Invariant subspaces and reducing subspaces of weighted Bergman space over bidisk

By Yufeng Lu and Xiaoyang Zhou

(Received Apr. 13, 2009)

Abstract

In this paper, we study the invariant subspace and reducing subspace of the weighted Bergman space over bidisk. The minimal reducing subspace of Toeplitz operator $T_{z^{N}}=T_{z_{1}^{N} z_{2}^{N}}$ is completely described, and Beurling-type theorem of some invariant subspace of the weighted Bergman space over bidisk is also obtained.

1. Introduction.

Let $d A$ denote Lebesgue area measure on the unit disk D, normalized so that the measure of D equals 1 . For $\alpha>-1$, we denote the measure $d A_{\alpha}$ by $d A_{\alpha}(z)=(\alpha+1)\left(1-|z|^{2}\right)^{\alpha} d A(z)$. The weighted Bergman space $A_{\alpha}^{2}(D)$ consists of analytic functions f

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

in the unit disk D such that

$$
\|f\|_{\alpha}^{2}=\sum_{n=0}^{\infty} \omega_{n}\left|a_{n}\right|^{2}<\infty
$$

where $\omega_{n}=\frac{n!\Gamma(2+\alpha)}{\Gamma(2+\alpha+n)}$. If $e_{n}(z)=\sqrt{\frac{1}{\omega_{n}}} z^{n}$, then $\left\{e_{n}(z)\right\}$ is an orthonormal basis for $A_{\alpha}^{2}(D)$.

It is easy to see that $A_{\alpha}^{2}(D)$ is a Hilbert space with inner product

$$
\langle f, g\rangle=\int_{D} f(z) \overline{g(z)} d A_{\alpha}(z), \quad f, g \in A_{\alpha}^{2}(D)
$$

[^0]Let Q be the Bergman orthogonal projection from $L^{2}(D)$ onto $A_{\alpha}^{2}(D)$. For a bounded measurable function $f \in L^{\infty}(D)$, the Toeplitz operator with symbol f is defined by $T_{f} h=Q(f h)$, for $h \in A_{\alpha}^{2}(D)$. It is clear that $T_{f}: A_{\alpha}^{2}(D) \rightarrow A_{\alpha}^{2}(D)$ is a bounded linear operator.

The unit bidisk D^{2} and the torus T^{2} are the cartesian products of two copies of D and of T, respectively. Observe that T^{2} is only a small part of the boundary ∂D^{2}. T^{2} is usually called the distinguished boundary of D^{2}. The weighted Bergman space $A_{\alpha}^{2}\left(D^{2}\right)$ is then the space of all holomorphic functions in $L^{2}\left(D^{2}, d v_{\alpha}\right)$, where $d v_{\alpha}(z)=d A_{\alpha}\left(z_{1}\right) d A_{\alpha}\left(z_{2}\right)$. For multi-index $\beta=\left(\beta_{1}, \beta_{2}\right)$, let

$$
e_{\beta}=\sqrt{\frac{1}{w_{\beta_{1}} w_{\beta_{2}}}} z^{\beta}
$$

then $\left\{e_{\beta}\right\}_{\beta}$ is an orthnormal basis for $A_{\alpha}^{2}\left(D^{2}\right)$.
Let P be the Bergman orthogonal projection from $L^{2}\left(D^{2}\right)$ onto $A_{\alpha}^{2}\left(D^{2}\right)$. For a bounded measurable function $f \in L^{\infty}\left(D^{2}\right)$, the Toeplitz operator with symbol f is defined by $T_{f} h=P(f h)$, for $h \in A_{\alpha}^{2}\left(D^{2}\right)$. It is clear that $T_{f}: A_{\alpha}^{2}\left(D^{2}\right) \rightarrow A_{\alpha}^{2}\left(D^{2}\right)$ is a bounded linear operator.

For the general theory of the weighted Bergman space on the unit disk and bidisk, readers refer to $[\mathbf{3}],[\mathbf{9}]$ and $[\mathbf{6}]$.

One of the reasons that invariant subspaces in Bergman spaces A_{α}^{2} have attracted so much attention in recent years is that they are closely related to an old open problem in Operator Theory. More specifically, the invariant subspace problem (of whether every bounded linear operator on a separable Hilbert space of infinite dimension has a nontrivial invariant subspace) is equivalent to the following question about invariant subspaces of the Bergman space A_{α}^{2} : Given two invariant subspaces I and J of A_{α}^{2} with $I \subset J$ and $\operatorname{dim}(J \ominus I)=\infty$, does there exist another invariant subspace M of A_{α}^{2} lying strictly between I and J ? See [4] for an explanation and references.

It is well known that the multiplication operator M_{z} on $A_{\alpha}^{2}(D)$ possesses a very rich structure theory, although its definition seems simple-minded. It poses many serious questions to be answered, such as the understanding of its invariant subspace. We mention here the work [1]. The study of invariant subspace of general analytic multiplication operators has also picked up momentum, see [5] for example. One of the problems we will be concerned with in this paper is Beurling-type theorem of weighted Bergman space over bidisk.

Besides the structure of the invariant subspaces, the understanding of invariant subspace lattice is also helpful to the invariant subspace problem. In [10], Kehe Zhu got a complete description of the reducing subspaces of multiplication operators on Bergman space induced by z^{2} and by Blaschke products with two
zeros in D. In [7], Michael Stessin and Kehe Zhu extended the result in [10] to the reducing subspaces of weighted unilateral shift operators of finite multiplicity. In [2] and [8], Kunyu Guo, Shunhua Sun, Dechao Zheng and Changyong Zhong developed a machinery and completely classified nontrivial minimal reducing subspaces of the multiplication operator by a Blaschke product with order three and four zeros respectively, on the Bergman space of the unit disk via the Hardy space of the bidisk.

Motivated by $[\mathbf{1 0}],[\mathbf{7}],[\mathbf{2}]$ and $[\mathbf{8}]$, in this paper we investigate reducing subspace lattice of Toeplitz operator $T_{z^{N}}=T_{z_{1}^{N} z_{2}^{N}}$ in $A_{\alpha}^{2}\left(D^{2}\right)$ and obtain a complete description of the minimal reducing subspaces of $T_{z^{N}}$ in $A_{\alpha}^{2}\left(D^{2}\right)$.

Let us begin the study by doing some preparations.
We let E be a separable Hilbert space of infinite dimension, and $\left\{\delta_{j}: j \geq 0\right\}$ be the orthonormal basis for E, and we let $L^{2}(E)$ denote the E-valued weighted Bergman space on the unit disk D, i.e.

$$
L^{2}(E)=\left\{f: D \rightarrow E \mid f=\sum_{n=0}^{\infty} x_{n} z^{n},\|f\|_{L^{2}(E)}^{2}=\sum_{n=0}^{\infty} \omega_{n}\left\|x_{n}\right\|_{E}^{2}<\infty\right\} .
$$

In order to make a study of the weighted Bergman space $A_{\alpha}^{2}\left(D^{2}\right)$, we identify the space E with another copy of the Bergman space. Then $L^{2}(E)=A_{\alpha}^{2}(D) \otimes E$ will be identified with $A_{\alpha}^{2}(D) \otimes A_{\alpha}^{2}(D)=A_{\alpha}^{2}\left(D^{2}\right)$. We do this in the following way.

Let u be the unitary map from E to $A_{\alpha}^{2}(D)$ such that

$$
u\left(\delta_{j}\right)=e_{j}\left(z_{2}\right), \quad j \geq 0
$$

Then $U=I \otimes u$ is a unitary from $A_{\alpha}^{2}(D) \otimes E$ to $A_{\alpha}^{2}(D) \otimes A_{\alpha}^{2}(D)$ such that

$$
U\left(e_{i}\left(z_{1}\right) \delta_{j}\right)=e_{i}\left(z_{1}\right) e_{j}\left(z_{2}\right), \quad i, j \geq 0
$$

where I is the identity operator on $A_{\alpha}^{2}(D)$.
A closed subspace M of $A_{\alpha}^{2}\left(D^{2}\right)$ is called an invariant subspace of the operator A, if $A M \subseteq M$.

A closed subspace M of $A_{\alpha}^{2}\left(D^{2}\right)$ is called a reducing subspace of the operator A, if M is an invariant subspace of both A and its adjoint A^{*}.

In Section 2, we study the minimal reducing subspace of $T_{z_{1}^{N}}, T_{z_{2}^{N}}$ and $T_{z^{N}}$ over bidisk. And then, in Section 3, Beurling-type theorem of some special kind of invariant subspace over bidisk is obtained.

We can now state our main result.

Theorem 1.1. Suppose M is a reducing subspace of $T_{z^{N}}$ in $A_{\alpha}^{2}\left(D^{2}\right)$, then there exist nonnegative integers a, b, k, m with $0 \leq m \leq N-1$ and $a, b \in\{0,1\}$ such that

$$
\operatorname{Span}\left\{\left(a z_{1}^{k}+b z_{2}^{k}\right)\left(z_{1} z_{2}\right)^{m+l N}: l=0,1,2, \ldots\right\} \subseteq M
$$

In particular, M is minimal, if and only if,

$$
M=\operatorname{Span}\left\{\left(a z_{1}^{k}+b z_{2}^{k}\right)\left(z_{1} z_{2}\right)^{m+l N}: l=0,1,2, \ldots\right\} .
$$

Theorem 1.2. Suppose $-1<\alpha \leq 0$ and for any $i=1,2, M$ is an invariant subspace of $T_{z_{i}}$ in $A_{\alpha}^{2}\left(D^{2}\right)$. Then M is generated by $M \ominus T_{z_{i}} M$, that is

$$
M=\left[M \ominus T_{z_{i}} M\right] .
$$

2. The reducing subspace of the weighted Bergman space over bidisk.

Throughout this section we fix an integer $N>1$, and consider the complete description of the reducing subspaces of the operators $T_{z^{N}}$ and $T_{z_{i}^{N}}(i=1,2)$ in the weighted Bergman space $A_{\alpha}^{2}\left(D^{2}\right)$.

Note that for any $f \in A_{\alpha}^{2}\left(D^{2}\right)$,

$$
f=\sum_{n=0}^{\infty} z_{2}^{n} g_{n}\left(z_{1}\right), \quad\left(z_{1}, z_{2}\right) \in D^{2}
$$

where $\left\{g_{n}\right\}_{n}$ are holomorphic functions in $A_{\alpha}^{2}(D)$. It is the unique decomposition with respect to

$$
A_{\alpha}^{2}\left(D^{2}\right)=\sum_{n=0}^{\infty} \oplus z_{2}^{n} A_{\alpha}^{2}(D)
$$

Let the closed subspace $z_{2}^{n} A_{\alpha}^{2}(D)$ be denoted by $X_{n}^{(1)}$, then we have

$$
A_{\alpha}^{2}\left(D^{2}\right)=\sum_{n=0}^{\infty} \oplus X_{n}^{(1)}
$$

Since $T_{z_{1}^{N}}$ is an operator on $A_{\alpha}^{2}\left(D^{2}\right)$ and $X_{n}^{(1)}$ are its invariant subspaces, $T_{z_{1}^{N}}$ is
the direct sum of its restrictions to $X_{n}^{(1)}(n=0,1,2, \ldots)$, i.e.

$$
T_{z_{1}^{N}}=\sum_{n=0}^{\infty} \oplus T_{z_{1}^{N}} \mid X_{n}^{(1)} .
$$

Let S_{n} be the restriction of the operator $T_{z_{1}^{N}}$ to the closed subspace $X_{n}^{(1)}$. First, we will give the description of the reducing subspaces of S_{n} in $A_{\alpha}^{2}\left(D^{2}\right)$, and that is based on the following result, see Theorem 14 in $[7]$ for details.

Suppose that $M_{z^{N}}$ is the weighted unilateral shift operator on $A_{\alpha}^{2}(D)$, then $X_{n}=\operatorname{Span}\left\{z^{n+k N}: k=0,1,2, \ldots\right\}(0 \leq n \leq N-1)$ are the only minimal reducing subspaces of $M_{z^{N}}$ in $A_{\alpha}^{2}(D)$. In particular, there are exactly 2^{N} reducing subspaces of $M_{z^{N}}$ in $A_{\alpha}^{2}(D)$, and they are simply the direct sum of these minimal reducing subspaces.

Here and throughout the paper we use Span to denote the closed linear span of a set in a Hilbert space.

Theorem 2.1. For any $n=0,1,2, \ldots, X_{n}^{(1)}=z_{2}^{n} A_{\alpha}^{2}(D)$ is a closed subspace of $A_{\alpha}^{2}\left(D^{2}\right)$. Then

$$
\operatorname{Span}\left\{z_{2}^{n} z_{1}^{n_{1}+\alpha_{1} N}: \alpha_{1}=0,1,2, \ldots\right\}\left(0 \leq n_{1} \leq N-1\right)
$$

are the only minimal reducing subspaces of S_{n}. In particular, there are exactly 2^{N} reducing subspaces of S_{n} in $X_{n}^{(1)}$, and they are simply the direct sum of these minimal reducing subspaces.

Proof. Let $M \subseteq z_{2}^{n} A_{\alpha}^{2}(D)$ be a closed subspace in $X_{n}^{(1)}$, and

$$
M_{0}=\left\{f\left(z_{1}\right) \in A_{\alpha}^{2}(D): z_{2}^{n} f\left(z_{1}\right) \in M\right\}
$$

it is easy to see that M_{0} is a closed subspace in $A_{\alpha}^{2}(D)$, and $z_{2}^{n} M_{0}=M$.
If M is a reducing subspace of S_{n}, for any $f\left(z_{1}\right) \in M_{0}$,

$$
\begin{gathered}
z_{2}^{n} M_{z_{1}^{N}} f\left(z_{1}\right)=z_{2}^{n} z_{1}^{N} f\left(z_{1}\right)=S_{n}\left(z_{2}^{n} f\left(z_{1}\right)\right) \in M, \\
z_{2}^{n} M_{z_{1}^{N}}^{*} f\left(z_{1}\right)=P\left(z_{2}^{n} \bar{z}_{1}^{N} f\left(z_{1}\right)\right)=S_{n}^{*}\left(z_{2}^{n} f\left(z_{1}\right)\right) \in M,
\end{gathered}
$$

so M_{0} is a reducing subspace of $M_{z_{1}^{N}}$ in $A_{\alpha}^{2}(D)$.
Conversely, if M_{0} is a reducing subspace of $M_{z_{1}^{N}}$ in $A_{\alpha}^{2}(D)$, similarly, M is a reducing subspace of S_{n} in $X_{n}^{(1)}$.

If M is minimal, we assume that M_{0}^{\prime} is a nonzero proper reducing subspace contained in M_{0}. Then $z_{2}^{n} M_{0}^{\prime} \subseteq z_{2}^{n} M_{0}=M$. It is a contradiction, since M is minimal. So M_{0} is minimal in $A_{\alpha}^{2}(D)$.

Conversely, if M_{0} is minimal, similarly, M is minimal.
Thus M is a minimal reducing subspace of S_{n} in $X_{n}^{(1)}$, if and only if, M_{0} is a minimal reducing subspace of $M_{z_{1}^{N}}$ in $A_{\alpha}^{2}(D)$.

By Theorem 14 in $[\mathbf{7}]$, the result is proved.
Throughout this paper, we denote $\operatorname{Span}\left\{z_{1}^{n_{1}+\alpha_{1} N}: \alpha_{1}=0,1,2, \ldots\right\}$ by $M_{n_{1}}^{(1)}$, and $\operatorname{Span}\left\{z_{2}^{n_{2}+\alpha_{2} N}: \alpha_{2}=0,1,2, \ldots\right\}$ by $M_{n_{2}}^{(2)}$.

Lemma 2.1. Let M be a reducing subspace of $T_{z_{1}^{N}}$ in $A_{\alpha}^{2}\left(D^{2}\right)$. If $f \in M$, $g \in M^{\perp}$,

$$
f\left(z_{1}, z_{2}\right)=\sum_{p=0}^{\infty} f_{p}\left(z_{2}\right) z_{1}^{p}, \quad g\left(z_{1}, z_{2}\right)=\sum_{q=0}^{\infty} g_{q}\left(z_{2}\right) z_{1}^{q}
$$

then for any $p, q \geq 0, f_{p}\left(z_{2}\right) z_{1}^{p} \in M, g_{q}\left(z_{2}\right) z_{1}^{q} \in M^{\perp}$.
Proof. Assume that M is a reducing subspace of $T_{z_{1}^{N}}$. For $m, n \geq 0$, we firstly consider the orthogonal decomposition of $z_{2}^{n} z_{1}^{m}$ with respect to M. Let

$$
z_{2}^{n} z_{1}^{m}=\alpha\left(z_{1}, z_{2}\right)+\beta\left(z_{1}, z_{2}\right)
$$

where $\alpha\left(z_{1}, z_{2}\right) \in M, \beta\left(z_{1}, z_{2}\right) \in M^{\perp}$, and $\alpha\left(z_{1}, z_{2}\right)=\sum_{k=0}^{\infty} \alpha_{k}\left(z_{2}\right) z_{1}^{k}$ be the multiple Fourier series of α. Let P_{M} be the orthogonal projection from $A_{\alpha}^{2}\left(D^{2}\right)$ onto M. Then we have

$$
\begin{aligned}
T_{z_{1}^{N}}^{*} T_{z_{1}^{N}}\left(z_{2}^{n} z_{1}^{m}\right) & =P\left(z_{2}^{n} z_{1}^{m+N} \bar{z}_{1}^{N}\right)=z_{2}^{n} Q\left(z_{1}^{m+N} \bar{z}_{1}^{N}\right) \\
& =z_{2}^{n} \sum_{k=0}^{\infty}\left\langle Q\left(z_{1}^{m+N} \bar{z}_{1}^{N}\right), \frac{z_{1}^{k}}{\left\|z_{1}^{k}\right\|}\right\rangle \frac{z_{1}^{k}}{\left\|z_{1}^{k}\right\|} \\
& =z_{2}^{n} \sum_{k=0}^{\infty} \frac{1}{\omega_{k}}\left\langle z_{1}^{m+N}, z_{1}^{k+N}\right\rangle z_{1}^{k} \\
& =\frac{\omega_{m+N}}{\omega_{m}} z_{2}^{n} z_{1}^{m} \\
& =\frac{\omega_{m+N}}{\omega_{m}}(\alpha+\beta),
\end{aligned}
$$

$$
P_{M} T_{z_{1}^{N}}^{*} T_{z_{1}^{N}}\left(z_{2}^{n} z_{1}^{m}\right)=P_{M}\left(\frac{\omega_{m+N}}{\omega_{m}}(\alpha+\beta)\right)=\frac{\omega_{m+N}}{\omega_{m}} \alpha
$$

and

$$
\begin{aligned}
P_{M} T_{z_{1}^{N}}^{*} T_{z_{1}^{N}}(\alpha+\beta) & =P_{M} T_{z_{1}^{N}}^{*} T_{z_{1}^{N}} \alpha+P_{M} T_{z_{1}^{N}}^{*} T_{z_{1}^{N}} \beta \\
& =T_{z_{1}^{N}}^{*} T_{z_{1}^{N}} \alpha \\
& =P\left(\sum_{k=0}^{\infty} \alpha_{k}\left(z_{2}\right) z_{1}^{k+N_{1}} \bar{z}_{1}^{N}\right) \\
& =\sum_{k=0}^{\infty} \alpha_{k}\left(z_{2}\right) Q\left(z_{1}^{k+N} \bar{z}_{1}^{N}\right) \\
& =\sum_{k=0}^{\infty} \frac{\omega_{k+N}}{\omega_{k}} \alpha_{k}\left(z_{2}\right) z_{1}^{k}
\end{aligned}
$$

It follows that

$$
\frac{\omega_{m+N}}{\omega_{m}} \alpha=\sum_{k=0}^{\infty} \frac{\omega_{k+N}}{\omega_{k}} \alpha_{k}\left(z_{2}\right) z_{1}^{k}
$$

or

$$
\sum_{k \neq m}\left(\frac{\omega_{k+N}}{\omega_{k}}-\frac{\omega_{m+N}}{\omega_{m}}\right) \alpha_{k}\left(z_{2}\right) z_{1}^{k}=0
$$

Since $\frac{\omega_{k+N}}{\omega_{k}} \neq \frac{\omega_{m+N}}{\omega_{m}}$ when $k \neq m$, we get $\alpha_{k}\left(z_{2}\right)=0, \forall k \neq m$.
That is $\alpha\left(z_{1}, z_{2}\right)=\alpha_{m}\left(z_{2}\right) z_{1}^{m}$, and $\beta\left(z_{1}, z_{2}\right)=\left(z_{2}^{n}-\alpha_{m}\left(z_{2}\right)\right) z_{1}^{m}$. Since $\|\alpha\|^{2}+$ $\|\beta\|^{2}=\left\|z_{2}^{n} z_{1}^{m}\right\|^{2}$, it is easy to see that $\left\|\alpha_{m}\left(z_{2}\right)\right\|^{2} \leq\left\|z_{2}^{n}\right\|^{2}$.

Therefore there exists a sequence of functions $\left\{\alpha_{n, m}\left(z_{2}\right)\right\}_{n, m} \subseteq A_{\alpha}^{2}(D)$ such that

$$
\left\|\alpha_{n, m}\left(z_{2}\right)\right\|^{2} \leq\left\|z_{2}^{n}\right\|^{2}
$$

and

$$
z_{2}^{n} z_{1}^{m}=\alpha_{n, m}\left(z_{2}\right) z_{1}^{m}+\left(z_{2}^{n}-\alpha_{n, m}\left(z_{2}\right)\right) z_{1}^{m}
$$

is the unique orthogonal decomposition of $z_{2}^{n} z_{1}^{m}$ with respect to M.
For any function $f \in M, f=\sum_{p=0}^{\infty} f_{p}\left(z_{2}\right) z_{1}^{p}$, it is easy to check that

$$
f_{p}\left(z_{2}\right) z_{1}^{p}=\sum_{n=0}^{\infty} a_{p, n} z_{2}^{n} z_{1}^{p}=\sum_{n=0}^{\infty} a_{p, n} \alpha_{n, p}\left(z_{2}\right) z_{1}^{p}+\sum_{n=0}^{\infty} a_{p, n}\left(z_{2}^{n}-\alpha_{n, p}\left(z_{2}\right)\right) z_{1}^{p} .
$$

Let $h_{p}\left(z_{2}\right)=\sum_{n=0}^{\infty} a_{p, n} \alpha_{n, p}\left(z_{2}\right)$, then

$$
\left\|h_{p}\left(z_{2}\right)\right\|^{2} \leq \sum_{n=0}^{\infty}\left|a_{p, n}\right|^{2}\left\|\alpha_{n, p}\left(z_{2}\right)\right\|^{2} \leq \sum_{n=0}^{\infty}\left|a_{p, n}\right|^{2}\left\|z_{2}^{n}\right\|^{2}=\left\|f_{p}\left(z_{2}\right)\right\|^{2}<\infty
$$

and

$$
f_{p}\left(z_{2}\right) z_{1}^{p}=h_{p}\left(z_{2}\right) z_{1}^{p}+\left(f_{p}\left(z_{2}\right)-h_{p}\left(z_{2}\right)\right) z_{1}^{p}
$$

where $h_{p}\left(z_{2}\right) z_{1}^{p} \in M$, and $\left(f_{p}\left(z_{2}\right)-h_{p}\left(z_{2}\right)\right) z_{1}^{p} \in M^{\perp}$.
So f has the unique orthogonal decomposition with respect to M :

$$
f=\sum_{p=0}^{\infty} h_{p}\left(z_{2}\right) z_{1}^{p}+\sum_{p=0}^{\infty}\left(f_{p}\left(z_{2}\right)-h_{p}\left(z_{2}\right)\right) z_{1}^{p} .
$$

Since $f \in M, \sum_{p=0}^{\infty}\left(f_{p}\left(z_{2}\right)-h_{p}\left(z_{2}\right)\right) z_{1}^{p}=0$. Then for any $p=0,1, \ldots$, $f_{p}\left(z_{2}\right)=h_{p}\left(z_{2}\right)$, that implies $f_{p}\left(z_{2}\right) z_{1}^{p} \in M$.

Similarly, for any function $g \in M^{\perp}, g=\sum_{q=0}^{\infty} g_{q}\left(z_{2}\right) z_{1}^{q}$, then $g_{q}\left(z_{2}\right) z_{1}^{q} \in M^{\perp}$, $\forall q=0,1, \ldots$. So the proof is completed.

Theorem 2.2. For any function $f=f\left(z_{2}\right) \in A_{\alpha}^{2}(D)$, and each integer n_{1} with $0 \leq n_{1} \leq N-1$, let

$$
f\left(z_{2}\right) M_{n_{1}}^{(1)}=\operatorname{Span}\left\{f\left(z_{2}\right) z_{1}^{n_{1}+\alpha_{1} N}: \alpha_{1}=0,1,2, \ldots\right\}
$$

then $\left\{f\left(z_{2}\right) M_{n_{1}}^{(1)}\right\}$ are the only minimal reducing subspaces of $T_{z_{1}^{N}}$ in $A_{\alpha}^{2}\left(D^{2}\right)$. Every reducing subspace of $T_{z_{1}^{N}}$ in $A_{\alpha}^{2}\left(D^{2}\right)$ contains a minimal reducing subspace.

Proof. By Theorem 14 in $[\mathbf{7}]$, it is obvious that for any nonnegative integer n_{1} with $0 \leq n_{1} \leq N-1$, and any $f\left(z_{2}\right) \in A_{\alpha}^{2}(D), f\left(z_{2}\right) M_{n_{1}}^{(1)}$ is a reducing subspace of $T_{z_{1}^{N}}$ in $A_{\alpha}^{2}\left(D^{2}\right)$.

In the following, we are going to prove that for any reducing subspace M of
$T_{z_{1}^{N}}$, there exist a function $f\left(z_{2}\right) \in A_{\alpha}^{2}(D)$ and a nonnegative integer n_{1} such that $f\left(z_{2}\right) M_{n_{1}}^{(1)} \subseteq M$.

For any nonzero function $f\left(z_{1}, z_{2}\right) \in M$,

$$
f\left(z_{1}, z_{2}\right)=\sum_{n=0}^{\infty} f_{n}\left(z_{2}\right) z_{1}^{n}
$$

by Lemma 2.1, for any $n, f_{n}\left(z_{2}\right) z_{1}^{n} \in M$. For any $n=0,1,2, \ldots$, there are two nonnegative integers n_{1}, α_{1} such that

$$
n=n_{1}+\alpha_{1} N, \quad\left(0 \leq n_{1} \leq N-1\right)
$$

Since $f\left(z_{1}, z_{2}\right) \neq 0$, there exists a nonnegative integer n such that $f_{n}\left(z_{2}\right) \neq 0$ and $f_{n}\left(z_{2}\right) z_{1}^{n_{1}+\alpha_{1} N} \in M$. We know that M is invariant under the operators $T_{z_{1}^{N}}$ and $T_{z_{1}^{N}}^{*}$, so

$$
f_{n}\left(z_{2}\right) \operatorname{Span}\left\{z_{1}^{n_{1}+l N}: l=0,1,2, \ldots\right\} \subseteq M
$$

i.e. $f_{n}\left(z_{2}\right) M_{n_{1}}^{(1)} \subseteq M$.

Assume that M is a minimal reducing subspace of $T_{z_{1}^{N}}$ in $A_{\alpha}^{2}\left(D^{2}\right)$. As is stated above, there exists a reducing subspace $f\left(z_{2}\right) M_{n_{1}}^{(1)}$ of $T_{z_{1}^{N}}$ such that $f\left(z_{2}\right) M_{n_{1}}^{(1)} \subseteq$ M. It forces that $M=f\left(z_{2}\right) M_{n_{1}}^{(1)}$.

Finally, we will prove that if $M_{n_{1}}^{(1)}$ is a minimal reducing subspace of $M_{z_{1}^{N}}$ in $A_{\alpha}^{2}(D), 0 \leq n_{1} \leq N-1$, then for any $f\left(z_{2}\right) \in A_{\alpha}^{2}(D), f\left(z_{2}\right) M_{n_{1}}^{(1)}$ is a minimal reducing subspace of $T_{z_{1}^{N}}$ in $A_{\alpha}^{2}\left(D^{2}\right)$.

Assume that M is a nonzero proper minimal reducing subspace of $T_{z_{1}^{N}}$ contained in $f\left(z_{2}\right) M_{n_{1}}^{(1)}$ for some n_{1}. Let a closed subspace $M^{\prime}=\left\{g\left(z_{1}\right) \in A_{\alpha}^{2}(D)\right.$: $\left.f\left(z_{2}\right) g\left(z_{1}\right) \in M\right\}$. It is obvious that $M=f\left(z_{2}\right) M^{\prime}$ and M is minimal reducing subspace of $T_{z_{1}^{N}}$ in $A_{\alpha}^{2}\left(D^{2}\right)$, if and only if, M^{\prime} is a minimal reducing subspace of $M_{z_{1}^{N}}$ in $A_{\alpha}^{2}(D)$. We can see that $M^{\prime} \subset M_{n_{1}}^{(1)}$. So it is a contradiction, since $M_{n_{1}}^{(1)}$ is minimal. Thus $f\left(z_{2}\right) M_{n_{1}}^{(1)}$ is minimal.

In conclusion, we obtain that M is a minimal reducing subspace of $T_{z_{1}^{N}}$ in $A_{\alpha}^{2}\left(D^{2}\right)$, if and only if, for some function $f\left(z_{2}\right) \in A_{\alpha}^{2}(D)$ and nonnegative integer n_{1} with $0 \leq n_{1} \leq N-1, M=f\left(z_{2}\right) M_{n_{1}}^{(1)}$. Thus the proof is completed.

Theorem 2.3. For any function $f=f\left(z_{1}\right) \in A_{\alpha}^{2}(D)$, and each integer n_{2} with $0 \leq n_{2} \leq N-1$,

$$
\operatorname{Span}\left\{f\left(z_{1}\right) z_{2}^{n_{2}+\alpha_{2} N}: \alpha_{2}=0,1,2, \ldots\right\}=f\left(z_{1}\right) M_{n_{2}}^{(2)}
$$

is the only minimal reducing subspace of $T_{z_{2}^{N}}$ in $A_{\alpha}^{2}\left(D^{2}\right)$. Every reducing subspace of $T_{z_{2}^{N}}$ in $A_{\alpha}^{2}\left(D^{2}\right)$ contains a minimal reducing subspace.

Proof. The proof follows from the symmetry of z_{1}, z_{2} and Theorem 2.2.
Theorem 2.4. Suppose M is a reducing subspace of both $T_{z_{1}^{N}}$ and $T_{z_{2}^{N}}$ in $A_{\alpha}^{2}\left(D^{2}\right)$, then there exist nonnegative integers n_{1}, n_{2} with $0 \leq n_{1}, n_{2} \leq N-1$ such that $M_{n_{1}}^{(1)} \otimes M_{n_{2}}^{(2)} \subseteq M$. In particular, M is minimal, if and only if, $M=$ $M_{n_{1}}^{(1)} \otimes M_{n_{2}}^{(2)}$. And there are N^{2} minimal reducing subspaces in $A_{\alpha}^{2}\left(D^{2}\right)$.

Proof. If M is a reducing subspace of $T_{z_{1}^{N}}$, for $f=\sum_{k=0}^{\infty} f_{k}\left(z_{2}\right) z_{1}^{k} \in M$, by Lemma 2.1, for any $k, f_{k}\left(z_{2}\right) z_{1}^{k} \in M$. Since M is a reducing subspace of $T_{z_{2}^{N}}$, for $f_{k}\left(z_{2}\right) z_{1}^{k}=\sum_{l=0}^{\infty} a_{k, l} z_{2}^{l} z_{1}^{k}$, by Lemma 2.1, for any $k, l, a_{k, l} z_{2}^{l} z_{1}^{k} \in M$. There are nonnegative integers $n_{1}, n_{2}, n_{1}^{\prime}, n_{2}^{\prime}$ with $0 \leq n_{1}, n_{2} \leq N-1$ such that $k=n_{1}+n_{1}^{\prime} N, l=n_{2}+n_{2}^{\prime} N$, then

$$
\operatorname{Span}\left\{z_{1}^{n_{1}+n_{1}^{\prime} N} z_{2}^{n_{2}+n_{2}^{\prime} N}: n_{1}^{\prime}, n_{2}^{\prime}=0,1,2, \ldots\right\} \subseteq M, \quad \text { i.e. } \quad M_{n_{1}}^{(1)} \otimes M_{n_{2}}^{(2)} \subseteq M
$$

It is obvious that $M_{n_{1}}^{(1)} \otimes M_{n_{2}}^{(2)}$ is a reducing subspace of both $T_{z_{1}^{N}}$ and $T_{z_{2}^{N}}$. If M is minimal, then $M=M_{n_{1}}^{(1)} \otimes M_{n_{2}}^{(2)}$.

It is easy to see that $M_{n_{1}}^{(1)} \otimes M_{n_{2}}^{(2)}$ is a minimal reducing subspace. So there are N^{2} minimal reducing subspaces of both $T_{z_{1}^{N}}$ and $T_{z_{2}^{N}}$ in $A_{\alpha}^{2}\left(D^{2}\right)$.

LEMMA 2.2. For any nonnegative integers m_{1}, m_{2}, l, N with $l \geq 1, N>1$. If $J \neq\left(m_{1}, m_{2}\right)$ or $J \neq\left(m_{2}, m_{1}\right)$, where $J=\left(j_{1}, j_{2}\right)$ is a multi-index, then $\frac{\omega_{j_{1}+l N} \omega_{j_{2}+l N}}{\omega_{m_{1}+l N} \omega_{m_{2}+l N}}-1 \neq 0$.

Proof. Without loss of generality, we might as well let $m_{1} \geq m_{2}$.
Let $\Delta=\frac{\omega_{j_{1}+l N} \omega_{j_{2}+l N}}{\omega_{m_{1}+l N} \omega_{m_{2}+l N}}$.
For the sequence $\left\{\omega_{n}\right\}$ is decreasing, if $j_{1}, j_{2}>m_{1}$, then $\Delta-1<0$; if $m_{2}>j_{1}, j_{2}$, then $\Delta-1>0$.

If $j_{1}>m_{1} \geq m_{2}>j_{2}$, and $j_{1}-m_{1}=m_{2}-j_{2}$, then

$$
\Delta=\frac{\left(j_{1}+l N\right) \cdots\left(m_{1}+1+l N\right)\left(m_{2}+1+\alpha+l N\right) \cdots\left(j_{2}+2+\alpha+l N\right)}{\left(j_{1}+1+\alpha+l N\right) \cdots\left(m_{1}+2+\alpha+l N\right)\left(m_{2}+l N\right) \cdots\left(j_{2}+1+l N\right)}
$$

It is easy to calculate that for the function $f(x, y)=\frac{(\alpha+1+x) y}{(\alpha+1+y) x}-1$,

$$
\begin{cases}f(x, y)>0, & \text { if } y>x \\ f(x, y)<0, & \text { if } y<x\end{cases}
$$

where $\alpha>-1$. So $\Delta>1$.
If $j_{1}>m_{1} \geq m_{2}>j_{2}$, and $j_{1}-m_{1} \neq m_{2}-j_{2}$, we will prove it by contradiction. Suppose that $\Delta-1=0$. Let

$$
H_{1}(\lambda)=\frac{\left(j_{1}+\lambda\right) \cdots\left(m_{1}+1+\lambda\right)\left(1+\alpha+m_{2}+\lambda\right) \cdots\left(2+\alpha+j_{2}+\lambda\right)}{\left(1+\alpha+j_{1}+\lambda\right) \cdots\left(2+\alpha+m_{1}+\lambda\right)\left(m_{2}+\lambda\right) \cdots\left(j_{2}+1+\lambda\right)}-1,
$$

then $H_{1}(\lambda)$ is rational and holomorphic at infinity, and

$$
\lim _{|\lambda| \rightarrow \infty} H_{1}(\lambda)=0
$$

Let $H_{2}(\lambda)=H_{1}\left(\frac{1}{\lambda}\right)$, we can choose ρ small enough, for $|\lambda|<\rho, H_{2}(\lambda)$ is holomorphic, and

$$
\lim _{|\lambda| \rightarrow 0} H_{2}(\lambda)=0 .
$$

Then 0 is the removable singular point of $H_{2}(\lambda)$.
Since $H_{2}(\lambda)$ vanishes at all the points $\frac{1}{l N}(l=1,2, \ldots)$ whose limit point is 0 , 0 is the essential singular point of $H_{2}(\lambda)$. It is a contradiction. So $H_{2}(\lambda) \equiv 0$, for $|\lambda|<\rho$. Then $H_{1}(\lambda) \equiv 0$, for $|\lambda|>\frac{1}{\rho}$.
$H_{1}(\lambda) \equiv 0$, if and only if, for any $0 \leq n \leq j_{1}-j_{2}-m_{1}+m_{2}$, the term λ^{n} 's coefficient in the numerator of $H_{1}(\lambda)$ is zero. For the term $\lambda^{j_{1}-j_{2}-m_{1}+m_{2}-1}$, its coefficient is

$$
(1+\alpha)\left(j_{1}-m_{1}-m_{2}+j_{2}\right)=0
$$

then $j_{1}-m_{1}=m_{2}-j_{2}$. It is a contradiction. So $\triangle-1 \neq 0$.
Similarly, we can prove the case: $m_{1}>j_{1}>j_{2}>m_{2}, \Delta-1 \neq 0$. So if $J \neq\left(m_{1}, m_{2}\right)$, then $\triangle-1 \neq 0$. And for the same reason, if $J \neq\left(m_{2}, m_{1}\right)$, then $\triangle-1 \neq 0$.

Lemma 2.3. Suppose M is a reducing subspace of $T_{z^{N}}$ in $A_{\alpha}^{2}\left(D^{2}\right)$ and P_{M} is the orthogonal projection from $A_{\alpha}^{2}\left(D^{2}\right)$ onto M. For any nonnegative integers k, m,

$$
P_{M}\left(z_{1}^{k}\left(z_{1} z_{2}\right)^{m}\right)=\left(a z_{1}^{k}+b z_{2}^{k}\right)\left(z_{1} z_{2}\right)^{m}
$$

where $a \in \boldsymbol{R}, a-a^{2}=|b|^{2}$, and $0 \leq a,|b| \leq 1$.
Proof. If M is a reducing subspace of $T_{z^{N}}$ in $A_{\alpha}^{2}\left(D^{2}\right)$, the orthogonal decomposition of $z_{1}^{k}\left(z_{1} z_{2}\right)^{m}$ with respect to M is

$$
z_{1}^{k}\left(z_{1} z_{2}\right)^{m}=f+g, \quad f \in M, g \in M^{\perp}
$$

Let $f=\sum_{J} a_{J} z^{J}$ be the multiple Fourier series of f. For any $l=1,2, \ldots$,

$$
\begin{aligned}
P_{M} T_{z^{l N}}^{*} T_{z^{l N}}(f+g) & =T_{z^{l N}}^{*} T_{z^{l N}} f=\sum_{J} a_{J} Q\left(z_{1}^{j_{1}+l N} \bar{z}_{1}^{l N}\right) Q\left(z_{2}^{j_{2}+l N} \bar{z}_{2}^{l N}\right) \\
& =\sum_{J} a_{J} \frac{\omega_{j_{1}+l N} \omega_{j_{2}+l N}}{\omega_{j_{1}} \omega_{j_{2}}} z_{1}^{j_{1}} z_{2}^{j_{2}},
\end{aligned}
$$

and

$$
\begin{aligned}
P_{M} T_{z^{l N}}^{*} T_{z^{l N}}\left(z_{1}^{k}\left(z_{1} z_{2}\right)^{m}\right) & =P_{M}\left(P\left(z_{1}^{k+m+l N} \bar{z}_{1}^{l N} z_{2}^{m+l N} \bar{z}_{2}^{l N}\right)\right) \\
& =P_{M}\left(\frac{\omega_{k+m+l N} \omega_{m+l N}}{\omega_{k+m} \omega_{m}} z_{1}^{k}\left(z_{1} z_{2}\right)^{m}\right) \\
& =P_{M}\left(\frac{\omega_{k+m+l N} \omega_{m+l N}}{\omega_{k+m} \omega_{m}}(f+g)\right) \\
& =\frac{\omega_{k+m+l N} \omega_{m+l N}}{\omega_{k+m} \omega_{m}} f .
\end{aligned}
$$

It follows that

$$
\frac{\omega_{k+m+l N} \omega_{m+l N}}{\omega_{k+m} \omega_{m}} f=\sum_{J} a_{J} \frac{\omega_{j_{1}+l N} \omega_{j_{2}+l N}}{\omega_{j_{1}} \omega_{j_{2}}} z_{1}^{j_{1}} z_{2}^{j_{2}}
$$

then

$$
f=\sum_{J} a_{J} \frac{\omega_{j_{1}+l N} \omega_{j_{2}+l N}}{\omega_{k+m+l N} \omega_{m+l N}} \frac{\omega_{k+m} \omega_{m}}{\omega_{j_{1}} \omega_{j_{2}}} z_{1}^{j_{1}} z_{2}^{j_{2}},
$$

or

$$
\sum_{J} a_{J}\left(\frac{\omega_{j_{1}+l N} \omega_{j_{2}+l N}}{\omega_{k+m+l N} \omega_{m+l N}} \frac{\omega_{k+m} \omega_{m}}{\omega_{j_{1}} \omega_{j_{2}}}-1\right) z_{1}^{j_{1}} z_{2}^{j_{2}}=0
$$

Let $\Delta=\frac{\omega_{j_{1}+l N} \omega_{j_{2}+l N}}{\omega_{k+m+l N} \omega_{m+l N}} \frac{\omega_{k+m} \omega_{m}}{\omega_{j_{1}} \omega_{j_{2}}}$. If $\Delta-1=0$, let

$$
H_{1}(\lambda)=\frac{\omega_{j_{1}+\lambda} \omega_{j_{2}+\lambda}}{\omega_{k+m+\lambda} \omega_{m+\lambda}} \frac{\omega_{k+m} \omega_{m}}{\omega_{j_{1}} \omega_{j_{2}}}-1,
$$

then $H_{1}(\lambda)$ is rational and holomorphic at infinity, and

$$
\lim _{|\lambda| \rightarrow \infty} H_{1}(\lambda)=\frac{\omega_{k+m} \omega_{m}}{\omega_{j_{1}} \omega_{j_{2}}}-1 .
$$

Let

$$
H_{2}(\lambda)= \begin{cases}\frac{\omega_{k+m} \omega_{m}}{\omega_{j_{1}} \omega_{j_{2}}}-1, & \text { if } \lambda=0 \\ H_{1}\left(\frac{1}{\lambda}\right), & \text { if } \lambda \neq 0,\end{cases}
$$

we can choose ρ small enough, for $|\lambda|<\rho, H_{2}(\lambda)$ is holomorphic, and

$$
\lim _{|\lambda| \rightarrow 0} H_{2}(\lambda)=\frac{\omega_{k+m} \omega_{m}}{\omega_{j_{1}} \omega_{j_{2}}}-1
$$

Then 0 is the removable singular point of $H_{2}(\lambda)$.
Since $H_{2}(\lambda)$ vanishes at all the points $\frac{1}{l N}(l=1,2, \ldots)$ whose limit point is 0 , 0 is the essential singular point of $H_{2}(\lambda)$. It is a contradiction. So $H_{2}(\lambda) \equiv 0$, for $|\lambda|<\rho$. And $\frac{\omega_{k+m} \omega_{m}}{\omega_{j_{1}} \omega_{j_{2}}}=1$. Thus $\Delta-1=\frac{\omega_{j_{1}+l N} \omega_{j_{2}+l N}}{\omega_{k+m+l N} \omega_{m+l N}}-1=0$. By Lemma 2.2, $J=(k+m, m)$ or $J=(m, k+m)$.

So for any $J \neq(k+m, m)$ or $J \neq(m, k+m), \Delta-1 \neq 0$, then $a_{J}=0$.
Thus $f=a z_{1}^{k}\left(z_{1} z_{2}\right)^{m}+b z_{2}^{k}\left(z_{1} z_{2}\right)^{m}$, i.e. $P_{M}\left(z_{1}^{k}\left(z_{1} z_{2}\right)^{m}\right)=\left(a z_{1}^{k}+b z_{1}^{k}\right)\left(z_{1} z_{2}\right)^{m}$.
Since $\left\langle f, z_{1}^{k}\left(z_{1} z_{2}\right)^{m}-f\right\rangle=0,\|f\|^{2}=\left\langle z_{1}^{k}\left(z_{1} z_{2}\right)^{m}, f\right\rangle$,

$$
\begin{gathered}
|a|^{2} \omega_{k+m} \omega_{m}+|b|^{2} \omega_{k+m} \omega_{m}=\bar{a} \omega_{k+m} \omega_{m}, \\
\quad\left(|a|^{2}+|b|^{2}\right) \omega_{k+m} \omega_{m}=\bar{a} \omega_{k+m} \omega_{m},
\end{gathered}
$$

for $\omega_{k+m} \omega_{m} \neq 0$, then $a \in \boldsymbol{R}, a-a^{2}=|b|^{2}$, and $0 \leq a,|b| \leq 1$.
Lemma 2.4. Suppose M is a reducing subspace of $T_{z^{N}}$ in $A_{\alpha}^{2}\left(D^{2}\right)$. For any function

$$
f=\sum_{J} a_{J} z^{J} \in M,
$$

if there are nonnegative integers $p, q>0, a_{p, q} \neq 0$, then

$$
\left(z_{1}^{|p-q|}+z_{2}^{|p-q|}\right)\left(z_{1} z_{2}\right)^{\min \{p, q\}} \in M, \quad \text { or } \quad z_{1}^{p} z_{2}^{q} \in M
$$

Proof. For any function $f=\sum_{J} a_{J} z^{J} \in M$,

$$
f=\sum_{j_{1}>j_{2}} a_{j_{1}, j_{2}} z_{1}^{j_{1}-j_{2}}\left(z_{1} z_{2}\right)^{j_{2}}+\sum_{j_{1}=j_{2}} a_{j_{1}, j_{2}}\left(z_{1} z_{2}\right)^{j_{1}}+\sum_{j_{1}>j_{2}} a_{j_{2}, j_{1}} z_{2}^{j_{1}-j_{2}}\left(z_{1} z_{2}\right)^{j_{2}} .
$$

Case 1: $p=q$.
According to Lemma 2.3, let $k=0, m=p, P_{M}\left(\left(z_{1} z_{2}\right)^{p}\right)=(a+b)\left(z_{1} z_{2}\right)^{p}$, then $\left(z_{1} z_{2}\right)^{p} \in M$ or $\left(z_{1} z_{2}\right)^{p} \in M^{\perp}$.

If $\left(z_{1} z_{2}\right)^{p} \in M^{\perp}$, then $\left\langle f,\left(z_{1} z_{2}\right)^{p}\right\rangle=a_{p, p} \omega_{p}^{2}=0$, so $a_{p, p}=0$, it is a contradiction with $a_{p, p} \neq 0$. So $\left(z_{1} z_{2}\right)^{p} \in M$.

Case 2: $p \neq q$.
By Case 1, $\sum_{j_{1}=j_{2}} a_{j_{1}, j_{2}}\left(z_{1} z_{2}\right)^{j_{1}} \in M$. Let $f_{0}=f-\sum_{j_{1}=j_{2}} a_{j_{1}, j_{2}}\left(z_{1} z_{2}\right)^{j_{1}}$, it is easy to see that $f_{0} \in M$.

By Lemma 2.3,

$$
\begin{aligned}
f_{0} & =P_{M}\left(f_{0}\right) \\
& =\sum_{j_{1}>j_{2}} a_{j_{1}, j_{2}}\left(c_{j_{1}, j_{2}} z_{1}^{j_{1}} z_{2}^{j_{2}}+d_{j_{1}, j_{2}} z_{1}^{j_{2}} z_{2}^{j_{1}}\right)+\sum_{j_{1}>j_{2}} a_{j_{2}, j_{1}}\left(c_{j_{1}, j_{2}} z_{1}^{j_{2}} z_{2}^{j_{1}}+d_{j_{1}, j_{2}} z_{1}^{j_{1}} z_{2}^{j_{2}}\right) \\
& =\sum_{j_{1}>j_{2}}\left(a_{j_{1}, j_{2}} c_{j_{1}, j_{2}}+a_{j_{2}, j_{1}} d_{j_{1}, j_{2}}\right) z_{1}^{j_{1}} z_{2}^{j_{2}}+\sum_{j_{1}>j_{2}}\left(a_{j_{1}, j_{2}} d_{j_{1}, j_{2}}+a_{j_{2}, j_{1}} c_{j_{1}, j_{2}}\right) z_{1}^{j_{2}} z_{2}^{j_{1}},
\end{aligned}
$$

then

$$
\left\{\begin{array}{l}
a_{j_{1}, j_{2}}=a_{j_{1}, j_{2}} c_{j_{1}, j_{2}}+a_{j_{2}, j_{1}} d_{j_{1}, j_{2}} \\
a_{j_{2}, j_{1}}=a_{j_{1}, j_{2}} d_{j_{1}, j_{2}}+a_{j_{2}, j_{1}} c_{j_{1}, j_{2}}
\end{array}\right.
$$

i.e.

$$
\left\{\begin{array}{l}
\left(1-c_{j_{1}, j_{2}}\right) a_{j_{1}, j_{2}}=d_{j_{1}, j_{2}} a_{j_{2}, j_{1}} \tag{1}\\
\left(1-c_{j_{1}, j_{2}}\right) a_{j_{2}, j_{1}}=d_{j_{1}, j_{2}} a_{j_{1}, j_{2}}
\end{array}\right.
$$

Put (1) in (2) $\times a_{j_{1}, j_{2}}$, and put (2) in (1) $\times a_{j_{1}, j_{2}}$, then

$$
\left\{\begin{array}{l}
d_{j_{1}, j_{2}} a_{j_{2}, j_{1}}^{2}=d_{j_{1}, j_{2}} a_{j_{1}, j_{2}}^{2} \\
\left(1-c_{j_{1}, j_{2}}\right) a_{j_{1}, j_{2}}^{2}=\left(1-c_{j_{1}, j_{2}}\right) a_{j_{2}, j_{1}}^{2}
\end{array}\right.
$$

If $d_{j_{1}, j_{2}}=1-c_{j_{1}, j_{2}}=0$, then $P_{M}\left(z_{1}^{j_{1}} z_{2}^{j_{2}}\right)=z_{1}^{j_{1}} z_{2}^{j_{2}} \in M$. So $z_{1}^{p} z_{2}^{q} \in M$, since $a_{p, q} \neq 0$.

If either $d_{j_{1}, j_{2}}$ or $1-c_{j_{1}, j_{2}}$ is not zero, then $a_{j_{1}, j_{2}}= \pm a_{j_{2}, j_{1}}$.
If $a_{j_{1}, j_{2}}=-a_{j_{2}, j_{1}}$, put it in (1), we have $c_{j_{1}, j_{2}}=1+d_{j_{1}, j_{2}}$, then $c_{j_{1}, j_{2}}^{2}=$ $\left|1+d_{j_{1}, j_{2}}\right|^{2}>1$, it is a contradiction with Lemma 2.3. So $a_{j_{1}, j_{2}}=a_{j_{2}, j_{1}}$. Then

$$
f_{0}=\sum_{j_{1}>j_{2}} a_{j_{1}, j_{2}}\left(z_{1}^{j_{1}-j_{2}}+z_{2}^{j_{1}-j_{2}}\right)\left(z_{1} z_{2}\right)^{j_{2}} .
$$

We might as well let $p>q$, if $\left(z_{1}^{p-q}+z_{2}^{p-q}\right)\left(z_{1} z_{2}\right)^{q}=z_{1}^{p} z_{2}^{q}+z_{1}^{q} z_{2}^{p} \in M^{\perp}$, then

$$
\left\langle f_{0}, z_{1}^{p} z_{2}^{q}+z_{1}^{q} z_{2}^{p}\right\rangle=0,
$$

i.e.

$$
\left\|z_{1}^{p} z_{2}^{q}+z_{1}^{q} z_{2}^{p}\right\|^{2} a_{p, q}=0
$$

so $a_{p, q}=0$, it is a contradiction. By Lemma 2.3, $\left(z_{1}^{p-q}+z_{2}^{p-q}\right)\left(z_{1} z_{2}\right)^{q} \in M$.
Similarly, if $q>p,\left(z_{1}^{q-p}+z_{2}^{q-p}\right)\left(z_{1} z_{2}\right)^{p} \in M$.
Theorem 2.5. Suppose M is a reducing subspace of $T_{z^{N}}$ in $A_{\alpha}^{2}\left(D^{2}\right)$, then there exist nonnegative integers a, b, k, m with $0 \leq m \leq N-1$ and $a, b \in\{0,1\}$ such that

$$
\operatorname{Span}\left\{\left(a z_{1}^{k}+b z_{2}^{k}\right)\left(z_{1} z_{2}\right)^{m+l N}: l=0,1,2, \ldots\right\} \subseteq M
$$

In particular, M is minimal, if and only if,

$$
M=\operatorname{Span}\left\{\left(a z_{1}^{k}+b z_{2}^{k}\right)\left(z_{1} z_{2}\right)^{m+l N}: l=0,1,2, \ldots\right\}
$$

Proof. If M is a reducing subspace of $T_{z^{N}}$ in $A_{\alpha}^{2}\left(D^{2}\right)$, then by Lemma 2.4, for some nonnegative integers a, b, k, m with $0 \leq m \leq N-1$, and $a, b \in\{0,1\}$,

$$
\left(a z_{1}^{k}+b z_{2}^{k}\right)\left(z_{1} z_{2}\right)^{m} \in M
$$

We know that M is invariant under the operators $T_{z^{N}}$ and $T_{z^{N}}^{*}$, so

$$
\operatorname{Span}\left\{\left(a z_{1}^{k}+b z_{2}^{k}\right)\left(z_{1} z_{2}\right)^{m+l N}: l=0,1,2, \ldots\right\} \subseteq M
$$

It is easy to see that $\operatorname{Span}\left\{\left(a z_{1}^{k}+b z_{2}^{k}\right)\left(z_{1} z_{2}\right)^{m+l N}: l=0,1,2, \ldots\right\}$ is a reducing subspace of $T_{z^{N}}$ in $A_{\alpha}^{2}\left(D^{2}\right)$. If M is minimal, then

$$
M=\operatorname{Span}\left\{\left(a z_{1}^{k}+b z_{2}^{k}\right)\left(z_{1} z_{2}\right)^{m+l N}: l=0,1,2, \ldots\right\} .
$$

It is obvious that $\operatorname{Span}\left\{\left(a z_{1}^{k}+b z_{2}^{k}\right)\left(z_{1} z_{2}\right)^{m+l N}: l=0,1,2, \ldots\right\}$ is a minimal reducing subspace. So it is the only minimal reducing subspace of $T_{z^{N}}$ in $A_{\alpha}^{2}\left(D^{2}\right)$.

3. Beurling-type theorem of the weighted Bergman space over bidisk.

In this section we will show the Beurling-type theorem about invariant subspaces of the weighted Bergman space over bidisk. The basis of our proof is the following result which was obtained in the context of general Hilbert space; see Theorem 6.14 in [3] for details.

Let H be a separable Hilbert space and let $T: H \rightarrow H$ be a bounded linear operator satisfying:
(a) $\|T x+y\|^{2} \leq 2\left(\|x\|^{2}+\|T y\|^{2}\right), x, y \in H$;
(b) $\bigcap\left\{T^{n} H: n \geq 0\right\}=0$,
then we have
(i) T is one to one and has closed range, so that the operator $T^{*} T$ is invertible,
(ii) $H=[\mathscr{E}]=\bigvee\left\{T^{n} x: x \in \mathscr{E}, n \geq 0\right\}$, where $\mathscr{E}=\operatorname{ker}\left(T^{*}\right)=H \ominus T H$.

In fact, under some assumption, we have that (i) implies (a).
Lemma 3.1. Let H be a separable Hilbert space and let $T: H \rightarrow H$ be a bounded linear operator. If the operator T is one to one and has closed range, and satisfies

$$
T T^{*}+\left(T^{*} T\right)^{-1} \leq 2 I
$$

then the operator T satisfies condition (a), that is

$$
\|T f+g\|^{2} \leq 2\left(\|f\|^{2}+\|T g\|^{2}\right), \quad f, g \in H .
$$

Proof. Let $g=\left(T^{*} T\right)^{-\frac{1}{2}} h$ in condition (a), then the condition (a) is equivalent to the inequality

$$
\left\|T f+\left(T^{*} T\right)^{-\frac{1}{2}} h\right\|^{2} \leq 2\left(\|f\|^{2}+\|h\|^{2}\right)
$$

Consider the operator $R: H \oplus H \rightarrow H$ defined by

$$
R(f, h)=T f+\left(T^{*} T\right)^{-\frac{1}{2}} h, \quad(f, h) \in H \oplus H
$$

then we have

$$
R^{*}(h)=\left(T^{*} h,\left(T^{*} T\right)^{-\frac{1}{2}} h\right), \quad h \in H,
$$

it follows that

$$
R R^{*}=T T^{*}+\left(T^{*} T\right)^{-1} .
$$

Since

$$
T T^{*}+\left(T^{*} T\right)^{-1} \leq 2 I
$$

where I is the identity operator on H, then $R R^{*} \leq 2 I$, thus $\|R\| \leq \sqrt{2}$.
For $(f, h) \in H \oplus H,\|R(f, h)\|^{2} \leq(\sqrt{2})^{2}\|I(f, h)\|^{2}$, that is

$$
\left\|T f+\left(T^{*} T\right)^{-\frac{1}{2}} h\right\|^{2} \leq 2\left(\|f\|^{2}+\|h\|^{2}\right)
$$

Thus the result is proved.
Through describing the corresponding matrix of $T_{z_{i}}(i=1,2)$, we have the following theorem.

Theorem 3.1. Given $-1<\alpha \leq 0$ and $T_{z_{1}}$ is a bounded linear operator on $A_{\alpha}^{2}\left(D^{2}\right)$, then $T_{z_{1}} T_{z_{1}}^{*}+\left(T_{z_{1}}^{*} T_{z_{1}}\right)^{-1} \leq 2 I$, where I is the identity operator on $A_{\alpha}^{2}\left(D^{2}\right)$.

Proof. For any $n=0,1,2, \ldots$, in the closed subspace $X_{n}^{(1)}$, the operator S_{n} can be represented as a $\aleph_{0} \times \aleph_{0}$ matrix:

$$
S_{n}=\left(\begin{array}{cccccccc}
0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots \\
\sqrt{w_{1}} & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots \\
0 & \sqrt{\frac{w_{2}}{w_{1}}} & 0 & \cdots & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & \cdots & \sqrt{\frac{w_{m}}{w_{m-1}}} & 0 & 0 & \cdots \\
0 & 0 & 0 & \cdots & 0 & \sqrt{\frac{w_{m+1}}{w_{m}}} & 0 & \cdots \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right),
$$

then the operator S_{n}^{*} has the matrix form as

$$
S_{n}^{*}=\left(\begin{array}{cccccccc}
0 & \sqrt{w_{1}} & 0 & \cdots & 0 & 0 & 0 & \cdots \\
0 & 0 & \sqrt{\frac{w_{2}}{w_{1}}} & \cdots & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & \sqrt{\frac{w_{m}}{w_{m-1}}} & 0 & \cdots \\
0 & 0 & 0 & \cdots & 0 & 0 & \sqrt{\frac{w_{m+1}}{w_{m}}} & \cdots \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

Thus the operators $S_{n} S_{n}^{*},\left(S_{n}^{*} S_{n}\right)^{-1}$ respectively have the matrix forms as

$$
S_{n} S_{n}^{*}=\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & \cdots \\
0 & w_{1} & 0 & \cdots & 0 & \cdots \\
0 & 0 & \frac{w_{2}}{w_{1}} & \cdots & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \cdots \\
0 & 0 & 0 & \cdots & \frac{w_{m}}{w_{m-1}} & \cdots \\
\vdots & \vdots & \vdots & \cdots & \vdots & \ddots
\end{array}\right),
$$

$$
\left(S_{n}^{*} S_{n}\right)^{-1}=\left(\begin{array}{cccccc}
\frac{1}{w_{1}} & 0 & 0 & \cdots & 0 & \cdots \\
0 & \frac{w_{1}}{w_{2}} & 0 & \cdots & 0 & \cdots \\
0 & 0 & \frac{w_{2}}{w_{3}} & \cdots & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \cdots \\
0 & 0 & 0 & \cdots & \frac{w_{m}}{w_{m+1}} & \cdots \\
\vdots & \vdots & \vdots & \cdots & \vdots & \ddots
\end{array}\right) .
$$

Therefore,

$$
S_{n} S_{n}^{*}+\left(S_{n}^{*} S_{n}\right)^{-1}=\left(\begin{array}{cccccc}
\frac{1}{w_{1}} & 0 & 0 & \cdots & 0 & \cdots \\
0 & w_{1}+\frac{w_{1}}{w_{2}} & 0 & \cdots & 0 & \cdots \\
0 & 0 & \frac{w_{2}}{w_{1}}+\frac{w_{2}}{w_{3}} & \cdots & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \cdots \\
0 & 0 & 0 & \cdots & \frac{w_{m}}{w_{m-1}}+\frac{w_{m}}{w_{m+1}} & \cdots \\
\vdots & \vdots & \vdots & \cdots & \vdots & \ddots
\end{array}\right) .
$$

It is easily concluded that $\frac{w_{m}}{w_{m+1}}+\frac{w_{m}}{w_{m-1}} \leq 2, m=0,1,2, \ldots$, for $-1<\alpha \leq 0$. So

$$
S_{n} S_{n}^{*}+\left(S_{n}^{*} S_{n}\right)^{-1} \leq 2 \tilde{I},
$$

where \tilde{I} is the restriction of the identity operator I to the closed subspace $X_{n}^{(1)}$. Since

$$
T_{z_{1}}=\sum_{n=0}^{\infty} \oplus T_{z_{1}} \mid X_{n}^{(1)}=\sum_{n=0}^{\infty} \oplus S_{n}
$$

so $T_{z_{1}} T_{z_{1}}^{*}+\left(T_{z_{1}}^{*} T_{z_{1}}\right)^{-1} \leq 2 I$, the result is proved.
Theorem 3.2. Suppose $-1<\alpha \leq 0$ and M is an invariant subspace of $T_{z_{1}}$ in $A_{\alpha}^{2}\left(D^{2}\right)$. Then M is generated by $M \ominus T_{z_{1}} M$, that is

$$
M=\left[M \ominus T_{z_{1}} M\right] .
$$

Proof. According to Theorem 3.1 that

$$
T_{z_{1}} T_{z_{1}}^{*}+\left(T_{z_{1}}^{*} T_{z_{1}}\right)^{-1} \leq 2 I,
$$

then by Lemma 3.1, condition (a) holds for $T_{z_{1}}$. Let T be the restriction of $T_{z_{1}}$ to the invariant subspace M, then T satisfies condition (a) and (b), and therefore the result is now immediate from Theorem 6.14 in [3].

Theorem 3.3. Suppose $-1<\alpha \leq 0$ and M is an invariant subspace of $T_{z_{2}}$ in $A_{\alpha}^{2}\left(D^{2}\right)$. Then M is generated by $M \ominus T_{z_{2}} M$, that is

$$
M=\left[M \ominus T_{z_{2}} M\right] .
$$

Proof. The proof follows from the symmetry of z_{1}, z_{2} and Theorem 3.2.
Corollary 3.1. Suppose $-1<\alpha \leq 0$. If

$$
M=\left[M \ominus T_{z_{1}} M\right] \bigcap\left[M \ominus T_{z_{2}} M\right]
$$

then M is an invariant subspace of T_{z} in $A_{\alpha}^{2}\left(D^{2}\right)$.
Proof. It obviously follows from $T_{z}=T_{z_{1}} T_{z_{2}}$ and Theorem 3.2, Theorem 3.3.

Acknowledgements. The suggestions given by the referee for the improvement of the original paper are gratefully acknowledged. The authors would like to thank Doctor Yanyue Shi for her invaluable suggestions.

References

[1] A. Aleman, S. Richter and C. Sundberg, Beurling's theorem for the Bergman space, Acta. Math., 177 (1996), 275-310.
[2] K. Guo, S. Sun, D. Zheng and C. Zhong, Multiplication operators on the Bergman space via the Hardy space of the bidisk, to appear in J. Reine Angew. Math.
[3] H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman Spaces, Spring-Verlag, New York, 2000.
[4] H. Hedenmalm, S. Richter and K. Seip, Interpolating sequences and invariant subspaces of given index in the Bergman spaces, J. Reine Angew. Math., 477 (1996), 13-30.
[5] T. Lance and M. Stessin, Multiplication invariant subspace in Hardy space, Canadian J. Math., 49 (1997), 100-118.
[6] W. Rudin, Function Theory in Polydiscs, W. A. Benjamin, INC. New York, 1969.
[7] M. Stessin and K. Zhu, Reducing subspaces of weighted shift operators, Proceedings of Amer. Math. Soc. (9), 130 (2002), 2631-2639.
[8] S. Sun, D. Zheng and C. Zhong, Classification of reducing subspaces of a class of multiplication operators on the Bergman space via the Hardy space of the bidisk, to appear in Canadian J. Math.
[9] K. Zhu, Operator Theory in Function Spaces, Monogr. Textbooks Pure Appl. Math., 139, Marcel Dekker Inc., New York, 1990.
[10] K. Zhu, Reducing subspaces for a class of multiplication operator, J. London Math. Soc. (2), 62 (2000), 553-568.

Yufeng Lu

School of Mathematical Sciences Dalian University of Technology Dalian 116024, China

Xiaoyang Zhou

School of Mathematical Sciences Dalian University of Technology Dalian 116024, China

[^0]: 2000 Mathematics Subject Classification. Primary 47A15, 32A35.
 Key Words and Phrases. weighted Bergman space, bidisk, invariant subspace, reducing subspace.

 This work was supported by NSFC. The item numbers are 10671028 and 10971020.

