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Abstract. We introduce the concept of strict ample sequence in a
fibered triangulated category and define the stability of the objects in a trian-
gulated category. Then we construct the moduli space of (semi) stable objects
by GIT construction.

1. Introduction.

Let X → S be a projective and flat morphism of noetherian schemes. We
consider the functor SplcpxX/S : (Sch/S) → (Sets) defined by

SplcpxX/S(T )

=





E ∈ Db(Coh(X ×S T ))

∣∣∣∣∣∣∣∣∣

for any geometric point t of T , E(t) :=
E ⊗L k(t) is a bounded complex and

Exti(E(t), E(t)) ∼=
{

k(t) if i = 0
0 if i = −1





/
∼,

where E ∼ E′ if there is a line bundle L on T such that E ∼= E′⊗L in Db(Coh(X×S

T )). We denote the étale sheafification of SplcpxX/S by Splcpxét
X/S . Then the

result of [4] is that Splcpxét
X/S is an algebraic space over S. M. Lieblich extends

this result in [7] to the case when X → S is a proper flat morphism of algebraic
spaces. So the problem on the construction of the moduli space of objects in a
derived category is solved in some sense. However, the moduli space Splcpxét

X/S

is not separated and it is not a good space in geometric sense. So we want to
construct a projective moduli space (or quasi-projective moduli space with a good
compactification) as a Zariski open set of Splcpxét

X/S such as the moduli space of
stable sheaves.

This problem is also motivated by Fourier-Mukai transform. Let X, Y be
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projective varieties over an algebraically closed field k and P be an object of
Db(Coh(X × Y )). The functor

Φ : Db(Coh(X)) −→ Db(Coh(Y ))

E 7→ R(pY )∗(p∗X(E)⊗L P)

is called a Fourier-Mukai transform if it is an equivalence of categories. Here
pX : X×Y → X and pY : X×Y → Y are the projections. Fourier-Mukai transform
induces the isomorphisms on moduli spaces and for example the image Φ(MP

X ) of
a moduli space of stable sheaves MP

X on X by Φ sometimes becomes a moduli
space of stable sheaves on Y . The problem on the preservation of stability under
Fourier-Mukai transform is investigated by many people and this problem is clearly
pointed out by K. Yoshioka in [11]. However, the image Φ(MP

X ) of the moduli
space of stable sheaves by the Fourier-Mukai transform may not be contained in
the category of coherent sheaves on Y in general and so we must consider certain
moduli space of stable objects in the derived category Db(Coh(Y )).

In this paper we introduce the concept “strict ample sequence” in a triangu-
lated category. “Strict ample sequence” satisfies the condition of ample sequence
defined by A. Bondal and D. Orlov in [2], but it also satisfies many other con-
ditions because we expect that a “polarization” is determined by strict ample
sequence. Indeed we can define stable objects determined by a strict ample
sequence and construct the moduli space of stable objects (resp. S-equivalence
classes of semistable objects) as a quasi-projective scheme (resp. projective
scheme). This is the main result of this paper (Theorem 4.4 and Theorem 4.8).
If Φ : Db(Coh(X)) → Db(Coh(Y )) is a Fourier-Mukai transform and MP

X is a
moduli space of stable sheaves on X, then the image Φ(MP

X ) of MP
X by Φ becomes

a moduli space of stable objects in Db(Coh(Y )) whose stability is determined by
some strict ample sequence on Db(Coh(Y )). So Fourier-Mukai transform always
preserves certain stability in our sense (Example 5.3).

T. Bridgeland defined in [1] the concept of stability condition on a triangulated
category. So we are interested in the relation between the stability condition of
Bridgeland and the definition of stability determined by a strict ample sequence.
However, it seems rather impossible to expect the construction of a strict ample
sequence from the stability condition defined by Bridgeland without any other
condition. How to treat the relation between strict ample sequence and stability
condition of Brigeland is a problem still unsolved.
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2. Definition of fibered triangulated category.

Let S be a noetherian scheme. We denote the category of noetherian schemes
over S by (Sch/S) and the derived category of bounded complexes of coherent
sheaves on U by Db

c(U) for U ∈ (Sch/S). We denote the derived category of lower
bounded complexes of coherent sheaves on U by D+

c (U) for U ∈ (Sch/S). For a
noetherian scheme X over S, we denote the full subcategory of Db

c(X) consisting of
the objects of finite Tor-dimension over S by Db(Coh(X/S)). Then Db(Coh(X/S))
becomes a triangulated category. For a triangulated category T and for objects
E, F ∈ T , we write Exti(E, F ) := HomT (E, F [i]).

Definition 2.1. p : D → (Sch/S) is called a fibered triangulated category
if

(1) D is a category, p is a covariant functor,
(2) for any U ∈ (Sch/S), the full subcategory DU := p−1(U) of D is a triangu-

lated category,
(3) for any object E ∈ DU and for any morphism f : V → U = p(E) in (Sch/S),

there exist an object F ∈ DV and a morphism u : F → E satisfying the
condition: For any object G ∈ DV and a morphism v : G → E with
p(v) = f , there exists a unique morphism w : G → F satisyfing p(w) = idV

and u ◦w = v, (we denote F by f∗(E) or EV and we call such morphism u

a Cartesian morphism),
(4) any composition of Cartesian morphisms is Cartesian,
(5) for any morphism V → U in (Sch/S), DU 3 E 7→ EV ∈ DV is an “exact

functor”, that is, for any distinguished triangle E → F → G in DU , EV →
FV → GV is a distinguished triangle in DV and for any E ∈ DU and any
i ∈ Z, there is an isomorphism (E[i])V

∼= EV [i] functorial in E.

Definition 2.2. A fibered triangulated category p : D → (Sch/S) has base
change property if

(1) for each U ∈ (Sch/S), there is a bi-exact bi-functor ⊗ : DU ×
Db(Coh(U/U)) → DU such that there is a functorial isomorphism E[i] ⊗
P [j] ∼= (E ⊗ P )[i + j] for E ∈ DU , P ∈ Db(Coh(U/U)),

(2) for a morphism ϕ : U → V in (Sch/S), the diagram

DV ×Db(Coh(V/V ))
⊗ //

ϕ∗×Lϕ∗

²²

DV

ϕ∗

²²
DU ×Db(Coh(U/U))

⊗ // DU
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is “commutative”, precisely, there exists a functorial isomorphism ϕ∗ ◦⊗ ∼→
⊗ ◦ (ϕ∗ × Lϕ∗),

(3) for U ∈ (Sch/S), there is a bi-exact bi-functor

R Homp : DU ×DU −→ D+
c (U)

such that for E1, E2 ∈ DU and for intgers i, j, there is an iso-
morphism R Homp(E1[i], E2[j]) ∼= R Homp(E, F )[j − i] functorial in E1

and E2 and also for E1, E2 ∈ DU there is an isomorphism HomD(U)

(OU ,R Homp(E1, E2))
∼→ HomDU

(E1, E2) functorial in E1 and E2,
(4) for any U ∈ (Sch/S) and for any objects E1, E2 ∈ DU , there exist a lower

bounded complex P • of locally free sheaves of finite rank on U and an
isomorphism

P • ⊗ OV
∼→ R Homp((E1)V , (E2)V )

in D+
c (V ) for any morphism V → U in (Sch/S), such that the diagram

H0(Γ((U,P •)) //

²²

HomD(U)(OU ,R Homp(E1, E2))

H0(Γ((V, P • ⊗ OV )) // HomD(V )(OV ,R Homp((E1)V , (E2)V ))

∼ // HomDU
(E1, E2)

²²∼ // HomDV
((E1)V , (E2)V )

is commutative,
(5) for U ∈ (Sch/S), E1, E2 ∈ DU and F1, F2 ∈ Db(Coh(U/U)), there is a

functorial isomorphism R Homp(E1⊗F1, E2⊗U F2) ∼= R Homp(E1, E2)⊗L
OU

RHom(F1, F2) such that for any morphism ϕ : V → U in (Sch/S), the
diagram

R Homp(E1 ⊗ F1, E2 ⊗ F2)
∼ //

²²

R Homp(E1, E2)
⊗L

OU
RHom(F1, F2)

²²
Rϕ∗(R Homp

((E1 ⊗ F1)V , (E2 ⊗ F2)V ))
∼ // Rϕ∗(R Homp((E1)V , (E2)V )

⊗L
OV

RHom((F1)V , (F2)V ))
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is commutative.

Remark 2.3. For E, F ∈ DU , we denote the i-th cohomology
Hi(R Homp(E, F )) by Ri Homp(E, F ). We notice that for three objects E, F,G ∈
DU , there is a canonical morphism

R0 Homp(E, F )×R0 Homp(F, G) → R0 Homp(E, G).

Example 2.4. Let X → S be a flat projective morphism. Then
{Db(Coh(XU/U))}U∈(Sch/S) becomes a fibered triangulated category over S which
has base change property.

Example 2.5. Let X be a projective scheme over C and G a finite group
acting on X. For a scheme U ∈ (Sch/C), let DG(Coh(XU/U)) be the derived
category of bounded complexes of G-equivariant coherent sheaves on XU of finite
Tor-dimension over U . Then {DG(Coh(XU/U))}U∈(Sch/C) becomes a fibered tri-
angulated category over C which has base change property.

3. Strict ample sequence and stability.

Definition 3.1. Let p : D → (Sch/S) be a fibered triangulated category
with base change property. A sequence L = {Ln}n≥0 of objects of DS is said to
be a strict ample sequence if it satisfies the following conditions:

(1) Exti((LN )s, (Ln)s) = 0 for any i 6= 0, N > n and s ∈ S.
(2) There exist isomorphisms

θk : R0 Homp(Ln, Lm) ∼−→ R0 Homp(Ln+k, Lm+k)

for non-negative integers k, m, n with n ≥ m such that θk ◦ θl = θk+l for
any k, l and the diagram

R0 Homp(Ln, Lm)
⊗R0 Homp(Lm, Ll)

θk⊗θk //

²²

R0 Homp(Ln+k, Lm+k)
⊗R0 Homp(Lm+k, Ll+k)

²²
R0 Homp(Ln, Ll)

θk // R0 Homp(Ln+k, Ll+k)

is commutative for non-negative integers k, l, m, n with n ≥ m ≥ l.
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(3) There exists a subbundle V1 ⊂ R0 Homp(L1, L0) such that the diagram

V1 ×R0 Homp(Ln, L0)
θn×1 //

1×θ1

²²

R0 Homp(Ln+1, Ln)×R0 Homp(Ln, L0)

²²
V1 ×R0 Homp(Ln+1, L1) // R0 Homp(Ln+1, L0),

is commutative for n ≥ 0, where the right vertical arrow and the bottom
horizontal arrow are the canonical composition maps and there exists an
integer n0 such that for any n ≥ n0,

R0 Homp(Ln, L1)⊗ V1 −→ R0 Homp(Ln, L0)

is surjective for any n ≥ n0.
(4) For any object E ∈ DU and for any non-negative integer m, there exists a

bounded complex P • of locally free sheaves of finite rank on U such that
R Homp((Lm)V , EV ) ∼= P •⊗OV for any V → U . Moreover, there exists an
integer n0 such that for any n ≥ n0, exists an integer N0 such that for any
integers i,N with N ≥ N0 and for any s ∈ U ,

Hom((LN )s, (Ln)s)⊗ Exti((Ln)s, Es) → Exti((LN )s, Es)

is surjective.
(5) If there exist integers i, n0 and an object E ∈ DU satisfying Exti((Ln)s, Es)

= 0 for any n ≥ n0 and for any s ∈ U , then there exist an object F ∈ DU

and a morphism u : E → F such that for any j > i, Rj Homp((Ln)U , E)
→ Rj Homp((Ln)U , F ) are isomorphic for n À 0, and for any j ≤ i,
Rj Homp((Ln)U , F ) = 0 for n À 0.

(6) Take two objects E, F ∈ DU such that for any i ≥ 0, Ri Homp((Ln)U , E) = 0
for n À 0 and that for any i < 0, Ri Homp((Ln)U , F ) = 0 for n À 0. Then
we have HomDU

(E, F ) = 0.

Proposition 3.2. Take E ∈ DU such that for any i, Ri Homp((Ln)U , E) =
0 for n À 0. Then we have E = 0.

Proof. Applying the condition (6) of Definition 3.1, we have Hom(E, E) =
0. In particular idE = 0. So, for any object F ∈ DU and for any morphism
f ∈ Hom(F, E) (resp. g ∈ Hom(E, F )), f = idE ◦ f = 0 (resp. g = g ◦ idE = 0).
Thus E = 0. ¤
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Remark 3.3. By the condition in Definition 3.1 (2), we can see that θ0 = id
and θk(id) = id. We put A :=

⊕
n≥0 R0 Homp(Ln, L0) and define a multiplication

α : R0 Homp(Ln, L0)×R0 Homp(Lm, L0) −→ R0 Homp(Ln+m, L0)

by α = (composition) ◦ (θm × id). Then A becomes an associative graded ring
which is a finitely generated module over S∗(V1), where S∗(V1) is the symmetric
algebra of V1 over OS .

Proposition 3.4. Let E1, E2 be objects of DU and u : E1 → E2 be a mor-
phism such that for any integer i the induced morphism Ri Homp((Ln)U , E1) →
Ri Homp((Ln)U , E2) is isomorphic for n À 0. Then u is an isomorphism.

Proof. For any i, there is an exact sequence

Ri Homp((Ln)U , E1)
∼−→ Ri Homp((Ln)U , E2) −→ Ri Homp((Ln)U ,Cone(u))

−→ Ri+1 Homp((Ln)U , E1)
∼−→ Ri+1 Homp((Ln)U , E2)

for n À 0. Thus we have Ri Homp((Ln)U ,Cone(u)) = 0 for n À 0. By Proposition
3.2 we have Cone(u) = 0, which means that u is an isomorphism. ¤

Proposition 3.5. For an integer i and an object E ∈ DU such that for
n À 0, Exti((Ln)s, Es) = 0 for s ∈ U , the object F given in Definition 3.1 (5) is
unique up to an isomorphism.

Proof. Let F ′ ∈ DU be another object with a morphism u′ : E → F ′

having the same property as F . Consider the composite

v : Cone(u)[−1] −→ E
u′−→ F ′.

Since there is a long exact sequence

· · · −→ Rj Homp((Ln)U , E) −→ Rj Homp((Ln)U , F ) −→ Rj Homp((Ln)U ,Cone(u))

−→ Rj+1 Homp((Ln)U , E) −→ Rj+1 Homp((Ln)U , F ) −→ · · · ,

we have, for any j ≥ i, Rj Homp((Ln)U ,Cone(u)) = 0 for n À 0. Note that
for any j ≤ i, we have Rj Homp((Ln)U , F ′) = 0 for n À 0. Then we have
HomDU

(Cone(u), F ′) = 0 and HomDU
(Cone(u)[−1], F ′) = 0 by condition (6) of

Definition 3.1. So we have v = 0 and there is a unique morphism ϕ : F → F ′
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which makes the diagram

E
u //

id

²²

F

ϕ

²²
E

u′ // F ′

commute. We can see that for any integer j, the morphism Rj Homp((Ln)U , F ) →
Rj Homp((Ln)U , F ′) induced by ϕ is isomorphic for n À 0. Hence ϕ is an isomor-
phism by Proposition 3.4. ¤

Remark 3.6. In the situation of Definition 3.1 (5), for n À 0, the induced
morphism

Extj((Ln)s, Es) → Extj((Ln)s, Fs)

is isomorphic for any j > i and for any s ∈ U , and we have, for n À 0,
Extj((Ln)s, Fs) = 0 for any j ≤ i and for any s ∈ U .

Indeed consider the distinguished triangle E
u→ F → Cone(u). Note that

there is a long exact sequence

Rj Homp((Ln)U , E) −→ Rj Homp((Ln)U , F ) −→ Rj Homp((Ln)U ,Cone(u))

−→ Rj+1 Homp((Ln)U , E) −→ Rj+1 Homp((Ln)U , F ).

Since Ri Homp((Ln)U , F ) = 0 for n À 0, and for any j > i, Rj Homp((Ln)U , E) →
Rj Homp((Ln)U , F ) are isomorphic for n À 0, we have, for any j ≥ i,
Rj Homp((Ln)U ,Cone(u)) = 0 for n À 0.

By Definition 3.1 (4), there are integers n0 and N0 with N0 > n0 such that

Hom((LN )s, (Ln0)s)⊗ Extj((Ln0)s,Cone(u)s) −→ Extj((LN )s,Cone(u)s)

is suriective for any j, any N ≥ N0 and any s ∈ U . By Definition 3.1 (4), there
are integers j0, j1 such that for j < j0 and j > j1, Extj((Ln0)s,Cone(u)s) = 0 for
any s ∈ U . Then for any N ≥ N0, we have Extj((LN )s,Cone(u)s) = 0 for any
j > j1 and s ∈ U . For each j with i ≤ j ≤ j1, there exists an integer N(j) such
that for any N ≥ N(j), we have Rj Homp((LN )U ,Cone(u)) = 0. Put

Ñ := max{N(i), N(i + 1), . . . , N(j1), N0}.
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By Definition 2.2 (4), we have Extj((LN )s,Cone(u)s) = 0 for any N ≥ Ñ and for
each j with i ≤ j ≤ j1 and for any s ∈ U , because Extj1+1((LN )s,Cone(u)s) = 0
for any s ∈ U and Rj Homp((LN )U ,Cone(u)) = 0 for i ≤ j ≤ j1. Thus we have
Extj((LN )s,Cone(u)s) = 0 for any N ≥ Ñ , j ≥ i and s ∈ U .

Note that there are integers k0, k1 and a positive integer M0 such that for any
M ≥ M0 and for any s ∈ U , Extj((LM )s, Fs) = 0 for j < k0 and j > k1. We may
also assume that for any M ≥ M0 and for any s ∈ U , Exti((LM )s, Es) = 0. From
the exact sequence

0 = Exti((LM )s, Es) −→ Exti((LM )s, Fs) −→ Exti((LM )s,Cone(u)s) = 0,

we have Exti((LM )s, Fs) = 0 for s ∈ U and M ≥ max{M0, Ñ}. By assump-
tion, for each j with k0 ≤ j ≤ i, there exists an integer M(j) such that
Rj Homp((LM )U , F ) = 0 for M ≥ M(j). Put

M̃ := max{Ñ ,M0,M(k0),M(k0 + 1), . . . , M(i)}.

Then we have Extj((LM )s, Fs) = 0 for j ≤ i, s ∈ U and M ≥ M̃ by using
Definition 2.2 (4), because Exti((LM )s, Fs) = 0 and Rj Homp((LM )U , F ) = 0 for
k0 ≤ j ≤ i. From the exact sequence

Extj−1((LM )s,Cone(u)s) −→ Extj((LM )s, Es)

−→ Extj((LM )s, Fs) −→ Extj((LM )s,Cone(u)s),

we have an isomorphism Extj((LM )s, Es)
∼→ Extj((LM )s, Fs) for j > i, s ∈ U and

M ≥ M̃ .

Lemma 3.7. If E ∈ DU satisfies Exti((Ln)s, Es) = 0 for n À 0, i 6= 0
and s ∈ U , then there exist locally free OU -modules W0,W1,W2, positive integers
n0 < n1 < n2 and morphisms

(Ln2)U ⊗W2
d2

−→ (Ln1)U ⊗W1
d1

−→ (Ln0)U ⊗W0
f−→ E

such that the induced sequence

Hom((LN )s, (Ln2)s)⊗W2 −→ Hom((LN )s, (Ln1)s)⊗W1

−→ Hom((LN )s, (Ln0)s)⊗W0 −→ Hom((LN )s, Es) −→ 0



404 M. Inaba

is exact for N À 0 and s ∈ U .

Proof. By Definition 3.1 (4), there exist integers n0, N0 with N0 > n0 such
that for any s ∈ U ,

Hom((LN )s, (Ln0)s)⊗Hom((Ln0)s, Es) → Hom((LN )s, Es)

is surjective for N ≥ N0 and Exti((Ln)s, Es) = 0 for n ≥ n0, i 6= 0 and s ∈ U .
There is a canonical morphism

f : (Ln0)U ⊗R0 Homp((Ln0)U , E) −→ E

and we put F 1 := Cone(f)[−1]. Then we can see that Exti((LN )s, (F 1)s) = 0 for
N ≥ N0, i 6= 0 and s ∈ U . We can find integers n1, N1 with N1 > n1 such that
for any s ∈ U ,

Hom((LN )s, (Ln1)s)⊗Hom((Ln1)s, (F 1)s) −→ Hom((LN )s, (F 1)s)

is surjective for N ≥ N1 and Exti((Ln)s, (F 1)s) = 0 for n ≥ n1, i 6= 0 and s ∈ U .
Consider the canonical morphism

g : (Ln1)U ⊗R0 Homp((Ln1)U , F 1) −→ F 1

and put F 2 := Cone(g)[−1]. We can find again integers n2, N2 with N2 > n2 such
that for any s ∈ U ,

Hom((LN )s, (Ln2)s)⊗Hom((Ln2)s, (F 2)s) −→ Hom((LN )s, (F 2)s)

is surjective for N ≥ N2 and Exti((Ln)s, (F 2)s) = 0 for n ≥ n2, i 6= 0 and s ∈ U .
There is a canonical morphism

h : (Ln2)U ⊗R0 Homp((Ln2)U , F 2) −→ F 2

and we obtain a sequence of morphisms

(Ln2)U ⊗R0 Homp((Ln2)U , F 2) −→ (Ln1)U ⊗R0 Homp((Ln1)U , F 1)

−→ (Ln0)U ⊗R0 Homp((Ln0)U , E) −→ E

such that for N ≥ max{N0, N1, N2}, the induced sequence
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Hom((LN )s, (Ln2)s)⊗R0 Homp((Ln2)U , F 2)

−→ Hom((LN )s, (Ln1)s)⊗R0 Homp((Ln1)U , F 1)

−→ Hom((LN )s, (Ln0)s)⊗R0 Homp((Ln0)U , E)

−→ Hom((LN )s, Es) −→ 0

is exact for any s ∈ U . If we put W0 = R0 Homp((Ln0)U , E) and Wi =
R0 Homp((Lni

)U , F i) for i = 1, 2, then we can see by Definition 2.2 (4) that Wi

are locally free OU -modules and have the desired property. ¤

Proposition 3.8. Let E1, E2 be objects of DU such that Exti((Ln)s, (Ej)s)
= 0 for j = 1, 2, n À 0, i 6= 0 and s ∈ U . If f : E1 → E2 is a morphism in DU

such that the induced morphisms R0 Homp((Ln)U , E1) → R0 Homp((Ln)U , E2) are
zero for n À 0, then f = 0.

Proof. By assumption, there is an integer N0 such that for any N ≥ N0,
the morphism

R0 Homp((LN )U , E1) → R0 Homp((LN )U , E2)

induced by f is zero and Exti((LN )s, (Ej)s) = 0 for j = 1, 2, i 6= 0 and s ∈ U . By
Lemma 3.7, there are locally free sheaves W0,W1,W2, integers n0 < n1 < n2 and
morphisms

(Ln2)U ⊗W2 −→ (Ln1)U ⊗W1 −→ (Ln0)U ⊗W0
ϕ−→ E1

such that the induced sequence

Hom((LN )s, (Ln2)s)⊗W2 −→ Hom((LN )s, (Ln1)s)⊗W1

−→ Hom((LN )s, (Ln0)s)⊗W0 −→ Hom((LN )s, (E1)s) −→ 0

is exact for N À 0 and s ∈ U . We can take n0 so that n0 ≥ N0. Consider the
distinguished triangle

(Ln0)U ⊗W0 −→ E1 −→ Cone(ϕ).

We can see that Exti((Ln)s,Cone(ϕ)s) = 0 for n À 0, i 6= −1 and s ∈ U . So we
have HomDU

(Cone(ϕ), E2) = 0 by (6) of Definition 3.1 and the homomorphism
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HomDU
(E1, E2) → HomDU

((Ln0)U ⊗W0, E2) (†)

induced by ϕ is injective. On the other hand, the homomorphism

R0 Homp((Ln0)U ⊗W0, E1) −→ R0 Homp((Ln0)U ⊗W0, E2)

induced by f is zero. So we have f ◦ ϕ = 0. By the injectivity of (†), we have
f = 0. ¤

Since A =
⊕

n≥0 R0 Homp(Ln, L0) becomes a finite algebra over S∗(V1), the
associated sheaf A := Ã becomes a coherent sheaf of algebras on P (V1). For each
object E ∈ DU satisfying Exti((Ln)s, Es) = 0 for n À 0, i 6= 0 and s ∈ U , the
associated sheaf

( ⊕
n≥0 R0 Homp((Ln)U , E)

)∼ on P (V1)U = P (V1)×S U becomes
a coherent AU -module flat over U .

Proposition 3.9. The correspondence E 7→ ( ⊕
n≥0 R0 Homp((Ln)U , E)

)∼
gives an equivalence of categories between the full subcategory of DU consisting of
the objects E of DU satisfying Exti((Ln)s, Es) = 0 for n À 0, i 6= 0 and s ∈ U

and the category of coherent AU -modules flat over U .

Proof. First we will prove that the functor

ψ : E 7→
( ⊕

n≥0

R0 Homp((Ln)U , E)
)∼

is fully faithful. Take any objects E, F of DU which satisfy Exti((Ln)s, Es) = 0,
Exti((Ln)s, Fs) = 0 for n À 0, i 6= 0 and s ∈ U . By Proposition 3.8,

Hom(E, F ) −→ Hom(ψ(E), ψ(F )) (†)

is injective. Take any homomorphism f ∈ Hom(ψ(E), ψ(F )). There exists an
integer n0 such that for any n ≥ n0, Exti((Ln)s, Es) = 0, Exti((Ln)s, Fs) = 0 for
i 6= 0 and s ∈ U and the homomorphisms

Hom((LN )s, (Ln0)s)⊗Hom((Ln0)s, Es) −→ Hom((LN )s, Es)

Hom((LN )s, (Ln0)s)⊗Hom((Ln0)s, Fs) −→ Hom((LN )s, Fs)

are surjective for N À 0 and s ∈ U . For a coherent AU -module E , we denote
E ⊗OP (V1)U

(n) simply by E (n). We denote the structure morphism P (V1)U → U
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by π. Then we may assume that Riπ∗(ψ(E)(n0)) = 0, Riπ∗(ψ(F )(n0)) = 0 for
i > 0 and that the homomorphisms

π∗(ψ(E)(n0))⊗A (−n0) −→ ψ(E)

π∗(ψ(F )(n0))⊗A (−n0) −→ ψ(F )

are surjective. We may also assume that

R0 Hom((Ln0)U , E) −→ π∗(ψ(E)(n0))

R0 Hom((Ln0)U , F ) −→ π∗(ψ(F )(n0))

are isomorphic. Consider the distinguished triangles

Cone(v)[−1] ι1−→ (Ln0)U ⊗R0 Homp((Ln0)U , E) v−→ E

Cone(w)[−1] ι2−→ (Ln0)U ⊗R0 Homp((Ln0)U , F ) w−→ F.

Then we can see that Exti((LN )s,Cone(v)[−1]s) = 0, Exti((LN )s,Cone(w)[−1]s)
= 0 for N À 0, i 6= 0 and s ∈ U . The homomorphism f : ψ(E) → ψ(F ) induces a
homomorphism

f(n0) : R0 Homp((Ln0)U , E) ∼= π∗(ψ(E)(n0))

−→ π∗(ψ(F )(n0)) ∼= R0 Homp((Ln0)U , F ).

Then f(n0) induces a homomorphism

f̃ : (Ln0)U ⊗R0 Homp((Ln0)U , E) −→ (Ln0)U ⊗R0 Homp((Ln0)U , F ).

Consider the composite

w ◦ f̃ ◦ ι1 : Cone(v)[−1] ι1−→ (Ln0)U ⊗R0 Homp((Ln0)U , E)

f̃−→ (Ln0)U ⊗R0 Homp((Ln0)U , F ) w−→ F.

Then we have ψ(w◦f̃ ◦ι1) = ψ(w)◦ψ(f̃)◦ψ(ι1) = f ◦ψ(v)◦ψ(ι1) = f ◦ψ(v◦ι1) = 0.
Since
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Hom(Cone(v)[−1], F ) −→ Hom(ψ(Cone(v)[−1]), ψ(F ))

is injective, we have w ◦ f̃ ◦ ι1 = 0. So there is a morphism f ′ : E → F , which
makes the diagram

Cone(v)[−1]
ι1 // (Ln0)U ⊗R0 Homp((Ln0)U , E) v //

f̃

²²

E

f ′

²²
Cone(w)[−1]

ι2 // (Ln0)U ⊗R0 Homp((Ln0)U , F ) w // F

commute. This commutative diagram induces a commutative diagram

π∗(ψ(E)(n0))⊗A (−n0)
ψ(v) //

²²

ψ(E)

ψ(f ′)
²²

π∗(ψ(F )(n0))⊗A (−n0) // ψ(F ).

Since (ψ(f ′)−f)◦ψ(v) = ψ(f ′)◦ψ(v)−f ◦ψ(v) = ψ(w)◦ψ(f̃)−ψ(w)◦ψ(f̃) = 0,
we have ψ(f ′)− f = 0 because ψ(v) is surjective. So we have ψ(f ′) = f . Thus (†)
is surjective and ψ becomes a fully faithful functor.

Take any coherent AU -module E flat over U . There is an exact sequence of
coherent AU -modules

W2 ⊗A (−n2)
δ2

−→ W1 ⊗A (−n1)
δ1

−→ W0 ⊗A (−n0) −→ E −→ 0,

where W0,W1,W2 are locally free sheaves on U and n2 À n1 À n0 À 0. The
above sequence induces a sequence of morphisms

(Ln2)U ⊗W2
d2

−→ (Ln1)U ⊗W1
d1

−→ (Ln0)U ⊗W0.

By construction we have d1 ◦ d2 = 0. So there is a morphism u : Cone(d2) →
(Ln0)U ⊗W0 such that the diagram

(Ln1)U ⊗W1
d1

//

''OOOOOOOOOOO
(Ln0)U ⊗W0

Cone(d2)

u

77ppppppppppp
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is commutative. Note that Exti((LN )s,Cone(d2)s) = 0 for N À 0, i 6= −1, 0 and
s ∈ U . So we have Exti((LN )s,Cone(u)s) = 0 for N À 0, i 6= −2,−1, 0 and s ∈ U .
Since E is flat over U , the sequence

W2 ⊗A (−n2)⊗ k(s) −→ W1 ⊗A (−n1)⊗ k(s)

−→ W0 ⊗A (−n0)⊗ k(s) −→ E ⊗ k(s) −→ 0

is exact for any s ∈ U . So we obtain the exact commutative diagram

H0(W2⊗
A (N − n2)⊗ k(s))

//

∼=
²²

H0(W1⊗
A (N − n1)⊗ k(s))

//

∼=
²²

H0(W0⊗
A (N − n0)⊗ k(s))

∼=
²²

Hom((LN )s,

(Ln2)s ⊗ (W2)s)
// Hom((LN )s,

(Ln1)s ⊗ (W1)s)
// Hom((LN )s,

(Ln0)s ⊗ (W0)s)

for N À 0 and s ∈ U . Here we denote Wi⊗ k(s) by (Wi)s for i = 0, 1, 2. We have
a factorization

Hom((LN )s, (Ln1)s ⊗ (W1)s) //

))SSSSSSSSSSSSSSS
Hom((LN )s, (Ln0)s ⊗ (W0)s)

Hom((LN )s,Cone(d2)s)

55kkkkkkkkkkkkkkk

for N À 0 and s ∈ U , and the homomorphism Hom((LN )s, (Ln1)s ⊗ (W1)s) −→
Hom((LN )s,Cone(d2)s) is surjective for N À 0 and s ∈ U , because Ext1((LN )s,

(Ln2)s⊗ (W2)s) = 0 for N À 0 and s ∈ U . So we can see that the homomorphism

Hom((LN )s,Cone(d2)s) −→ Hom((LN )s, (Ln0)s ⊗ (W0)s)

is injective for N À 0 and s ∈ U . Since there is an exact sequence

0 = Ext−1((LN )s, (Ln0)s ⊗ (W0)s) −→ Ext−1((LN )s,Cone(u)s)

0−→ Hom((LN )s,Cone(d2)s) −→ Hom((LN )s, (Ln0)s ⊗ (W0)s)

for N À 0 and s ∈ U , we have Ext−1((LN )s,Cone(u)s) = 0 for N À 0 and s ∈ U .
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By Definition 3.1 (5) and Remark 3.6, there is an object E ∈ DU and a morphism
α : Cone(u) → E such that R0 Homp((LN )U ,Cone(u)) → R0 Homp((LN )U , E) is
isomorphic for N À 0 and that Extj((LN )s, Es) = 0 for N À 0, j 6= 0 and s ∈ U .
We can see that the sequence

R0 Homp((LN )U , (Ln2)U ⊗W2) −→ R0 Homp((LN )U , (Ln1)U ⊗W1) −→
R0 Homp((LN )U , (Ln0)U ⊗W0) −→ R0 Homp((LN )U ,Cone(u)) −→ 0

is exact. Since R0 Homp((LN )U ,Cone(u)) ∼= R0 Homp((LN )U , E) for N À 0,
there is an integer N0 such that for any N ≥ N0, there is a unique isomorphism
R0 Homp((LN )U , E) ∼→ π∗(E (N)) which makes the diagram

R0 Homp((LN )U ,

(Ln1)U ⊗W1)
//

∼=
²²

R0 Homp((LN )U ,

(Ln0)U ⊗W0)
//

∼=
²²

R0 Homp

((LN )U , E)
−→ 0

∼=
²²

π∗(A (N − n1)⊗W1) // π∗(A (N − n0)⊗W0) // π∗(E (N)) −→ 0

commute. Note that there is a canonical commutative diagram

R0 Homp((LN+m)U ,

(LN )U )⊗R0 Homp((LN )U , E)
//

²²

R0 Homp((LN+m)U , E)

²²
π∗(A (m))⊗ π∗(E (N)) // π∗(E (N + m))

for N ≥ N0 and a non-negative integer m. Then we have an isomorphism

⊕

n≥N0

R0 Homp((Ln)U , E) ∼−→
⊕

n≥N0

π∗(E (n))

of graded AU -modules. So we obtain an isomorphism

ψ(E) =
( ⊕

n≥N0

R0 Homp((Ln)U , E)
)∼

∼−→
( ⊕

n≥N0

π∗(E (n))
)∼

∼= E .

Thus ψ becomes an equivalence of categories. ¤
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Definition 3.10. For a geometric point Spec k → S, an object E ∈ Dk is
said to be L -stable (resp. L -semistable) if Exti((Ln)k, E) = 0 for n À 0 and
i 6= 0 and the inequality

dimHom((Lm)k, F )
dimHom((Ln)k, F )

<
dimHom((Lm)k, E)
dimHom((Ln)k, E)

(
resp.

dimHom((Lm)k, F )
dimHom((Ln)k, F )

≤ dimHom((Lm)k, E)
dimHom((Ln)k, E)

)

holds for n À m À 0 and for any non-zero object F ∈ Dk satisfying
Exti((LN )k, F ) = 0 for N À 0 and i 6= 0 with a morphism ι : F → E such
that ι is not isomorphic and Hom((Ln)k, F ) → Hom((Ln)k, E) is injective for
n À 0.

Remark 3.11. Let Spec k → S be a geometric point and E an object of Dk

satisfying Exti((Ln)k, E) = 0 for i 6= 0 and n À 0. Let E be the coherent Ak-
module corresponding to E as in Proposition 3.9. Then E is L -stable (resp. L -
semistable) if and only if for any coherent Ak-submodule F of E with 0 6= F ( E ,
the inequality

χ(F (m))
χ(F (n))

<
χ(E (m))
χ(E (n))

(
resp.

χ(F (m))
χ(F (n))

≤ χ(E (m))
χ(E (n))

)
(1)

holds for n À m À 0. We say a coherent Ak-module E stable (resp. semistable)
if the corresponding object E of Dk is L -stable (resp. L -semistable).

Remark 3.12. For a field K with a morphism SpecK → S and an object
E ∈ DK , we say that E is L -stable (resp. L -semistable) if EK̄ is L -stable (resp.
L -semistable), where K̄ is the algebraic closure of K.

4. Existence of the moduli space of stable objects.

Definition 4.1. Let p : D → (Sch/S) be a fibered triangulated category
with base change property and L = {Ln}n≥0 be a strict ample sequence. For a
numerical polynomial P (t) ∈ Q[t], we define a moduli functor M P,L

D : (Sch/S) →
(Sets) by

M P,L
D (T ) :=





E ∈ DT

∣∣∣∣∣∣∣

for any geometric point s of T , for n À 0,

Exti((Ln)s, Es) = 0 for i 6= 0 and

Hom((Ln)s, Es) = P (n) and Es is L -stable





/
∼,



412 M. Inaba

where E ∼ E′ if there exists a line bundle L on T and an isomorphism E
∼→ E′⊗L.

We also define a moduli functor M P,L
D : (Sch/S) → (Sets) by

M P,L
D (T ) :=





E ∈ DT

∣∣∣∣∣∣∣

for any geometric point s of T , for n À 0,

Exti((Ln)s, Es) = 0 for i 6= 0 and

Hom((Ln)s, Es) = P (n) and Es is L -semistable





/
∼,

where E ∼ E′ if there exists a line bundle L on T such that E ∼= E′ ⊗ L or there
exist sequences 0 = E0 → E1 → · · · → Eα = E and 0 = E′

0 → E′
1 → · · · →

E′
α = E′ such that Exti((Ln)s, (Ej)s) = Exti((Ln)s, (E′

j)s) = 0 for n À 0, i 6= 0
and s ∈ T , Hom((Ln)s, (Ej)s) → Hom((Ln)s, (Ej+1)s) and Hom((Ln)s, (E′

j)s) →
Hom((Ln)s, (E′

j+1)s) are injective for n À 0 and s ∈ T and
⊕α

j=1 Fj
∼= ⊕α

j=1 F ′j⊗
L, where Fj = Cone(Ej−1 → Ej), F ′j = Cone(E′

j−1 → E′
j) and for any geometric

point s of T , (Fj)s and (F ′j)s are L -stable such that

dimHom((Lm)s, (Fj)s)
dimHom((Ln)s, (Fj)s)

=
P (m)
P (n)

=
dimHom((Lm)s, (F ′j)s)
dimHom((Ln)s, (F ′j)s)

for n À m À 0 and for j = 1, 2, . . . , α.

Proposition 4.2. For any numerical polynomial P (t) ∈ Q[t], the family

{
E

∣∣∣∣∣
E ∈ Dk for some geometric point Spec k → S,

E is L -semistable and Hom((Ln)k, E) = P (n) for n À 0

}

is bounded.

Proof. It suffices to show that the corresponding family of coherent A -
modules on the fibers of P (V1) over S is bounded. For a coherent sheaf G on
P (V1), we can write

χ(G (n)) =
d∑

i=0

ai(G )
(

n + d− i

d− i

)

with ai(G ) integers and we write µ(G) = a1(G )/a0(G ). Let E be a coherent
Ak-module such that χ(E (n)) = P (n) and the corresponding object of Dk is L -
semistable. Note that E is of pure dimension. We can take the slope maximal
destabilizer F of E as a sheaf on P (V1). Let F̃ be the image of F ⊗ A → E .
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Note that there exists a locally free sheaf W of finite rank on S, positive integer
N and a surjection

W ⊗ O(−N) −→ A

Then we obtain a surjection

W ⊗F (−N) −→ F ⊗A −→ F̃ .

Since W ⊗F (−N) is slope semistable, we have

µ(F )−N = µ(W ⊗F (−N)) ≤ µ(F̃ ) ≤ µ(E ).

So the maximal slope µ(F ) is bounded by N + µ(E ). Then we obtain the bound-
edness by [6, Theorem 4.2]. ¤

Proposition 4.3. Assume that U ∈ (Sch/S) and E ∈ DU are given. Then
the subsets

Us = {x ∈ U | Ex is L -stable}
Uss = {x ∈ U | Ex is L -semistable}

of U are open.

Proof. First we will show that

U ′ =
{
x ∈ U | Exti((Ln)x, Ex) = 0 for n À 0 and i 6= 0

}

is open in U . By Definition 3.1 (4), there exists a positive integer n0 such that for
any n ≥ n0, exists an integer Nn with Nn > n such that for any N ≥ Nn,

Hom((LN )s, (Ln)s)⊗ Exti((Ln)s, Es) −→ Exti((LN )s, Es)

is surjective for any i and s ∈ U . By Definition 3.1 (4), there are integers k1, k2

with k1 < k2 such that Exti((Ln0)s, Es) = 0 for any s ∈ U except for k1 ≤ i ≤ k2.
Then we have Exti((LN )s, Es) = 0 for N ≥ Nn0 and s ∈ U , except for k1 ≤ i ≤ k2.
Now take any point x ∈ U ′. For each i 6= 0 with k1 ≤ i ≤ k2, there is an integer
mi with mi ≥ n0 such that Exti((Lmi

)x, Ex) = 0. For any N ≥ Nmi
,
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Hom((LN )s, (Lmi
)s)⊗ Exti((Lmi

)s, Es) −→ Hom((LN )s, Es)

is surjective for any s ∈ U . By using Definition 2.2 (4), we can see that there exists
an open neighborhood Ui of x such that Exti((Lmi

)y, Ey) = 0 for any y ∈ Ui. Then
we have Exti((LN )y, Ey) = 0 for N ≥ Nmi

. If we put

V :=
⋂

k1≤i≤k2,i 6=0

Ui

then V is an open neighborhood of x. Put

Ñ := max
({Nmi

| k1 ≤ i ≤ k2, i 6= 0} ∪ {Nn0}
)
.

Then we have Exti((LN )y, Ey) = 0 for any y ∈ V , i 6= 0 and N ≥ Ñ , which means
V ⊂ U ′. Thus U ′ is an open subset of U .

By Proposition 3.9, EU ′ corresponds to a coherent AU ′ -module E flat over
U ′. We can see that Us coincides with

{x ∈ U ′ | E ⊗ k(x) is a stable Ax-module}.

We can see by the argument similar to that of [3, Proposition 2.3.1], that this
subset is open in U ′. By the same argument we can also see the openness of Uss.

¤

Theorem 4.4. There exists a coarse moduli scheme MP,L
D of M P,L

D and

an open subscheme MP,L
D of MP,L

D which is a coarse moduli scheme of M P,L
D .

Before constructing the moduli space, we first note the following lemma:

Lemma 4.5. Let P (x) be a numerical polynomial. Then there exists an
integer m0 such that for any m ≥ m0, any geometric point s of S, any semi-stable
As-module E with χ(E (n)) = P (n),

(1) E (m) is generated by global sections and Hi(E (m)) = 0 for i > 0,
(2) for any nonzero coherent As-submodule F ⊂ E , the inequality

dimH0(F (m)) ≤ a0(F )
a0(E )

dimH0(E (m))

holds, where
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χ(E (n)) =
d∑

i=0

ai(E )
(

n + d− i

d− i

)
, χ(F (n)) =

d∑

i=0

ai(F )
(

n + d− i

d− i

)
.

Moreover the equality holds if and only if χ(E (n))/a0(E ) = χ(F (n))/a0(F )
as polynomials in n.

Proof. Proof is essentially the same as [8, Proposition 4.10]. ¤

Take m0 as in Lemma 4.5. Replacing S by its connected component, we
may assume that S is connected. Replacing m0 if necessary, we may assume by
Proposition 4.2 that for any geometric point E ∈ M P,L

D (k) and for any m ≥ m0,
Exti((Lm)k, E) = 0 for i 6= 0 and

Hom((Ln)k, (Lm)k)⊗Hom((Lm)k, E) −→ Hom((Ln)k, E)

is surjective for n À 0. For a geometric point E ∈ M P,L
D (k), we consider the

canonical morphism

u : (Lm0)k ⊗Hom((Lm0)k, E) −→ E

and put E1 := Cone(u)[−1]. We can take m1 À m0 such that for any such E and
for any m ≥ m1, Exti((Lm)k, E1) = 0 for i 6= 0 and

Hom((Ln)k, (Lm)k)⊗Hom((Lm)k, E1) −→ Hom((Ln)k, E1)

is surjective for n À 0. We consider the canonical morphism

v : (Lm1)k ⊗Hom((Lm1)k, E1) −→ E1

and put E2 := Cone(v)[−1]. We can take m2 À 0 such that for any E and for any
m ≥ m2, Exti((Lm)k, E2) = 0 for i 6= 0 and

Hom((Ln)k, (Lm)k)⊗Hom((Lm)k, E2) −→ Hom((Ln)k, E2)

is surjective for n À 0. We put

r0 := dimk Hom((Lm0)k, E), r1 := dimk((Lm1)k, E1), r2 := dimk((Lm2)k, E2)

and



416 M. Inaba

W0 := O⊕r0
S , W1 := O⊕r1

S , W2 := O⊕r2
S .

Note that r0, r1, r2 are independent of the choice of E and only depend on P and
L . We set

Z := V
(
R0 Homp(Lm2 , Lm1)

∨⊗W2⊗W∨
1

)×V
(
R0 Homp(Lm1 , Lm0)

∨⊗W1⊗W∨
0

)
.

Let

(Lm2)Z ⊗W2
ṽ−→ (Lm1)Z ⊗W1

ũ−→ (Lm0)Z ⊗W0

be the universal family. There exists a closed subscheme Y ⊂ Z such that

Y (T ) = {g ∈ Z(T ) | g∗(ũ ◦ ṽ) = 0}.

for any T ∈ (Sch/S). Since the sequence

Hom(Cone(ṽY ), (Lm0)Y ⊗W0)
β−→ Hom((Lm1)Y ⊗W1, (Lm0)Y ⊗W0)

ṽ∗−→ Hom((Lm2)Y ⊗W2, (Lm0)Y ⊗W0)

is exact and ṽ∗(ũY ) = ũY ◦ ṽY = 0, there exists a morphism w̃ : Cone(ṽY ) →
(Lm0)Y ⊗W0 such that β(w̃) = ũY . We put B̃ := Cone(w̃) and set

Y ′ :=
{
x ∈ Y | Ext−1((Ln)x, B̃x) = 0 for n À 0

}

Then we can see that Y ′ is an open subset of Y . Note that for any x ∈ Y ′,
Exti((Ln)x, B̃x) = 0 for n À 0 except for i = −2, 0. By Definition 3.1 (5), there
exist an object Ẽ ∈ DY ′ and a morphism B̃Y ′ → Ẽ such that Exti((Ln)x, Ẽx) = 0
for n À 0, x ∈ Y ′ and i 6= 0 and Hom((Ln)x, B̃x) → Hom((Ln)x, Ẽx) is isomorphic
for n À 0 and x ∈ Y ′. If we set

Ẽ1 := Cone((Lm0)Y ′ ⊗W0 → Ẽ)[−1],

Cone(ṽ)Y ′ → (Lm0)Y ′ ⊗ W0 factors through Ẽ1. Moreover, for any x ∈ Y ′,
Exti((Ln)x, (Ẽ1)x) = 0 for i 6= 0 and Hom((Ln)x,Cone(ṽ)x) → Hom((Ln)x, (Ẽ1)x)
is isomorphic for n À 0. If we set
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Ẽ2 := Cone((Lm1)Y ′ ⊗W1 → Ẽ1)[−1],

then ṽY ′ factors through Ẽ2. Now we put

Y ss :=





x ∈ Y ′

∣∣∣∣∣∣∣

W0 ⊗ k(x) → Hom((Lm0)x, Ẽx) is isomorphic,

Wj ⊗ k(x) → Hom((Lmj )x, (Ẽj)x) are isomorphic for j = 1, 2,

Hom((Ln)x, Ẽx) = P (n) for n À 0 and Ẽx is L -semistable





and

Y s :=
{
x ∈ Y ss | Ẽx is L -stable

}
.

Then we can check that Y s, Y ss are open subsets of Y ′. If we put

G := GL(W0)×GL(W1)×GL(W2),

then there is a canonical action of G on Z and Y , Y ′, Y ss, Y s are preserved by
this action. For a sufficiently large integer N , we put

α0 := rankW2 + N rankW1

α1 := −N rankW0

α2 := − rankW0

and consider the character

χ : G −→ Gm; (g0, g1, g2) 7→ det(g0)α0 det(g1)α1 det(g2)α2 .

Let us consider the quiver consisting of three vertices v2, v1, v0 and
rankOS

R0 Homp(Lm2 , Lm1)-arrows from v2 to v1 and rankOS
R0 Homp(Lm1 , Lm0)-

arrows from v1 to v0. Then the points of Z correspond to the representations of
this quiver (see [5] for the definition of quiver and its representation).

Lemma 4.6. If we take N À m2 À m1 À m0 À 0, Y ss is contained in
the set Zss(χ) of χ-semistable points of Z in the sense of [5]. Moreover, Y s is
contained in the set Zs(χ) of χ-stable points of Z.

Proof. Take any geometric point x of Y ss and vector subspaces W ′
i ⊂

(Wi)x (0 ≤ i ≤ 2) which induce commutative diagrams
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W ′
2

//

²²

W ′
1 ⊗R0 Homp(Lm2 , Lm1)x

²²
(W2)x

// (W1)x ⊗R0 Homp(Lm2 , Lm1)x

W ′
1

//

²²

W ′
0 ⊗R0 Homp(Lm1 , Lm0)x

²²
(W1)x

// (W0)x ⊗R0 Homp(Lm1 , Lm0)x.

From [5], we should say that

α0 dimW ′
0 + α1 dimW ′

1 + α2 dimW ′
2 ≥ 0.

Let E be the Y ss-flat AY ss -module corresponding to ẼY ss by Proposition 3.9.
Then a morphism A (−m0) ⊗ W ′

0 → Ex is induced and we denote its image by
E (W ′

0). Note that Ex is of pure dimension and so E (W ′
0) is also of pure dimension.

Since the family

{
E (W ′

0) | W ′
0 ⊂ (W0)x, x is a geometric point of Y ss

}

is bounded, we can find an integer m1 À m0 such that for K ′
1 := ker(W ′

0 ⊗
A (−m0) → E (W ′

0)), K ′
1(m1) is generated by global sections and Hi(K ′

1(m1)) = 0,
Hi(Ax(m1 −m0)) = 0 for i > 0. Moreover we can find an integer m2 À m1 such
that for K ′

2 := ker(H0(K ′
1(m1))⊗A (−m1) → K ′

1), K ′
2(m2) is generated by global

sections and Hi(K ′
2(m2)) = 0, Hi(Ax(m2 −m1)) = 0, Hi(Ax(m2 −m0)) = 0 and

Hi(K ′
1(m2)) = 0 for i > 0. If we put W̃ ′

1 := H0(K ′
1(m1)) and W̃ ′

2 := H0(K ′
2(m2)),

then we have

dimH0
(
E (W ′

0)(m1)
)

= dim H0
(
Ax(m1 −m0)

)
dimW ′

0 − dim W̃ ′
1

dimH0
(
E (W ′

0)(m2)
)

= dim H0
(
Ax(m2 −m0)

)
dimW ′

0

− dimH0
(
Ax(m2 −m1)

)
dim W̃ ′

1 + dim W̃ ′
2.

Since the family {E (W ′
0)} is bounded, we can take by using Lemma 4.5 a positive

integer m0 À 0 and a positive number ε > 0 such that
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h0(E (W ′
0)(m0))

P (m0)
<

a0(E (W ′
0))

a0(P )
− ε

for any W ′
0 such that

χ(E (W ′
0)(m))

χ(E (W ′
0)(n))

<
P (m)
P (n)

for n À m À 0. Here we write

χ
(
E (W ′

0)(n)
)

=
d∑

i=0

ai(E (W ′
0))

(
n + d− i

d− i

)
, P (n) =

d∑

i=0

ai(P )
(

n + d− i

d− i

)

with ai(E (W ′
0)) and ai(P ) integers. Since

lim
m1→∞

h0(E (W ′
0)(m1))

P (m1)
=

a0(E (W ′
0))

a0(P )
,

we can take m1 À m0 such that

h0(E (W ′
0)(m1))

P (m1)
>

a0(E (W ′
0))

a0(P )
− ε

2
.

Since

lim
N→∞

(h0(Ax(m2 −m1)) + N)h0(E (W ′
0)(m1))− h0(E (W ′

0)(m2))
(h0(Ax(m2 −m1)) + N)P (m1)− P (m2)

=
h0(E (W ′

0)(m1))
P (m1)

,

we can take N À m2 such that

(h0(Ax(m2 −m1)) + N)h0(E (W ′
0)(m1))− h0(E (W ′

0)(m2))
(h0(Ax(m2 −m1)) + N)P (m1)− P (m2)

>
h0(E (W ′

0)(m1))
P (m1)

− ε

2
.

Then we have
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h0(E (W ′
0)(m0))

P (m0)

<
a0(E (W ′

0))
a0(P )

− ε

<
h0(E (W ′

0)(m1))
P (m1)

+
ε

2
− ε

<
(h0(Ax(m2 −m1)) + N)h0(E (W ′

0)(m1))− h0(E (W ′
0)(m2))

(h0(Ax(m2 −m1)) + N)P (m1)− P (m2)
+

ε

2
+

ε

2
− ε

=
(h0(Ax(m2 −m1)) + N)h0(E (W ′

0)(m1))− h0(E (W ′
0)(m2))

(h0(Ax(m2 −m1)) + N)P (m1)− P (m2)

for any W ′
0 such that

χ(E (W ′
0)(m))

χ(E (W ′
0)(n))

<
P (m)
P (n)

for n À m À 0. Take W ′
0 such that

χ(E (W ′
0)(m))

χ(E (W ′
0)(n))

=
P (m)
P (n)

for n À m À 0. Then we can see by Lemma 4.5 that

h0(E (W ′
0)(m0))

P (m0)
=

a0(E (W ′
0))

a0(P )

=
(h0(Ax(m2 −m1)) + N)h0(E (W ′

0)(m1))− h0(E (W ′
0)(m2))

(h0(Ax(m2 −m1)) + N)P (m1)− P (m2)
.

Hence we have the inequality

h0
(
E (W ′

0)(m0)
)

≤ (h0(Ax(m2 −m1)) + N)h0(E (W ′
0)(m1))− h0(E (W ′

0)(m2))
(h0(Ax(m2 −m1)) + N)P (m1)− P (m2)

P (m0) (2)

for any E (W ′
0). Moreover, the equality holds in (2) if and only if χ(E (W ′

0)(n))/
a0(E (W ′

0)) = P (n)/a0(P ) as polynomials in n. From the inequality (2), we obtain
the inequality
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(r2 + Nr1) dim W ′
0 −Nr0 dim W̃ ′

1 − r0 dim W̃ ′
2 ≥ 0

by using dimW ′
0 ≤ h0(E (W ′

0)(m0)). Since dimW ′
1 ≤ dim W̃ ′

1 and dimW ′
2 ≤

dim W̃ ′
2, we have

α0 dimW ′
0 + α1 dimW ′

1 + α2 dimW ′
2 ≥ 0. (3)

Thus x becomes a geometric point of Zss(χ).
In the inequality (3), the equality holds if and only if dim W̃ ′

1 = dimW ′
1,

dim W̃ ′
2 = dim W ′

2, h0(E (W ′
0)) = dimW ′

0 and χ(E (W ′
0)(n))/a0(E (W ′

0)) =
P (n)/a0(P ) as polynomials in n. So, if x is a geometric point of Y s, we have

(r2 + Nr1) dim W ′
0 −Nr0 dimW ′

1 − r0 dimW ′
2 > 0.

for any (W ′
0,W

′
1,W

′
2) with (0, 0, 0) 6= (W ′

0,W
′
1,W

′
2) ( ((W0)x, (W1)x, (W2)x),

which means that x becomes a geometric point of Zs(χ). ¤

By [5] and [9], there exists a GIT quotient φ : Y ∩Zss(χ) → (Y ∩Zss(χ))//G.

Lemma 4.7. φ−1(φ(Y ss)) = Y ss.

Proof. It is sufficient to show that φ−1(φ(Y ss)) ⊂ Y ss. Take any k-valued
geometric point x of φ−1(φ(Y ss)). Let s be the induced k-valued geometric point
of S. Since φ(x) is a geometric point of φ(Y ss), there exists a k-valued geometric
point y of Y ss such that φ(x) = φ(y).

Let E be the Y ss-flat AY ss -module corresponding to ẼY ss as in the proof of
Lemma 4.6. Then there is a Jordan-Hölder filtration

0 = F (0) ⊂ F (1) ⊂ · · · ⊂ F (l) = E ⊗ k(y)

of E ⊗ k(y). For each i with 1 ≤ i ≤ l, we define K
(i)
1 , K

(i)
2 by exact sequences

0 −→ K
(i)
1 −→ H0

(
F (i)(m0)

)⊗A (−m0) −→ F (i) −→ 0

0 −→ K
(i)
2 −→ H0

(
K

(i)
1 (m1)

)⊗A (−m1) −→ K
(i)
1 −→ 0.

Then y corresponds to the representation of quiver given by

H0
(
K

(l)
2 (m2)

) −→ H0
(
K

(l)
1 (m1)

)⊗H0(As(m2 −m1))
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H0
(
K

(l)
1 (m1)

) −→ H0
(
F (l)(m0)

)⊗H0(As(m1 −m0))

and the Jordan-Hölder filtration of E ⊗ k(y) corresponds to the filtration of the
quiver representation given by

0 ⊂ H0
(
K

(1)
2 (m2)

) ⊂ · · · ⊂ H0
(
K

(l)
2 (m2)

)

0 ⊂ H0
(
K

(1)
1 (m1)

) ⊂ · · · ⊂ H0
(
K

(l)
1 (m1)

)

0 ⊂ H0
(
F (1)(m0)

) ⊂ · · · ⊂ H0
(
F (l)(m0)

)
.

We put E(i) := F (i)/F (i−1) and E :=
⊕l

i=1 E(i). For i = 1, . . . , l, we define
K̄

(i)
1 , K̄

(i)
2 by the exact sequences

0 −→ K̄
(i)
1 −→ H0

(
E(i)(m0)

)⊗A (−m0) −→ E(i) −→ 0

0 −→ K̄
(i)
2 −→ H0

(
K̄

(i)
1 (m1)

)⊗A (−m1) −→ K̄
(i)
1 −→ 0.

We can see from the proof of Lemma 4.6 that the quiver representation yi given
by

H0
(
K̄

(i)
2 (m2)

) −→ H0
(
K̄

(i)
1 (m1)

)⊗H0(As(m2 −m1))

H0
(
K̄

(i)
1 (m1)

) −→ H0
(
E(i)(m0)

)⊗H0(As(m1 −m0))

is stable with respect to the weight (α0, α1, α2). The direct sum y1 ⊕ · · · ⊕ yl

corresponds to a point y′ of Y ss
s given by the exact sequence

H0

( l⊕

i=1

K̄
(i)
2 (m2)

)
⊗A (−m2) −→ H0

( l⊕

i=1

K̄
(i)
1 (m1)

)
⊗A (−m1)

−→ H0

( l⊕

i=1

E(i)(m0)
)
⊗A (−m0) −→

l⊕

i=1

E(i) −→ 0.

Then we can see that the quiver representations determined by y and y′ are S-
equivalent. So we have φ(x) = φ(y) = φ(y′). Note that Gsy

′ is a closed orbit in
(Y ∩ Zss(χ))s by [5, Proposition 3.2]. Thus the closure of the Gs-orbit of x must
contain y′. Then, by Proposition 4.3, x becomes a geometric point of Y ss

s . ¤
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Proof of Theorem 4.4. If we put

MP,L
D := φ(Y ss),

then we can see by Lemma 4.7 that MP,L
D is an open subset of (Y ∩Zss(χ))//G.

We can see by a similar argument to that of [8, Proposition 7.3], that there is a
canonical morphism Φ : M P,L

D → MP,L
D . For two geometric points x1, x2 ∈ Y ss

over a geometric point s of S, φ(x1) = φ(x2) if and only if the corresponding
representations of quiver are S-equivalent ([5]), that is, the corresponding objects
of Ds are S-equivalent. Thus for any algebraically closed field k over S, Φ(k) :
M P,L

D (k) → MP,L
D (k) is bijective. We can see by a standard argument that MP,L

D

has the universal property of the coarse moduli scheme. If we put MP,L
D := Y s/G,

then MP,L
D becomes an open subset of MP,L

D and we can easily see that MP,L
D is

a coarse moduli scheme of M P,L
D . So we have proved Theorem 4.4. ¤

Theorem 4.8. Assume that S is of finite type over a universally Japanese
ring Ξ. Then the moduli scheme MP,L

D is projective over S.

For the proof of Theorem 4.8, the following lemma is essential.

Lemma 4.9. Let R be a discrete valuation ring over S with quotient field
K and residue field k. Assume that E is an object of DK which is L -semistable.
Then there is an object Ẽ ∈ DR such that ẼK

∼= E and Ẽk is L -semistable.

Proof. The above E corresponds to a coherent AK-module E and it suffices
to show that there exists an R-flat coherent AR-module Ẽ such that Ẽ ⊗R K ∼= E
and Ẽ ⊗ k satisfies the semistability condition given by the inequality in Remark
3.11. For a sufficiently large integer N , we have Hi(E (N)) = 0 for i > 0 and
E (N) is generated by global sections. Then there is a surjection AK(−N)⊕r → E
which determies a K-valued point η of the Quot-scheme QuotP

A (−N)⊕r for some
numerical polynomial P , where r = dimH0(E (N)). Let F ⊂ A (−N)⊕r be the
universal subsheaf and Y be the maximal closed subscheme of QuotP

A (−N)⊕r such
that A ⊗FY → A (−N)⊕r

Y factors through FY . Then η is a K-valued point of Y

and extends to an R-valued point ξ of Y because Y is proper over S. ξ corresponds
to an R-flat quotient coherent AR-module E ′ of A (−N)⊕r

R and we have E ′⊗RK ∼=
E . From the proof similar to that of Langton’s theorem ([3, Theorem 2.B.1]),
we can obtain an R-flat coherent AR-module Ẽ by taking succesive elementary
transforms of E ′ along P (V1) × Spec k such that Ẽ ⊗R K ∼= E ′ ⊗R K ∼= E and
Ẽ ⊗ k is semistable as A ⊗ k-module. ¤
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Now we prove Theorem 4.8. By construction, the moduli scheme MP,L
D is

quasi-projective over S. So it is sufficient to show that MP,L
D is proper over S. Let

R be a discrete valuation ring over S with quotient field K and let ϕ : Spec K →
MP,L

D be a morphism over S. Then there is a finite extension field K ′ of K such

that the composite ψ : Spec K ′ → Spec K
ϕ−→ MP,L

D is given by an L -semistable
object E′. We can take a discrete valuation ring R′ with quotient field K ′ such
that K ∩ R′ = R. Let k′ be the residue field of R′. By Lemma 4.9, there exists
an object E of DR′ such that EK′ ∼= E′ and Ek′ is L -semistable. Then E gives a
morphism ψ : Spec R′ → MP,L

D which is an extension of ψ. We can easily see that

ψ factors through SpecR. Thus MP,L
D is proper over S by the valuative criterion

of properness. ¤

5. Examples.

In this section, we give several examples of moduli spaces of stable objects
determined by a strict ample sequence.

Example 5.1. Let f : X → S be a flat projective morphism of noethe-
rian schemes and let OX(1) be an S-very ample line bundle on X such that
Hi(OXs(m)) = 0 for i > 0, s ∈ S and m > 0. Consider the fibered triangu-
lated category DX/S defined by (DX/S)U = Db(Coh(XU/U)) for U ∈ (Sch/S).
Then L = {OX(−n)}n≥0 becomes a strict ample sequence in DX/S .

Proof. Definition 3.1 (1), (2), (3) are easy to verify. Let us prove Definition
3.1 (4). Take any U ∈ (Sch/S) and any object E• ∈ (DX/S)U . We may assume
that E• is given by a complex

· · · −→ 0 −→ 0 −→ El1 dl1−→ El1+1 dl1+1−−−−→ · · · dl2−1

−−−→ El2 −→ 0 −→ 0 −→ · · · ,

where each Ei is a coherent sheaf on XU flat over U . By flattening stratification
theorem, there is a stratification U =

∐m
j=1 Yj of U by subschemes Yj such that

each coker(di)Yj
= coker(di

Yj
) is flat over Yj for any i and j. Then we can see that

im(di
Yj

) and ker(di
Yj

) are flat over Yj for any i and j. For any point s ∈ U , the
sequence

0 −→ im
(
di−1

Yj

)⊗ k(s) −→ Ei ⊗ k(s) −→ coker
(
di

Yj

)⊗ k(s) −→ 0

is exact because coker(dYj
) is flat over Yj . Then the homomorphism im(di−1

Yj
) ⊗

k(s) −→ ker(di
Yj

) ⊗ k(s) is injective for any s ∈ Yj . Thus the cohomology
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sheaf H i(E•
Yj

) := ker(di
Yj

)/ im(di−1
Yj

) is flat over Yj for any i and j. We can
take a positive integer n0 such that for any n ≥ n0, Rp(fYj

)∗(Ei
Yj

(n)) = 0,
Rp(fYj

)∗(im(di
Yj

)(n)) = 0 and Rp(fYj
)∗(ker di

Yj
(n)) = 0 for any p > 0 and any

i, j. Then we have Rp(fYj
)∗(H i(E•

Yj
(n))) = 0 for any p > 0, any i, j and n ≥ n0.

From the spectral sequence Rp(fYj )∗(H
q(E•

YJ
(n))) ⇒ Rp+q(fYj

)∗(E•
Yj

(n)), we
have an isomorphism Ri(fYj

)∗(E•
Yj

(n)) ∼= (fYj
)∗(H i(E•

Yj
)(n)) for any i, j and

n ≥ n0. So we can see that R(fYj
)∗(E•

Yj
(n)) is quasi-isomorphic to the complex

· · · −→ 0 −→ (fYj )∗
(
El1

Yj
(n)

) −→ (fYj )∗
(
El1+1

Yj
(n)

)

−→ · · · −→ (fYj
)∗

(
El2

Yj
(n)

) −→ 0 −→ · · ·

for any i, j and n ≥ n0. Note that there are canonical isomorphisms

Hi
(
E•

s (n)
) ∼= Ri(fYj

)∗
(
E•

Yj
(n)

)⊗ k(s) ∼= (fYj
)∗

(
H i(E•

Yj
)(n)

)⊗ k(s)

∼= H0
(
Xs,H

i(E•
s )(n)

)
.

for any i, j, any s ∈ Yj and n ≥ n0. If we take n0 sufficiently larger, we may
assume that the homomorphism

(fYj )
∗(fYj )∗

(
H i(E•

Yj
(n))

) −→ H i
(
E•

Yj

)
(n)

is surjective for any n ≥ n0 and any i, j. Thus there exists a positive integer
N0 À n such that

(fYj
)∗(OXYj

(N − n))⊗ (fYj
)∗

(
H i(E•

Yj
(n))

) −→ (fYj
)∗

(
H i(E•

Yj
)(N)

)

is surjective for any N ≥ N0 and any i, j. So we obtain a commutative diagram

(fYj )∗(OXYj
(N − n))⊗ k(s)

⊗ (fYj
)∗

(
H i(E •Yj

(n))
)⊗ k(s)

//

∼=
²²

(fYj
)∗

(
H i(E•

Yj
(N)

)⊗ k(s)

∼=
²²

H0(OXs
(N − n))⊗Hi

(
E•

s (n)
)

//

∼=
²²

Hi
(
E•

s (N)
)

∼=
²²Hom(OXs

(−N),OXs
(−n))

⊗ Exti
(
OXs(−n), E•

s

) // Exti
(
OXs

(−N), E•
s

)
.
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for any i, j, any s ∈ Yj and N ≥ N0. Hence

Hom(OXs
(−N),OXs

(−n))⊗ Exti
(
OXs

(−n), E•
s

) −→ Exti
(
OXs

(−N), E•
s

)

is surjective for any s ∈ U , any i and N ≥ N0 and we have proved Definition 3.1
(4).

Now we prove Definition 3.1 (5). Assume that an object E ∈ (DX/S)U and
integers i, n0 are given such that Exti(OXs(−n), E•

s ) = 0 for any s ∈ U and
n ≥ n0. Replacing n0 by a sufficiently large integer, we have

Exti
(
OXs(−n), E•

s

) ∼= Hi
(
E•

s (n)
) ∼= H0

(
Xs,H

i(E•
s )(n)

)
= 0

for any s ∈ U and any n ≥ n0. Then we have H i(E•
s ) = 0. If E• is given by

El1 dl1−→ El1+1 dl1+1

−−−→ · · · dl2−1

−−−→ El2 ,

such that each Ej is flat over U , then the induced homomorphism coker(di−1) ⊗
k(s) → Ei+1 ⊗ k(s) is injective for any s ∈ U . Then coker(di) is flat over U and
coker(di−1) → Ei+1 is injective. Let F • be the complex given by

· · · −→ 0 −→ coker(di) −→ Ei+2 di+2

−−−→ · · · dl2−1

−−−→ El2 −→ 0 −→ · · · .

Then there is a canonical morphism u : E• → F •. Note that

Rj Homf (OXU
(−n), E•) = Rj(fU )∗(E•(n)) ∼= (fU )∗(H j(E•)(n))

for n À 0. So u induces isomorphisms

Rj Homf (OXU
(−n), E•) ∼−→ (fU )∗(H j(E•)(n))

∼−→ (fU )∗(H j(F •)(n)) ∼−→ Rj Homf (OXU
(−n), F •)

for j > i and n À 0. By definition we have Rj Homf (OXU
(−n), F •) =

(fU )∗(H j(F •(n))) = 0 for j ≤ i and n À 0. Thus we have proved Definition
3.1 (5).

Finally, let us prove Definition 3.1 (6). Let E• and F • be objects of (DX/S)U .
Assume that Rj(fU )∗(E•(n)) = 0 for j ≥ 0 and n À 0 and that Rj(fU )∗(F •(n)) =
0 for j < 0 and n À 0. Since Rj(fU )∗(E•(n)) ∼= (fU )∗(H j(E•)(n)) for n À 0, we
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have H j(E•) = 0 for j ≥ 0. Then E• is quasi-isomorphic to the complex given
by

· · · −→ 0 −→ El1
d

l1
E−→ El1+1 −→ · · · −→ E−2 −→ ker(d−1

E ) −→ 0 −→ · · · .

On the other hand, we have H j(F •) = 0 for j < 0, because Rj(fU )∗(F •(n)) ∼=
(fU )∗(H j(F •)(n)) for n À 0. Then F • is quasi-isomorphic to the complex given
by

· · · −→ 0 −→ coker d−1
F −→ F 1 d1

F−→ · · · −→ Fm2 −→ 0 −→ · · · .

We can take a complex

· · · −→ 0 −→ I0 −→ I1 −→ I2 −→ · · ·

such that each Ij is an injective sheaf on XU and that I• is quasi-isomorphic to
F •. Then we have Hom(DX/S)U

(E•, F •) ∼= H0(Hom•(E•, I•)) = 0. So we have
proved Definition 3.1 (6). ¤

For an object E ∈ (DX/S)U , Exti(OXs
(−n), Es) = 0 for n À 0, i 6= 0 and

s ∈ U if and only if E• is quasi-isomorphic to a coherent sheaf on XU flat over
U . Hence, for a numerical polynomial P , the moduli space MP,L

DX/S
(resp. MP,L

DX/S
)

is just the usual moduli space of OX(1)-stable sheaves (resp. moduli space of S-
equivalence classes of OX(1)-semistable sheaves) on X over S.

Example 5.2. Let X, S, OX(1) and DX/S be as in Example 5.1. Take a vec-
tor bundle G on X. Replacing OX(1) by some multiple, LG = {G⊗OX(−n)}n≥0

also becomes a strict ample sequence in DX/S and the moduli space MP,LG

DX/S
(resp.

MP,LG

DX/S
) is the moduli space of G-twisted OX(1)-stable sheaves (resp. moduli space

of S-equivalence classes of G-twisted OX(1)-semistable sheaves) on X over S.

Example 5.3. Let X, Y be projective schemes over an algebraically closed
field k and let OX(1) be a very ample line bundle on X such that Hi(X, OX(m)) =
0 for i > 0 and m > 0. Assume that a Fourier-Mukai transform

Φ : Db
c(X) ∼−→ Db

c(Y )

E 7→ R(pY )∗(p∗X(E)⊗P)

with the kernel P ∈ Db
c(X × Y ) is given. Then Φ extends to an equivalence of
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fibered triangulated categories

Φ : DX/k
∼−→ DY/k.

Since L = {OX(−n)}n≥0 is a strict ample sequence in DX/k, L Φ =
{Φ(OX(−n))}n≥0 is a strict ample sequence in DY/k. Moreover Φ determines
an isomorphism

Φ : MP,L
DX/k

∼−→ MP,L Φ

DY/k

of the moduli space of stable sheaves on X to the moduli space of stable objects
in Db

c(Y ).

Example 5.4. Let G be a finite group and X be a projective variety over
C on which G acts. Take a G-linearized very ample line bundle OX(1) on X such
that Hi(X, OX(m)) = 0 for i > 0 and m > 0. Let ρ0, ρ1, . . . , ρs be the irreducible
representations of G. Consider the fibered triangulated category DG

X/C defined by
(DG

X/C)U = DG(Coh(XU/U)), for U ∈ (Sch/C), where DG(Coh(XU/U)) is the
full subcategory of the derived category of bounded complexes of G-equivariant
coherent sheaves on XU consisting of the objects of finite Tor-dimension over U .
For positive integers r0, r1, . . . , rs, L G

(r0,...,rs) = {OX(−n)⊗(ρ⊕r0
0 ⊕· · ·⊕ρ⊕rs

s )}n≥0

becomes a strict ample sequence in DG
X/C . The moduli space M

P,L G
(r0,...,rs)

DG
X/C

is just

the moduli space of G-equivariant sheaves E on X satisfying the stability condition:
E is of pure dimension d = deg P and for any G-equivariant subsheaf 0 6= F ( E ,
the inequality

HomG

(
ρ⊕r0
0 ⊕ · · · ⊕ ρ⊕rs

s ,H0(X, F ⊗ OX(n))
)

a0(F )

<
HomG

(
ρ⊕r0
0 ⊕ · · · ⊕ ρ⊕rs

s ,H0(X, E ⊗ OX(n))
)

a0(E )

holds for n À 0, where we define

χ(E (m)) =
d∑

i=0

ai(E )
(

m + d− i

d− i

)
and χ(F (m)) =

d∑

i=0

ai(F )
(

m + d− i

d− i

)

and so on.
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Example 5.5. Let X be a projective variety over C and let OX(1) be
a very ample line bundle on X such that Hi(X, OX(m)) = 0 for i > 0 and
m > 0. For a torsion class α ∈ H2(X, O×

X), consider the fibered triangulated
category Dα

X/C over (Sch/C) defined by (Dα
X/C)U := Db(Coh(XU/U), αU ), where

Db(Coh(XU/U), αU ) is the derived category of bounded complexes of coherent
αU -twisted sheaves on X ×U of finite Tor-dimension over U and αU is the image
of α in H2(XU ,O×

XU
). For a locally free α-twisted sheaf G of finite rank on X,

L α
G = {G⊗OX(−n)}n≥0 becomes a strict ample sequence in Dα

X/C , after replacing

OX(1) by some multiple. The moduli space M
P,L α

G

Dα
X/C

is just the moduli space of

G-twisted stable α-twisted sheaves on X in the sense of [10].
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