if ¢ # j, then

K (Wi, W i) = kg (w;, 0)eC o+, (3.18)
OKi; R
- (Wi, Wni) = Cjkij(w;, 0)eCrom i, (3.19)
8u}n-i-i

For each i € Ij,, we can then define a function k;(w;) of one variable w; € | — A, A]
by

0/{“-
8wn+i

ki(w;) = e Civnti = Cyrig(w;, 0), where £ € I \ {i}, (3.20)

by virtue of (3.19). Since Cy # 0 and i = ¢, we see that x; Z 0. We also see that
ki(0) = 0 since k;¢(0,0) = 0. From (3.18), (3.19), and (3.20), we thus establish
(3.11).

We shall next prove (3.12). Let ¢ € I, \ {i}. By the above argument, we have
¢ ~i. We see from Lemma 3.5 that there exists a constant Cf, such that (3.10)
with j = ¢ holds. We then put B!, = C,/C;Cy, which is symmetric in i and /.
The above (3.10) with j = ¢ and (3.11) give us

Okt

9 (wi, wn+i) = B&Cilﬂii(wi)eciw"Jﬂ. (321)
W44

Since C; # 0 and k; # 0, we see that B, is independent of the choice of ¢. The
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symmetry of Bf, in i and ¢ implies that B, is independent also of the choice of i
and hence of both ¢ and ¢. We can then define the constant Bt(h) by th) = B},
where k,s € I, with k£ # s. From (3.21) we thus establish (3.12).

(2) In this case, we first have, for i,j € I,

OKix Z0 and Orij
OWp 44 Wn+i

=0 if j £ A (3.22)

We shall prove (3.13). The latter equation in (3.22) means that, if j # A, then

Kij (Wi, Wnai) = Kij(w;, 0). (3.23)

Since 8%?; % 0, we see from Lemma 3.4 that, if ¢ # A, the relation i ~ A holds
and

Kix (Wi, W) = Kix(wi, 0)ei*n+, (3.24)

8(?1’2:,\ = Cikxi, (3.25)

where C; is C(# 0) in Lemma 3.4. By virtue of (3.23) with i = A and (3.25), we
define a function k) (wy) of one variable wy € | — A, A[ by

ka(wy) = 6('9;::)\ = Cyrre(wy,0), where £ € I, \ {\}.
We thus have
Fax (W, wpix) = kax(wy, 0) + (W) Wptx, (3.26)
Kxj (W, Wntr) = Clvjlﬂ(wx) if j # A (3.27)

For each i € I, \ {\}, we moreover define a function ;(w;) of one variable w; €
]| — A, A[ by k;(w;) = kix(w;, 0). It then follows from (3.24) that

Rin (Wi, Wy i) = ki (w;)eS™mtif i £ A (3.28)

By a similar argument as in the proof of (1), we see that x; #Z 0, k;(0) = 0 for every
_ Ok jx

Kix_ — (.
+5° J Own

i € I,. From the equation (3.2) with ¢ = A and the equation 8815
derived from (3.28) or (3.24), we obtain
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6'/<;j,\ c‘Mﬁ aHM
Cj I‘iij =
a’wn+j awnﬂ 8wn+i

when A\ £ i #£ j £ .
From (3.22) and the fact that C; # 0, we thus obtain

Ky =0 HXNAi#j# N (3.29)

Summarizing (3.23) with ¢ = j # A, (3.26), (3.27), (3.28), and (3.29), we establish
(3.13).

We shall then prove (3.14). Assume i # A. As in the above arguement, we
have i &~ A. We then see from Lemma 3.5 that there exists a constant Cf, (= C%;)
such that

3/%
awnJri

6/4,)\,5

= Chky and = Cl Kin. (3.30)

8wn+)\
From (3.27) and the first equation in (3.30), we obtain

6:‘4},\15 - Cztk
awn-{—)\ C;

Ka(wy). (3.31)

This, together with the fact that k) # 0, that C}, /C; is independent of the choice
of i € I, \ {\}. We then put B™ = Ct, /Cy, where £ € I, \ {\}. From (3.31), the
second equation in (3.30), and (3.28), we thus obtain

Okt
awnJri

0Kt

= BMky(wy) and — BMCy(wy)eCronts if i 4 A,

awnJr)\

which establish (3.14).
(3) By the definition of the case (C3) we have

Kij (Wi, Wnyi) = Kij(w;,0)  for every 4,5 € I,. (3.32)

By virtue of Lemma 3.1, we can define a subset I.”) of I(® by

7] 18 .
10 = {SEI(O);H # 0 for allze[h}. (3.33)
Own i

We recall that (9 = (. By the definition (3.3) of I**) and by observing the form
of K = [k;;] described in (3.7), we have 199 9.
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Let i,j € I, and let ¢t € I(©). We see from Lemma 3.5 that, if i # j and i ~ j
and if t € I\”), then there exists a constant Ci;(= Cj;) such that

Okt
awn—i—i

By (3.33) we have Cf; # 0. We shall then verify that the constant Cf; can be
written as a product of a certain non-zero constant th) independent of the choice
of 7,5 and a certain non-zero constant C;; independent of the choice of ¢; C’Z-tj =
th)Cij. Taking w; such that x,;(@;,0) # 0, which can be taken independently of
the choice of j by virtue of (3.34), we can write

(3.35)

by (3.34). We here take an index m € I and fix it in the rest of the proof. Since
i ~ m, we can take a finite series ¢ = s1,82,...,5, = m of indices such that
i=8 XSy~ --~SsS=mandi=S8 # S # -+ # s = m. For each s,
w=1,...,7—1, we take Ws, such that g, s, (Ws,,0) # 0. Using repeatedly the
equations (3.2) for (4,7) = (Su, Sut1);u =1,...,7 — 1, we obtain

3/1”
8wn+i

alimt

(Eiv O) = ﬂim (wma 0), (336)

awner

— sus Ws,, ;0 . P
where Bim = []] L _Foutuys Wou 0) Notice that G, # 0 and that 3, is in-

u=1 Ksyi1su (Eﬁqul 70) .

dependent of the choice of t. We then put th) = %(Emﬁ) and Cj; =
Bim/ ki (Wi, 0). By (3.35) and (3.36), we thus have C}; = th)Cij, completing the
verification. We notice that Bt(h) # 0 and Cj; # 0 since C’fj # 0.

We therefore see from (3.34) that, if i # j and i ~ j and if t € LEO), then

(‘Mit

»(h
awn—H = B,g )Cijliij. (337)

For each i € Iy, we can define a function x;(w;) of one variable w; € | — A, A[ by

/{(w) - 1 a:‘iis
\We) — th) 6wn+i

= Cykie(w;, 0),
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where s € I\”) and where ¢ € I, \ {i} satisfying i ~ £. By the same argument as in
the proof of (1), we see that x; Z 0 and k;(0) = 0. We moreover define constants
Aij,i#j,i,j €Iy, and B™ t € IO by

1/Cy; ifim L) B™ ifter®,
Yo ifigs;  lo iftero\ 1.

The property that A;; = Aj; follows from Cf; = C7;.

We now show (3.15) and (3.16). In view of the equation (3.2) with ¢ € 119 we
see that, if ¢ % j, then x;; = 0 and k;; = 0. From (3.32), the definition of ;(w;),
and the definition of A;;, we thus establish (3.15). It follows from the definition
(3.33) of I that, if t ¢ I'”, then % = 0. From (3.37), the definition of

k;(w;), and the definition of th), we obtain

Ok h
Ow i :Bt( )“i(wi)'
n—r
Thus (3.16) follows. This completes the proof of Theorem 3.6. O

It remains to observe the entries of K(°). From the very definition (3.4) of
I we immediately obtain the following

THEOREM 3.7.  For each s,t € 19 the function ke (ws, wnys) on the do-
main | — A, A%, which is the (s,t)-entry of K9, can be written as

Hst(wsa wn+s) = Hgt(ws)7 (338)

where K2, (ws) = Kgt(ws, 0).

By virtue of the expressions in Theorem 3.6 and Theorem 3.7, we can state
properties at the origin o = (0,...,0) deduced from the condition (A-i)’ in Section
2 as follows.

THEOREM 3.8.  With the same notation as in Theorem 3.6 and Theorem
3.7, the functions k;(w;), i € I, and k% (w;), i € I,t € IV, have the following
properties:

(1) Let I, be an equivalence class in 1), If I, is in the case (C1) or in the
case (C3), then, there exist two or more indices i’s € Ip, such that k;(0) # 0. If I,
is in the case (C2), then k) (0) # 0 and there exists at least one index i € I \ {\}
such that k}(0) # 0.



On Hermite-Liouville manifolds 919

(2) For each t € 19, there exists at least one index i € I\ {t} such that
(x%)(0) # 0.

PrROOF. We recall from Proposition 2.6 in Section 2 that the condition
(A-i)" at the origin o means that, for each j, there exists ¢ € I\ {j} such that
%’;Z (0,0) # 0. We first consider the case where I}, is in the case (C1) or in the
case (C3). We take an index j € I, and observe the j-th column in the ma-
trix (3.7) in Proposition 3.3. By (A-i)’ we can find an index i; € Ij, \ {4} such
that 68’:;1': (0,0) # 0. From the expressions (3.11), (3.15) of k;; in Theorem 3.6,
we obtain x; (0) # 0. Moreover, also for i; found above, we can find an index
iz € I, \ {41} such that xj_ (0) # 0 by the same way, which implies the first asser-
tion. We next consider the case where I, is in the case (C2). We take an index
j € I \ {\} and observe the j-th column in the matrix (3.7). By (A-i)’ and by
the expression (3.13) of k;; in Theorem 3.6, we have %Z*j (0,0) # 0 and hence
k4 (0) # 0. We observe also the A-column. By (A-i)" and by the expression (3.13)
of k;j, there exists i € I, \ {\} such that %’jﬂj (0,0) # 0 and hence that «5(0) # 0.
These prove (1).

By the expressions (3.12), (3.14), and (3.16) of k;; in Theorem 3.6 and by
the expression (3.38) of k;; in Theorem 3.7, we have, for any ¢ € I and for any
te 10,

(9/%,5 /
5 (0.0) = (2)'(0)

The assersion (2) thus follows from the condition (A-i)’. O

We now proceed to the argument for the complete integrability of the geodesic
flow and that for the metric g to be Kéhlerian.

PROPOSITION 3.9.  For any t € 19, regarding the vector field 80wy, ¢ as
a fiberwise-linear function on T*Q), we have

{F;, 0/0wn4+} =0, i=1,...,n, onT*Q.

PrOOF. Let t € I9). From (CK-2) and the definition (3.4) of I(9)] we see
that 2% = ( for all i,j € I. This implies that

OWn 1t
[0/0wpyt, J(O/Ow;)] =0, i=1,...,n, on .

On the other hand, from the fact that, for each i, j, the function b;; is that of one
variable w;, which was stated in Theorem 2.4 in Section 2, we obtain
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861-]-
awnth

=0, 4j5=1,...,n, on .

From the formula (2.33) in Theorem 2.4 in Section 2, we thus obtain the assertion.
a

THEOREM 3.10.  Let (M,g,J;.%) be an n-dimensional Hermite-Liouville
manifold of type (A) and let Fy,..., F, a basis for F. Let Q be a sufficiently
small neighborhood of a point in the subset M defined by (2.13) in Section 2, let

(W1, ..., Wy W1, ..., Wap) an F-adapted coordinate system on Q, and let K and
KO the matriz-valued functions defined in (2.32) in Section 2 and (3.7) respec-
tively.

Assume that K = K© . Then
{F;,0/0Wn4;} =0 foralli,j=1,...,n

on T*Q. In particular, the geodesic flow is completely integrable on T*<).
Conversely, if there exist n vector fields Uy, ..., U, on Q) such that
(U1) For any i,j, {F;,U;} =0 on T*(;
(U2) Uy,...,U, are linearly independent at all points in §,
then K = K© and Uj, 3 = 1,...,n, are equal to linear combinations of
0/0wp41, .. .,0/0ws, with constant coefficients.

ProoOF. The former half immediately follows from Proposition 3.9. The
proof of the latter half is as follows.

We first show that the condition (U1) is equivalent to both of the following
two conditions:

(U1-i) For any i,j,k, Ujb;y, = 0 on Q;

(U1-ii) For any i,7, [W;,U;] = [JW;,U;] =0 on Q.
In fact, recall the relation (2.6) in Section 2:

> bFr =W+ (JWi)?, i=1,...,n, onT*Q,
k=1

which is the previous form of (2.33) in Theorem 2.4. We notice that W, = 9/0w;
and that W;, JW, are regarded as fiberwise linear forms on 7%(). Taking the
Poisson bracket of both sides and Uj, we have, for any 1, j,

= (Usbin) Fi = > bir{ Fr, Uy} = 2[W;, U;]W; + 2LTW3, U;](JW;) - (3.39)
k=1 k=1
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on T*Q. Tt is then obvious that (Ul-i) and (Ul-ii) imply (Ul). Then, we shall
verify that (U1) implies (U1-i) and (U1-ii). Assume (U1). It then follows that, for

any 4, J,
= (Ubir) Fi = 2[W;, U]W; + 2[JW;, U;)(JW;)  on T*Q. (3.40)
=1

Taking the values of both sides of this equation (3.40) at the covectors W and
—J*WZ respectively, we obtain, for any ¢, j, s,
> (Usbir)brs = —20;5 (Wi, U], W} ) = =28;5([JWi, U;], —*W;)  on Q,

k=1

where by is (k,s)-entry of the inverse matrix of [b;;] and where ;s denotes
Kronecker’s symbol. We put

oy = (Wi, U], W) = ([JW;, Uj], =" W), i,j=1,...,n. (3.41)
It then follows that, for any 1, j, k,
Ujbi, = —20b;,  on Q. (3.42)
Substituting (3.42) into (3.40), we obtain, for any i, j,
oy (WP + (JW;)?) = Wi, UjIW; + [JW;, U;J(JW;)  on T*Q. (3.43)

Recalling (2.3) and (2.4) in Section 2, we have

n

E rikbig =1 on 2, i=1,...,n,
k=1

where r;; are constants. Differentiating both sides with respect to the vector field

U, and using (3.42), we see that all o;; vanish on Q. Thus, we obtain (Ul-i) from
(3.42) and also obtain, for any i, j,

<[Wl, Uj}7 Wz*> = <[JWZ, Uj], —J*Wi*> =0 on Q, (344)

[Wi, UJ]Wz + [JWZ', U]](JWZ) =0 onT*Q (345)
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from (3.41), (3.43). The property (3.45) together with (3.44) implies that, for any
i,

[Wi,Uj] = Tij(.]Wi), [JW“ U]] = —TijWi on Q, (346)

where 7;; are functions on 2. Taking the values of the 1-form db;; on both sides
of the second equation in (3.46), where ¢ is the index taken in (A-ii) in Section 2,
we see from the condition (A-ii) in Section 2, Proposition 2.3 (1) in Section 2, and
(U1-i) that all 7;; vanish on Q. We thus obtain (Ul-ii), verifying the equivalence.

We now observe the vector fields Uy, ..., U, on ). Weput U; = ZZ:1 NikWr+
Yore1 &k(IWe), 7 = 1,...,n, where n;;, &, are functions on Q. It obviously
follows from (U1-i) that Ub;; = 0 on £, where £ is the index taken in (A-ii) in
Section 2. This together with the condition (A-ii) in Section 2 and Proposition
2.3 (1) in Section 2 that all 75 vanish on  and hence that U; = Y ,_; & (JW).
The condition (U2) then means that the matrix [§;;] is nonsingular at all points
in Q. From (Ul-ii), Proposition 2.3 (2) in Section 2, and (2.35) in Section 2, we
see that a system of partial differential equations

Ok,
8102‘

3

=0, i, k=1,....n 3.47
D J (3.47)

= —Cit&jis

holds on €. The second equation in (3.47) implies that all &;; are independent of
the values of wy41,...,ws,. We then see from the first equation in (3.47) that
all ;; can be written only in terms of &, s,t = 1,...,n, and hence are also
independent of the values of wy 41, ..., ws,. From (2.36) in Section 2 and (CK-2),
we obtain

0 (3’W );gﬁ 0%y izt m.

8wi 8wn+i 8wn+i

Since K = [k;;] is the identity matrix at every point in S, we have £;;(0, wy4;) =
d;; for all wy,4; €] — A, A[ and hence 88”” (0, wp4s) =0 for all wy,q; €] — A, A

Wn+i

These imply that all % vanish on  and hence that all ;; are independent

of the values of w41, ..., wsy,, which means K = K. Moreover, from (2.36) in
Section 2 and (3.47), we have

0 < o
78”253‘16/’%3:0, i,j,s=1,...,n.
! k=1
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Since U; = 227521 &ikkns(0/0wnys), the last assertion holds. O

THEOREM 3.11.  Let (M,g,J; %) be an n-dimensional Hermite-Liouville
manifold of type(A). Let Q and (wi,..., Wn, Wni1,...,Ws,) be the neighborhood
and the coordinate system as in Theorem 3.10, respectively. Then, the Rieman-
nian metric g is Kahlerian on Q if and only if the following system of partial
differential equations holds on £ :

a; Oa; " DK, S,
(aj)2(‘3w- = D knk], i#£j, i,7=1,...,n, (3.48)
i J

where the functions a; and r;; are those defined in (2.3) and (2.31) in Section 2
respectively, and where k;; denotes the function defined as the (i, j)-entry of the
inverse matriz K—' of K = [k;j].

In particular, if the Riemannian metric g is Kdhlerian on , then the geodesic
flow is completely integrable on T*Q.

ProOF. The Kéhler form w on €, which is defined by w(X,Y) = ¢g(X, JY)
for any vector X,Y € T, at each point p € 2, can be written by

n
:Z dw; A J*(dw;j) on Q.

From (2.19) in Proposition 2.3 (1), we see that a,...,a, are all independent
of the values of wy41,...,wa,. By (2.35) in Section 2, we have d(J*(dw,)) =
= > Gijldw;) A J*(dw;) on Q for each j. We thus obtain

n

1 1 8a,~
dw E <ajCj (@)’ wj)dw] Adw; AN J*(dw;) on

ij=1

This together with (2.36) in Section 2 implies that g is Kéhlerian on Q if and only
if (3.48) holds on Q.
We then consider the case where g is Kéhlerian on ). In this case all (;;

are independent of the values of wyy1,...,ws,. In fact, we first see from (3.48)
that if ¢ # j, then (;; are independent of the values because so are a1, ...,a,. We
can verify the independency for (;;, j = 1,...,n, as follows. From the relation

(W;, Wi, JW;]] = 0 on Q for each i # j, which was already appeared in the proof
of Proposition 2.3 (3) in Section 2, and from (2.35) in Section 2, we obtain
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Wj<zk+€l]<jk207 27&37 Zu]ak:177n
By setting k = j, we have

9Gij

Bw]‘

+¢iiC; =0, i#£4, i,i=1,....,n

Recalling (A-i)’ in Section 2, for each j and for each point p in Q, we can take
an index 4 such that (;; # 0 on some neighborhood of p. These imply that (j;,
j =1,...,n, are written by some (;; with ¢ # j on some neighborhood of each point
in  and hence are independent of the values of wy1,...,ws,, which completes
the verification. By the same argument as in the proof of Theorem 3.10, we see that
all k;; are independent of the values of wyy1,...,ws, and hence that K = K(O),
where K and K (%) are the matrix-valued functions on Q defined in (2.32) in Section
2 and (3.7) respectively. By Theorem 3.10, we conclude that the geodesic flow is
completely integrable on T%(2. O

4. Local construction.

In the previous section we have completely solved the system of equations
(3.2) under the conditions (CK-1), (CK-2), (CK-4), and (CK-5). In this section,
we first show that there exists a corresponding Hermite-Liouville manifold to each
solution K = [k;;] described in Theorem 3.6 and Theorem 3.7. After that we shall
give a bit finer description for the case K = K@ where K and K(© are as in
Section 3.

Let Q=]— A, A[*" (A > 0) be a small cube-like domain with the coordinate
system (w1, ..., Wn, Wn41,-..,Ws,). Take any solution K = [k;;(w;, wn4,)] de-
scribed in Theorem 3.6 and Theorem 3.7. Notice that it is an n x n-matrix-valued
function defined on 2. We then define a complex structure J on 2 by

J(@)ow:) = kij(0/0wnyi), i=1,...,n.

j=1

The integrability of J follows from the fact that Nijenhuis’ tensor of J vanishes
identically on €. We thus obtain a complex manifold (€, J). Take n constants
c1,...,cn and n? functions b;;(w;), i,j = 1,...,n, of one variable such that (i) the
matrix B = [b;;] is non-singular at every point in ©; (ii) for each j, 31" | ¢:b;; is
a positive function on €2, where Bij denotes the (i, j)-entry of the inverse matrix
B~! of B. We next define an Hermitian metric g on Q by
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dwz < /kadwnJrk) :|7
=1 Z] 1 Cjbﬂ [ Z

where #;; denotes the (i,)-entry of the inverse matrix K1 of K. We thus ob-
tain an Hermitian manifold (2, g,J). We finally define n fiberwise homogenous
polynomial functions Fi, ..., F, on T*Q by

n 2
> by Fy = (9/0w;)’ (ZF% a/awm)) S i=1,....n,
Jj=1

and set % to be the vector space spanned by Fi,...,F,. Thus, we obtain an
Hermite-Liouville manifold (£, g, J;.%).

In particular, if the taken solution K = [k;;] has the properties (1) and (2) in
Theorem 3.8 and if B = [b;;] has the property that, for each 4, b;;(0) # 0 for some
j, then the constructed Hermite-Liouville manifold is of type (A).

In the rest of this section, we present a bit finer description of the local
constructions corresponding to the case K = K(© which will be useful for the
comparison with the global constructions in the next section. Let QT =]— A, A"
(A > 0) be a cube-like domain with the coordinate system (wq, ..., w,). Take n?
functions b;;(w;), 4,5 = 1,...,n, of one variable w; € | — A, A[ such that (b-i)
det[b;;] # 0 on QT; (b-ii) Every entry of the n-th row of the inverse matrix [b;;]~*
of [b;;] is positive on Q. We set W; = 9/0w;, i =1,...,n, on QF. We define the
functions Hy, ..., H, on the cotangent bundle T*(Q2") by

n

> bij(w)Hy = W7, i=1,...,n.

J=1

It follows from (b-ii) that H, is positive definite at all points in 27 and defines
a Riemannian metric of Liouville-Stickel type on Q. Thus, Hy,..., H, give a
structure of (real) Liouville manifold with the Hamiltonian H, /2 of the geodesic
flow (cf. [3, Part I]).

Now, take another family {x;; (wi)}i,jzl,...,n of n? functions of one variable
such that det[s;;] # 0 on Q. We then define the vector fields X1, ..., X,, on QF
by

Z“ij(wi)Xj =W, +=1,...,n.
j=1

We see that Xi,...,X,, are commutative and hence obtain a coordinate system



926 M. IcArAsHI and K. KIYOHARA

(z1,...,2,) on QF such that X; =9/0x;,i=1,...,n.

Let Q~ be an open subset of R™ with the coordinate system (y1,...,y,) and
set Q = QF x Q™. Putting z; = z; +v—1y;,5=1,...,n, we regard {) as an open
subset of C™ = {(z1, ..., 2,)}. The vector fields W; and X; naturally extend onto
Q. Denote by J the natural complex structure on Q; J(9/0x;) = 8/dy;. We then
define the functions Fi, ..., F, on the cotangent bundle 7%} by

n
Zbij(wi)Fj = Wf + (JWi)Q, i=1,...,n,

Jj=1

and put % = Span{Fi,...,F,}. Taking the Hermitian metric g so that F, /2 is
the Hamiltonian of the geodesic flow, we thus obtain an Hermite-Liouville manifold
(Q,9,J;.%).

We now put Y; = 9/0y;, i = 1,...,n. It is easy to see that Y; preserve g,
J, and commute with F}’s. In particular, the geodesic flow of (€2, g) is integrable
with the first integrals Fi,..., F,,Y7...,Y,. Notice that if for each j, there is
i(# j) such that x;;(0) # 0, and for each i there is j such that b};(0) # 0, then
the constructed Hermite-Liouville manifold is of type (A) and corresponds to the
case K = K(© around a point (o, p) € Q, where p € Q™ is any point.

5. Global construction.

In the present section we shall construct global examples of Hermite-Liouville
manifolds biholomorphic to the complex projective space C P™. It is known that
any Ké&hler-Liouville manifold (proper, type (A)) defined over CP" is given by
complexifying a certain Liouville manifold defined over the real projective space
RP", and the latter is constructed from a circle and suitable n — 1 functions on
it, called the core of type (B) (see [3, Part 2, Section 7, Part 1, Sections 3.2-3.4],
and [4]).

In this section we shall prepare two sets of cores of type (B), with one of which
it is possible to make a Kéhler-Liouville manifold and the other is not necessarily
so. First, we shall construct a Liouville manifold diffeomorphic to RP™ using the
latter core, and then “complexify” it by using a scheme given by the former core.

By definition, a (possible) core of type (B) is a pair of a circle R/IZ (I > 0)
with the standard metric dt? and a set {[f1(t)],..., [fn_1(t)])} of projective classes
of n — 1 functions on it satisfying the following conditions.

(1) There are constants 0 < 8; < --- < B,—1 < [/2 such that f,,(£0n) = 0,

fm(t) >0 for =3, <t < B, and f,(t) <0 for B, <t <l— Bp,.
(2) fi(Bm) <O.
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(3) fm(t) = fi(—t) for any t € R/IZ.
(4) fit) < - < fuo1(t) forany t € R/IZ.

From a core of type (B) one can construct a Liouville manifold as follows. Put
Bo =0, B, =1/2, and define positive numbers a;,...,a, by

Bi dt (673

Bi—1 \/(71)i71f1(t)"'fn—1(t) 4

Define the mapping R/a; Z — [Bi—1, 3] (w; — t) by

( dtl) = (="M fat) - fuea(2),
Hw;) = t(—w;) = t(oi/2 —wi), 1(0) =F;, t(ow/4) = Pi1.

Put

R=T[(R/a:2) = {(wr.....wa)),

and define the involutions 0;, 1 <i<n —1, and 7 on R by

Qit1
O'l(l‘) = (wh...,wi_l,—wi,z — Wi41, Wi42, ..., Wy |,
Qg
T(r) = <w1 + = TWz —wn).

It is easily seen that they are mutually commutative and generate a group G
isomorphic to (Z/2Z)™. Then the quotient space N = R/G is diffeomorphic to
the real projective space with a natural differentiable structure.

Define the functions f;;, € C°(R/a;Z) by

fir(wi) = fr(t(wi)), 1<k<n-1,1<i<n,
and the matrix-valued function [b;;(w;)]1<i j<n by

(=Dl firx(ws) (A <j<n-—1),

bij = byj(w;) = { ,
(=D [T, far(ws) (5 =n).



928 M. IcArAsHI and K. KIYOHARA

Then by the formula

> bij(wi)Fy = (9/0w;)?, 1<i<n,

Jj=1

one obtains well-defined symmetric 2-tensor fields Fy, ..., F,, on N. Also, F,, turns
out to be positive definite at any point. Thus, putting .# = Span{Fi,..., F,},
one gets a Liouville manifold (N, g; %) over N whose energy function is equal to
F,/2.

With a special kind of core of type (B) one can construct a Kahler-Liouville
manifold over the complex projective space. Let v(t) be a function on R/IZ and
let 0 < 81 < -+ < Bro1 <1/2and ¢, > 0 be a constant which satisfy the following
conditions.

(1) v(=t) = ().

(2) v(0) =1, v(/2) = 0.

(3) v'(t) < 01f0<t<l/2

(4) V' (B;) = —v/2¢4ci(1 , 1 <i<n-—1, where ¢; = v(3;).
(5) v(): "(1/2)—0*

Then, clearly R/IZ and {[v — ¢1],...,[v — ¢,—1]} form a core of type (B) and
yield objects explained above: a torus R = [[I_,(R/&%Z) = {(@1,...,wn)}, the
functions Bij (12)1) a manifold N and the branched covering R — N, the symmetric
2-tensor fields Fy, ..., F, defined by

and the Riemannian metric § on N. As above, (N, §; F ) is a Liouville manifold,
where .Z = Span{F\, ..., E,}. Putting v;(@;) = v(t(1;)), we have

o= 31~ ( I (outin) — () )

=1 ki

<.

Putting ¢y = 1 and ¢,, = 0, we define vector fields Xgp,..., X, on N by the
formula

grad(Hk(vk—ci)) 0<i<n

Cy HOSmSn(Cm - Ci) ’ ’
m#i

X; =
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where grad f denotes the gradient vector field of f with respect to the metric g.
They satisfy [X;, X;] = 0 for any 4, j, and

=0

e YT (wil@)) — ) X = (=1)7)(@,)(8/0;), 1<j<n.

i=0 ki

(5.2)

Note that they are also determined by the above formulas.

Now, let [ug, ..., u,] be the homogeneous coordinate system of RP™ and let
7 : R"1\ {0} — RP" be the natural projection. By integrating the vector fields
X, it turns out that there is a diffeomorphism ¢ : N — RP™ such that

Let CP™ be the complex projective space with the homogeneous coordinates
[ug, . .., u,] whose real part is RP™. The torus U(1)" = U(1)"*!/U(1) naturally
acts on CP™:

((/\07 ey /\n), [UO, e ,un]) (g [)\01},07 ey /\nun}, |>\’L‘ =1.

Then the vector fields X; extends to C P" so that they are invariant under the
torus action. Clearly, Y; = JX;, 0 < i < n, generate the torus action. We denote
by % the abelian Lie algebra spanned by Y;’s. Also, each F, is extended to the
whole CP"™ in the following way: First, we identify F}, a section of S2 (TRP"),
with a symmetric 2-form on RP™ by using the natural identification of tangent
and cotangent bundles. Then, we extend it as a symmetric 2-form on C'P™ by the
conditions (1) it is Hermitian at any point; (2) F;(X,JY) = 0 for any vectors X,
Y tangent to RP™; (3) it is invariant under the torus action; (4) the restriction
of F; to TRP™ coincides with the original one. Finally we identify it with a
contravariant symmetric 2-tensor field on CP" (see [3, p. 138 Lemma 7.8]). Let
Z be the vector space spanned by the extended F;’s. Then, with the Kéhler
metric g determined by ﬁ’n, Z provides a structure of Kahler-Liouville manifold
over CP", and with . and ¢ the geodesic flow of (CP™, g) becomes integrable.

REMARK. Putting v(t) = (cost)?, | = m, ¢* = 2, one obtains the Fubini-
Study metric.

Now, we shall construct an Hermite-Liouville manifold over CP" from given
two cores of type (B): one is a general kind, {[f1(¢)],. .., [fn=1(£)])}, and the other
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is a special kind {[v —c1],...,[v — c,-1]}. We assume the constants [ > 0 (the
length of the core circle) and (;’s (zeros of the core functions) are the same for the
above two cores. Also, we use the same symbols as in the above explanation.

Since ! and f3;’s are common, we have a diffeomorphism R/«a;Z — R/&;Z
for each i so that w; = 0 «» w; = 0, dw;/dw; > 0 and the following diagram is
commutative:

| |

[Bi—1, Bi] == [Bi—1, Bi]-

This gives the diffeomorphism R — R and hence the diffeomorphism ¢ : N — N.
Put H; = 1, F;, which are symmetric 2-tensor fields on N. Identifying N with
RP™ C CP" as above, we extend H; to the whole CP" in the same way as
explained above. Then the Hermite metric g on CP™ determined by H,, is not
Kahlerian in general. Let ¢ be the vector space spanned by the extended H;’s.
The pair (g, 7)) provides a structure of Hermite-Liouville manifold over C P™, and
the geodesic flow of (C'P™,g) is again integrable with J# and #'. In view of the
criterion described at the end of Section 4, it is easily verified that the Hermite-
Liouville manifolds constructed here are of type (A) and correspond to the case
K = K© in Section 3. Note that (A-i) is satisfied on the open dense subset
defined by u; # 0 for any 4, but (A-ii) is not necessary so. It is only clear that
(A-ii) is satisfied near the torus-orbits through the branch points of the covering
R — N =RP" C CP".

The following theorem clarifies which one is Kéahlerian among the constructed
Hermite-Liouville manifolds.

THEOREM 5.1. Let (CP"™, g,5) be an Hermite-Liouville manifold con-
structed from two cores

(R/LZ;[f1], .. [fo-1]), (RNZ;[v—c1],....[v—cn-1]).

Then it is Kdhlerian if and only if [fi] = [v — ¢i] for every i.

PROOF. Suppose that (CP",g) is Kdhlerian. Then, by the construction,
it is of type (A) in the meaning of [3, p.85], and the associated partially ordered
set &7 consists of one element (see [3, p.88]). Then, the theorem follows from
Theorem 7.2 in [3] and its proof. O
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Let us give a simple example of Hermite-Liouville manifold which is not
Kéhlerian. Let (CP™,g,5¢) be a Kéhler-Liouville manifold constructed from
a core

(R/1Z;[v—ci],...,[v—cn-1]),

as explained above. Let H; € 77, 1 < i < n, be as above. Then the metric g
corresponds to H, via Legendre transformation. Now, take small constants e¢;,
1 <7< n-—1, and put

n—1
i=1

If ¢; are small enough, then H,, is still positive definite, and one obtains the
corresponding Hermite metric § on CP". Clearly, (CP", §,5¢) is an Hermite-
Liouville manifold. Observing the real Liouville manifold obtained by restricting
to RP", one can easily see that it is constructed from two cores

(R/1Z;[f1],-- s [fa-1]), (R/IZ;[v—c1],...,[v—cn-1]),
where

v(t) — ¢

filt) = T+e(v(t) —¢)

1<i<n—-1.

Therefore it is not Kahlerian by the previous theorem.
Finally, let us state a theorem which will answer to the isomorphism problem
on the constructed Hermite-Liouville manifolds.

THEOREM 5.2. Let (CP"™,g,,5,) be an Hermite-Liouville manifold con-
structed with cores

(R/l,,Z; (foals--s [fl,’n,l]), (R/l,,Z; v, —cpal, .-y [vw — cl,m,l])

of type (B) as above (v = 1,2). Then, there is a holomorphic isometry ® :
(CP™ ¢1) — (CP™, g3) which maps 56 to 5 if and only if l1 =l and either

[fo.i(D)] = [fri(D)], c2i=cri, 1<i<n—1, wa(t) =v1()

or
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[fo, )] =[-fin—illi/2=1)], cay=1—c1pi, 1 <i<n-—1,
’Ug(t) =1- 1)1(11/2 — t)

PROOF. Let [ug,...,u,] be the homogeneous coordinates of C P™ as above.
Let L; be the hyperplane in CP" defined by u; = 0, and let L; = L; N RP™,
i=0,...,n. Put CP} = CP"\ U ,L;. As stated before, the condition (A-i) is
satisfied on C'Py*, and (A-ii) is satisfied on a certain open subset C' Py, of it, which
is invariant under the torus action generated by %/, for each v = 1,2. Since the
vector space % of vector fields, restricted to C Py, is determined by the Hermite-
Liouville structure (g,,.#4,) (Theorem 3.10), it is determined on the whole CP"
by (g.,7%,) as a vector space of infinitesimal holomorphic transformations. Thus
® preserves #. Since C P/’ is determined by %/, it is also preserved by ®.

Now, take a point p € RP™ N CPj and fix it. Then RP" is the totally
geodesic submanifolds whose tangent space at p is equal to D;‘ . Composing ®
with a transformation of C' P™ generated by an element of % if necessary, we may
assume that ®(p) € RP" N CPy',. Since ® maps D} to D:}f(p), it follows that ®
preserves the submanifold RP™.

Putting

Gv = gu|rP", %;i,:{ﬁ;HG%‘i,L H=H

T*RP™,

we obtain (real) Liouville manifolds (RP™,§,,.74,), and we see that
®: (RP", 41, 54) — (RP", 2, 75)

is an isomorphism of Liouville manifolds. Therefore, by Theorem 3.4.1 in [3], it
follows that their cores are mutually isomorphic, i.e., I; = I3 (= 1) and either

[foi(O)] = [fra(t)], 1<i<n-—1, (5.3)

[foi®)] = [-fin-i(l/2-1)], 1<i<n-—1, (5.4)

hold on R/1Z. More precisely, the map ® preserves the core submanifold ﬂ?;ll L;,
which is isometric to R/IZ, and the subset consisting of the two points

n—1 n—1
Loﬂ ﬂ L; and Lnﬂ ﬂ L;
=1 =1
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on it, which correspond to 0,1/2 € R/IZ. Hence ®, viewed as a map on R/IZ, is
either the map ¢ — =+t or the map ¢t — [/2 £ ¢. In the first case, we have (5.3),
and in the second case, we have (5.4).

Next, we shall observe the abelian Lie algebra J# of vector fields on RP™
generated by Xj, ..., X, described above, which is preserved by ®. Since X; = 0,
1 <i<n—1, on the core submanifold, the formula (5.2) turns out to be

d
V*Xn =, (t)—
X = 0, (0)
on the core submanifold N?"'L; = R/IZ. Since X,, is mapped to its scalar
multiple by ® on the core submanifold, so is the derivatives of the functions v, ().
Thus we have va(t) = v1(t) if ® on R/IZ is given by ¢ — =t, and va(t) =
1—wv1(l/2—1t)if ® on R/IZ is given by t — [/2 £ ¢. Since ¢, ; is given by v, (5;),

the theorem therefore follows. O
References

[1] M. Igarashi, Some examples of the Hermite-Liouville structure on the classical Hopf sur-
face, Differential geometry and applications (Brno, 1998), 195-202, Masaryk Univ., Brno,
1999.

[2] M. Igarashi, On compact K&hler-Liouville surfaces, J. Math. Soc. Japan, 49 (1997), 363—
397.

[3] K. Kiyohara, Two classes of Riemannian manifolds whose geodesic flows are integrable,

Mem. Amer. Math. Soc., 130 (No. 619), 1997.

[4] K. Kiyohara, On Kéahler-Liouville manifolds. Differential geometry and integrable systems
(Tokyo, 2000), 211-222, Contemp. Math., 308, Amer. Math. Soc., Providence, RI, 2002.

[5] K. Kiyohara, Periodic geodesic flows and integrable geodesic flows [translation of Stigaku
56 (2004), no. 1, 88-98], Sugaku Expositions, 19 (2006), 105-116.

[6] A. Thimm, Integrable geodesic flows on homogeneous spaces Ergodic Theory and Dy-
namical Systems, 1 (1981), 495-517.

Masayuki IGARASHI Kazuyoshi KIYOHARA
Faculty of Industrial Science and Technology Department of Mathematics
Tokyo University of Science Faculty of Science
Oshamambe Okayama University
Hokkaido 049-3514, Japan Okayama 700-8530, Japan

E-mail: ykigaras@rs.kagu.tus.ac.jp E-mail: kiyohara@math.okayama-u.ac.jp


http://dx.doi.org/10.2969/jmsj/04920363

