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Abstract. We introduce the concept of strict ample sequence in a
fibered triangulated category and define the stability of the objects in a trian-
gulated category. Then we construct the moduli space of (semi) stable objects
by GIT construction.

1. Introduction.

Let X — S be a projective and flat morphism of noetherian schemes. We
consider the functor Splepxy g : (Sch/S) — (Sets) defined by

Splepx . /5(T)

for any geometric point ¢ of T, E(t) :=
E ®F k(t) is a bounded complex and /

= { F € D*(Coh(X x5 T)) nplex
Ext'(E(t), E(t)) = {k(t) ifi =0

0 ifi=-1

where E ~ E' if there is a line bundle L on T such that £ = E'® L in D®(Coh(X x 5
T)). We denote the étale sheafification of Splepxy,g by Splcpx‘;g /g~ Then the
result of [4] is that Splepx$ /s 1s an algebraic space over S. M. Lieblich extends
this result in [7] to the case when X — S is a proper flat morphism of algebraic
spaces. So the problem on the construction of the moduli space of objects in a
derived category is solved in some sense. However, the moduli space Splcpxgﬁ /S
is not separated and it is not a good space in geometric sense. So we want to
construct a projective moduli space (or quasi-projective moduli space with a good
compactification) as a Zariski open set of Splcpxiﬁ /s such as the moduli space of
stable sheaves.

This problem is also motivated by Fourier-Mukai transform. Let X,Y be
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projective varieties over an algebraically closed field k£ and & be an object of
DP(Coh(X x Y)). The functor

® : D*(Coh(X)) — D®(Coh(Y))
E = R(py).(px (E) ®" 2)

is called a Fourier-Mukai transform if it is an equivalence of categories. Here
px : XXY — X and py : X XY — Y are the projections. Fourier-Mukai transform
induces the isomorphisms on moduli spaces and for example the image ®(M¥) of
a moduli space of stable sheaves MY on X by ® sometimes becomes a moduli
space of stable sheaves on Y. The problem on the preservation of stability under
Fourier-Mukai transform is investigated by many people and this problem is clearly
pointed out by K. Yoshioka in [11]. However, the image ®(M¥) of the moduli
space of stable sheaves by the Fourier-Mukai transform may not be contained in
the category of coherent sheaves on Y in general and so we must consider certain
moduli space of stable objects in the derived category D?(Coh(Y)).

In this paper we introduce the concept “strict ample sequence” in a triangu-
lated category. “Strict ample sequence” satisfies the condition of ample sequence
defined by A. Bondal and D. Orlov in [2], but it also satisfies many other con-
ditions because we expect that a “polarization” is determined by strict ample
sequence. Indeed we can define stable objects determined by a strict ample
sequence and construct the moduli space of stable objects (resp. S-equivalence
classes of semistable objects) as a quasi-projective scheme (resp. projective
scheme). This is the main result of this paper (Theorem 4.4 and Theorem 4.8).
If ® : D(Coh(X)) — Db(Coh(Y)) is a Fourier-Mukai transform and M¥ is a
moduli space of stable sheaves on X, then the image ®(MZ%) of M¥ by ® becomes
a moduli space of stable objects in D?(Coh(Y')) whose stability is determined by
some strict ample sequence on D®(Coh(Y)). So Fourier-Mukai transform always
preserves certain stability in our sense (Example 5.3).

T. Bridgeland defined in [1] the concept of stability condition on a triangulated
category. So we are interested in the relation between the stability condition of
Bridgeland and the definition of stability determined by a strict ample sequence.
However, it seems rather impossible to expect the construction of a strict ample
sequence from the stability condition defined by Bridgeland without any other
condition. How to treat the relation between strict ample sequence and stability
condition of Brigeland is a problem still unsolved.
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2. Definition of fibered triangulated category.

Let S be a noetherian scheme. We denote the category of noetherian schemes
over S by (Sch/S) and the derived category of bounded complexes of coherent
sheaves on U by Db(U) for U € (Sch/S). We denote the derived category of lower
bounded complexes of coherent sheaves on U by DF(U) for U € (Sch/S). For a
noetherian scheme X over S, we denote the full subcategory of D%(X) consisting of
the objects of finite Tor-dimension over S by D?(Coh(X/S)). Then D*(Coh(X/S))
becomes a triangulated category. For a triangulated category .7 and for objects
E,F € .7, we write Ext'(E, F) := Hom & (E, F[i]).

DEFINITION 2.1.  p: 2 — (Sch/S) is called a fibered triangulated category
if

(1) 2 is a category, p is a covariant functor,

(2) for any U € (Sch/S), the full subcategory 2 :=p~}(U) of Z is a triangu-
lated category,

(3) for any object E € 2y and for any morphism f : V — U = p(F) in (Sch/5),
there exist an object F' € %y and a morphism u : ' — F satisfying the
condition: For any object G € %2y and a morphism v : G — FE with
p(v) = f, there exists a unique morphism w : G — F satisyfing p(w) = idy
and uow = v, (we denote F' by f*(F) or Ey and we call such morphism u
a Cartesian morphism),

(4) any composition of Cartesian morphisms is Cartesian,

(5) for any morphism V' — U in (Sch/S), Yy > E — Ey € 9Dy is an “exact
functor”, that is, for any distinguished triangle £ — F — G in 9y, Ey —
Fy — Gy is a distinguished triangle in 9y and for any F € 9y and any
i € Z, there is an isomorphism (E[i])y = Ev[i] functorial in E.

DEFINITION 2.2. A fibered triangulated category p : 2 — (Sch/S) has base
change property if

(1) for each U € (Sch/S), there is a bi-exact bi-functor ® : Py X
D*(Coh(U/U)) — Py such that there is a functorial isomorphism FE[i] ®
P[j] = (E® P)[i + j] for E € 9y, P € D*(Coh(U/U)),

(2) for a morphism ¢ : U — V in (Sch/S), the diagram

Py x DY(Coh(V/V)) —2> P

Wwi iw*

Py x DY(Coh(U/U)) ——= T
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is “commutative”, precisely, there exists a functorial isomorphism ¢* o ® =
® o (" x Le*),
for U € (Sch/S), there is a bi-exact bi-functor

RHom,, : 9y x 9y — DI (U)

such that for FEi, Ey € %y and for intgers 4,j, there is an iso-
morphism R Hom, (E1[i], E2[j]) & RHom,(E, F)[j — 4] functorial in F;
and Ep and also for Ey, E; € Yy there is an isomorphism Homp )
(Oy, RHom,(FE1, E3)) = Homg, (E1, E2) functorial in E; and Es,

for any U € (Sch/S) and for any objects Ey, Ey € Py, there exist a lower
bounded complex P® of locally free sheaves of finite rank on U and an
isomorphism

P*® % = RHOmp((El)V, (E2)V)

in D (V) for any morphism V' — U in (Sch/S), such that the diagram

HO(L((U, P*))

|

H(D((V, P* @ Oy)) — Hompv)(Ov, RHom,((E1)v, (E2)v))

HomD(U)(ﬁUa RHomp(El, EQ))

~

HOI’H@U (El, EQ)

|

—~> Homgy, ((E1)v, (E2)v)

is commutative,

for U € (Sch/S), Ei, By € Yy and Fy, Fy € D*(Coh(U/U)), there is a
functorial isomorphism RHom, (E1QF;, E;®yF;) = RHom,(Eq, Eg)@é}u
R om(Fy, F») such that for any morphism ¢ : V. — U in (Sch/S), the
diagram

~ RHomp(El, Eg)
®gU RJfom(Fl, FQ)

|

Ry.(RHom, _~_ Re.(RHom,((Er)v, (E2)v)
(Br @ F)v, (B2 ® F)v)) @6, RAom((Fr)v, (F2)v))

RHomp(El ® Fl, E2 ® FQ)
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is commutative.

REMARK 2.3. For EF € 9y, we denote the i-th cohomology
H'(RHom,(E, F)) by R"Hom,(E, F). We notice that for three objects E, F, G €
9y, there is a canonical morphism

R°Hom,,(E, F) x R Hom,(F,G) — R°Hom,(E,G).

ExampLE 2.4. Let X — S be a flat projective morphism. Then
{DP(Coh(Xu /U))}ve(sens) becomes a fibered triangulated category over S which
has base change property.

EXAMPLE 2.5. Let X be a projective scheme over C and G a finite group
acting on X. For a scheme U € (Sch/C), let DY (Coh(Xy/U)) be the derived
category of bounded complexes of G-equivariant coherent sheaves on Xy of finite
Tor-dimension over U. Then {D%(Coh(Xy /U))}vesen/c) becomes a fibered tri-
angulated category over C which has base change property.

3. Strict ample sequence and stability.

DEFINITION 3.1. Let p: 2 — (Sch/S) be a fibered triangulated category
with base change property. A sequence .Z = {L, },>0 of objects of Zg is said to
be a strict ample sequence if it satisfies the following conditions:

(1) Ext'((Ly)s, (Ln)s) =0 for any i # 0, N > n and s € S.
(2) There exist isomorphisms

0 : R°Homy, (L, L) — R°Homy,(Ly+k, Link)

for non-negative integers k, m,n with n > m such that 0 o 6; = 04, for
any k,l and the diagram

RYHomy,(Ly,, Ly,) 01 @05 RYHomy, (L ik, Lintk)
® R° HOHlp(Lm, Ll) ® RO HOmp(Lm+k, Ll+k)

| l

RO Homp(Ln, Ll) RO Homp(L,H_k, Ll+k‘)

is commutative for non-negative integers k,l,m,n with n > m > [.
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(3) There exists a subbundle V; C R° Hom, (L1, L) such that the diagram

Vi x RO Homy (L, Lo) — RO Homy (L1, Ln) x R® Homy(Ly, Lo)

3 |

V1 X RO HOHlp(Ln+1, Ll) RO HOIIIP(L»,H_l7 Lo),

is commutative for n > 0, where the right vertical arrow and the bottom
horizontal arrow are the canonical composition maps and there exists an
integer ng such that for any n > no,

R°Hom,(L,, L) ® Vi — R°Hom,(L,, Lo)

is surjective for any n > nyg.

(4) For any object E € Zy and for any non-negative integer m, there exists a

bounded complex P*® of locally free sheaves of finite rank on U such that
RHom,((Ly,)v,Ey) = P*® Oy for any V — U. Moreover, there exists an
integer ng such that for any n > ng, exists an integer Ny such that for any
integers i, N with N > N and for any s € U,

Hom((Ly)s, (Ln)s) @ BExt'((Ly)s, Es) — Ext'((Ly)s, Es)

is surjective.

(5) If there exist integers i, ng and an object F € Py satisfying Ext’((L,)s, Es)

= 0 for any n > ng and for any s € U, then there exist an object F' € Yy
and a morphism u : E — F such that for any j > i, R Hom,((L,)v, E)
— R/ Hom,((Ly)u, F) are isomorphic for n > 0, and for any j < i,
R Homy,((Ly)y, F) =0 for n>> 0.

(6) Take two objects E, F' € 9y such that for any i > 0, R Hom,((L, ), E) = 0

for n > 0 and that for any i < 0, R Hom,((L,)u, F) = 0 for n > 0. Then
we have Homg,, (E, F') = 0.

PROPOSITION 3.2.  Take E € Dy such that for any i, R Hom,((L,)v, E) =

0 for n > 0. Then we have E = 0.

0.

PROOF.  Applying the condition (6) of Definition 3.1, we have Hom(FE, E) =

In particular idg = 0. So, for any object F' € Py and for any morphism

f € Hom(F, E) (resp. g € Hom(E,F)), f =idgo f =0 (resp. g = g oidg = 0).
Thus E = 0. U
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REMARK 3.3. By the condition in Definition 3.1 (2), we can see that 6, = id
and 0x(id) = id. We put A =P, R°Hom,, (L, Lo) and define a multiplication

o : R°Homy (L, Ly) x R®Hom, (L, Lo) — R°Homy(Ly1m, Lo)

by a = (composition) o (6, x id). Then A becomes an associative graded ring
which is a finitely generated module over S*(V7), where S*(V7) is the symmetric
algebra of V1 over 0.

PROPOSITION 3.4. Let Ey, Es be objects of Py and u : E1 — Eo be a mor-
phism such that for any integer i the induced morphism R'Hom,((L,)v, E1) —
R'Hom,,((Ly)u, E2) is isomorphic for n>> 0. Then u is an isomorphism.

Proor. For any i, there is an exact sequence

R'Hom,((Ly,)v, E1) — R'Hom,((Ly,)v, F2) — R'Hom,((Ly,)r, Cone(u))
— R Hom, ((L,)v, E1) — R Hom,((L,)v, E2)

for n > 0. Thus we have R* Hom, ((L,, )y, Cone(u)) = 0 for n > 0. By Proposition
3.2 we have Cone(u) = 0, which means that v is an isomorphism. (]

PROPOSITION 3.5.  For an integer i and an object E € Py such that for
n > 0, Ext'((Ly,)s, Es) = 0 for s € U, the object F given in Definition 3.1 (5) is
unique up to an isomorphism.

PrOOF. Let F' € 9y be another object with a morphism v’ : E — F’
having the same property as F. Consider the composite

v : Cone(u)[—1] — E 2= F'.
Since there is a long exact sequence

-ov — RIHomy,((Ln)v, E) — R Hom,((L,)y, F) — R? Hom,((L,)r, Cone(u))
— RI" Hom, ((Ly,)v, E) — RV Hom,,((L,)y, F) — -+,

we have, for any j > i, R/ Hom,((L,)y,Cone(u)) = 0 for n > 0. Note that
for any j < i, we have R/ Hom,((L,)y,F’) = 0 for n > 0. Then we have
Homg,, (Cone(u), F') = 0 and Homg,, (Cone(u)[—1], F’) = 0 by condition (6) of

Definition 3.1. So we have v = 0 and there is a unique morphism ¢ : F© — F’
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which makes the diagram

E—"=F
J oY

commute. We can see that for any integer j, the morphism R’ Hom,((L,)y, F) —
R/ Hom,,((Ly,)v, F') induced by ¢ is isomorphic for n > 0. Hence ¢ is an isomor-
phism by Proposition 3.4. d

REMARK 3.6. In the situation of Definition 3.1 (5), for n > 0, the induced
morphism

Ext? ((Ly)s, Es) — Ext?((Ly)s, Fs)

is isomorphic for any j > ¢ and for any s € U, and we have, for n > 0,
Ext?((Ly)s, Fs) = 0 for any j < i and for any s € U.

Indeed consider the distinguished triangle £ % F — Cone(u). Note that
there is a long exact sequence

R Hom,((L,)v, E) — R Hom,((L,)v, F) — R Hom,,((L,,)y, Cone(u))

— RIT Hom, ((Ly)v, F) — RVt Hom,,((Ly,)v, F).

Since R Hom,((Ly)u, F') = 0 for n > 0, and for any j > i, R/ Hom,((L,)v, F) —
R Hom,((Ly,)y, F) are isomorphic for n > 0, we have, for any j > i,
R/ Hom,,((Ly,) v, Cone(u)) = 0 for n > 0.

By Definition 3.1 (4), there are integers ng and Ny with Ny > ng such that

Hom((Ly)s, (Lng)s) ® Extj((Lno)s, Cone(u)s) — Extj((LN)s, Cone(u)s)

is suriective for any j, any N > Ny and any s € U. By Definition 3.1 (4), there
are integers Jjo, j1 such that for j < jo and j > j1, Ext?((Lp,)s, Cone(u)s) = 0 for
any s € U. Then for any N > Ny, we have Ext?((Ly)s, Cone(u),) = 0 for any
j>7j1and s € U. For each j with i < j < jq, there exists an integer N(j) such
that for any N > N(j), we have R/ Hom,((Ly)v,Cone(u)) = 0. Put

N = max{N(i), NG +1),...,N(j1), No}.
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By Definition 2.2 (4), we have Ext’((Ly)s, Cone(u)s) = 0 for any N > N and for
each j with i < j < j; and for any s € U, because Ext?* ™! ((Ly),, Cone(u),) = 0
for any s € U and R’ Hom, ((Ln)u, Cone(u)) = 0 for i < j < ji. Thus we have
Ext?((Ly)s, Cone(u),) = 0 for any N > N, j >i and s € U.

Note that there are integers kg, k1 and a positive integer My such that for any
M > My and for any s € U, Extj((LM)S,FS) =0 for j < kg and j > ki. We may
also assume that for any M > My and for any s € U, Exti((LM)s,ES) = 0. From
the exact sequence

0 = Ext’((Las)s, Es) — Ext’((Las)s, Fs) — Ext’((Las)s, Cone(u)s) = 0,

we have Ext’((Lys)s, Fs) = 0 for s € U and M > max{My, N}. By assump-
tion, for each j with kg < j < i, there exists an integer M (j) such that
RI Hom,((Lag)u, F) = 0 for M > M(j). Put

M := max{N, My, M(ko), M (ko +1),..., M(i)}.

s € U and M > M by using

Then we have Extj((LM)S,FS) =0 for j < i,
=0and R/ HOmp((LM)U,F) =0 for

Definition 2.2 (4), because Ext'((Las)s, Fs)
ko < 7 <i. From the exact sequence

Ethil((LM)a Cone(u),) — Extj((LM)s, E;)

— Ext? ((Las)s, Fs) — Ext?((Las)s, Cone(u),),

we have an isomorphism Ext’ ((Las)s, Es) = Ext? ((Lay)s, Fs) for j > i, s € U and
M > M.

LEMMA 3.7. If E € 9y satisfies Ext'((Ly)s, Es) = 0 forn > 0, i # 0
and s € U, then there exist locally free Oy-modules Wy, W1, Wa, positive integers
ng < ny < ng and morphisms

2 1
(Lna)u @ Wa == (L, Ju @ Wi == (Lug)u @ Wo = E
such that the induced sequence

Hom((Ln)s, (Lny)s) @ Wa — Hom((Ln)s, (Ln,)s) ® W1
— Hom((LN)S, (Lno)S) ®@ Wy — Hom((LN)S, Es) —0
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is exact for N >0 and s € U.

PROOF. By Definition 3.1 (4), there exist integers ng, Ng with No > ng such
that for any s € U,

Hom((Ln)s, (Lny)s) ® Hom((Lp,)s, Es) — Hom((Ln)s, Es)

is surjective for N > Ny and Ext’((L,)s, Es) = 0 for n > ng, i # 0 and s € U.
There is a canonical morphism

£ (Lny)u ® R°Homy,((Ly,)v, E) — E

and we put F' := Cone(f)[—1]. Then we can see that Ext’((Ly)s, (F')s) = 0 for
N > Ny, i # 0 and s € U. We can find integers ny, N7 with Ny > n; such that
for any s € U,

Hom((Lx)s, (Ln, )s) ® Hom((Ly, )s, (F')s) — Hom((Ln)s, (F')s)

is surjective for N > N; and Exti((Ln)s, (FYY,))=0forn>mny,i#0and s € U.
Consider the canonical morphism

g: (Lnl)U ® RO Homp((Lnl)UvFl) - F1

and put F? := Cone(g)[—1]. We can find again integers ny, Ny with Ny > ny such
that for any s € U,

Hom((Ly)s, (Lny)s) ® Hom((Lny)s, (F?)s) — Hom((Ln)s, (F?)s)

is surjective for N > Ny and Ext’((Ly)s, (F?)s) = 0 for n > ny, i # 0 and s € U.
There is a canonical morphism

h:(Lny)u ® R°Hom,((Ln,)u, F?) — F?

and we obtain a sequence of morphisms

(Lny)u ® R’ Homp(<an)U7F2) — (Ln,)U ® R’ Homp((Lm)UaFl)
— (Lny)v ® R°Hom, ((Lp,)v, E) — E

such that for N > max{Ny, N1, No}, the induced sequence
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Hom((Ly)s, (Lny)s) ® R® Homy ((Ln, )ur, F?)
— Hom((Ln)s, (Ln, )s) @ R° Homy, ((Ln,)u, F)
— Hom((Ln)s; (Lng)s) ® R’ Homy, ((Ln, ), E)
— Hom((Ly)s, Es) — 0
is exact for any s € U. If we put Wy = R°Hom,((Ly,)v,E) and W; =

R°Hom,((Ly,)v, F?) for i = 1,2, then we can see by Definition 2.2 (4) that W;
are locally free Opy-modules and have the desired property. O

PROPOSITION 3.8.  Let E1, Ey be objects of Py such that Ext'((Ly)s, (Ej)s)
=0forj=1,2,n>0,i#0ands € U. If f: E1 — Es is a morphism in Yy
such that the induced morphisms R° Hom,,((Ly)v, E1) — R° Hom,((L,)v, F2) are
zero for n > 0, then f = 0.

PRrROOF. By assumption, there is an integer Ny such that for any N > Ny,
the morphism

R Hom,((Lx)v, B1) — R°Hom,((Lyx)v, Ba)
induced by f is zero and Ext’((Ly)s, (E;)s) =0 for j =1,2,i# 0 and s € U. By

Lemma 3.7, there are locally free sheaves Wy, Wy, Ws, integers ng < ny < no and
morphisms

(Lny)v ® Wa — (L, )u @ Wi — (Lny)u @ Wo = B4

such that the induced sequence

Hom((LN)S, (an)S) Q@ Wy — Hom((LN)Sv (Lm)é') ®@ Wy
— Hom((Ln)s, (Lny)s) ® Wo — Hom((Ln)s, (E1)s) — 0

is exact for N > 0 and s € U. We can take ng so that ng > Ny. Consider the
distinguished triangle

(Lny)u ® Wy — Ey — Cone(p).

We can see that Ext*((L,)s, Cone(p)s) =0 for n > 0, i # —1 and s € U. So we
have Homg,, (Cone(y), E3) = 0 by (6) of Definition 3.1 and the homomorphism



406 M. INABA
Homg, (E1, E3) — Homg,, ((Ln,)v ® W, Eo) (1)
induced by ¢ is injective. On the other hand, the homomorphism
R’ Homy,((Ly,)v ® Wo, E1) — R Homy, (L, )u ® Wo, E2)

induced by f is zero. So we have f o = 0. By the injectivity of (), we have
f=0. O

Since A = P, ~, R®Hom,,(L,,, Ly) becomes a finite algebra over S*(V), the
associated sheaf &/ := A becomes a coherent sheaf of algebras on P(V}). For each
object E € Py satisfying Ext’((Ly)s, Es) = 0 for n > 0, i # 0 and s € U, the
associated sheaf (@D,,~, R Homy,((L,)v, E))” on P(V1)y = P(V}) xsU becomes
a coherent «7;-module flat over U.

~

PROPOSITION 3.9.  The correspondence E — (@D, -, R Hom,((Ly)u, E))
gives an equivalence of categories between the full subcategory of Py consisting of
the objects E of Py satisfying Ext'((Ly)s, Es) = 0 forn >0, i # 0 and s € U
and the category of coherent <ty -modules flat over U.

Proor. First we will prove that the functor

~

VB (EBRO Homp((Ln)U,E)>

n>0

is fully faithful. Take any objects E, F' of Zy which satisfy Ext’((Ly,)s, Es) = 0,
Ext'((Lyn)s, Fs) =0 for n > 0,4 # 0 and s € U. By Proposition 3.8,

Hom(E, F) — Hom(¢(E), (F)) (1)

is injective. Take any homomorphism f € Hom(y/(E),¢(F)). There exists an
integer ng such that for any n > ng, Ext’((Ly)s, Es) = 0, Ext’((L,)s, Fs) = 0 for
i # 0 and s € U and the homomorphisms
Hom((Ln)s; (Lng)s) ® Hom((Lyn, )s, Es) — Hom((Ln)s, Es)
Hom((Ln)s, (Lny)s) ® Hom((Ly, )s, Fs) — Hom((Ln)s, F)

are surjective for N > 0 and s € U. For a coherent @-module &, we denote
& @ Op(v,), (n) simply by &(n). We denote the structure morphism P(V;)y — U
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by 7. Then we may assume that Rim,(¢(E)(ng)) = 0, Rim.(¢¥(F)(ng)) = 0 for
1 > 0 and that the homomorphisms

T (P(E)(n0)) ® o (—=no) — ¢(E)
T (Y(F)(n0)) @ & (—no) — »(F)

are surjective. We may also assume that

R’ Hom((Ln,)v, E) — m.(¢(E)(no))
R Hom((Ln,)u, F) — m.(¥(F)(no))

are isomorphic. Consider the distinguished triangles

Cone(v)[—1] = (Ln,)v ® R° Hom, ((Ln,)v, E) = E

Cone(w)[~1] 2+ (Lyy)v ® R*Hom, ((Ly, v, F) — F.
Then we can see that Ext’((Ly)s, Cone(v)[—1]s) = 0, Ext*((Ly)s, Cone(w)[—1],)
=0for N> 0,i#0and s € U. The homomorphism f : ¢)(E) — (F) induces a

homomorphism

f(no) « R Homy((Lny v, B) 2 7. (4 (E)(n0))
— T ($(F)(no)) 2 R® Homy((Lny v, F).

Then f(ng) induces a homomorphism

fi(Lng)u ® R’ Homy,((Lyg)vs E) — (Lng)u ® R? Homy,((Ly,)u, F).
Consider the composite

wo fou : Cone(v)[—1] 2 (Lny)u ® R’ Homy, ((Ln,)u, E)

L (Lny)v ® RO Homy (L, v, F) — F.

Then we have 1) (wo fouy) = P(w)oh(f)o(11) = forp(v)orp(t1) = forb(vor) = 0.

Since
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Hom(Cone(v)[—1], F) — Hom(t)(Cone(v)[—1]), ¥ (F))
is injective, we have w o fo t1 = 0. So there is a morphism f’ : E — F, which
makes the diagram

L

Cone(v)[—l] I (Lno)U ® R° Homp((Lno)Uﬂ E) — E

o) |

Cone(w)[—1] —= (Lp,)v ® R®Hom,((Ly, ), F) —— F

commute. This commutative diagram induces a commutative diagram

T ($(B)(no)) ® o (—ng) — ()

T

T (P (F) (10)) © & (—=no) —— 9 (F).

Since (Y(f') = f)ov(v) = ¥(f') ep(v) = foh(v) = P(w) o v (f) = h(w) 0orp(f) = 0,
we have ¥(f") — f = 0 because 9 (v) is surjective. So we have ¥(f’) = f. Thus (})
is surjective and 1 becomes a fully faithful functor.

Take any coherent #;-module & flat over U. There is an exact sequence of
coherent «7;-modules

Wa © o (—n2) oo Wi @ o (—n1) 2 Wo ® o (—np) — & — 0,

where Wy, W1, W5 are locally free sheaves on U and no > ny > ng > 0. The
above sequence induces a sequence of morphisms

2 1
(Lny)u @ Wo -5 (L))o @ Wi - (L o @ W,

By construction we have d' o d*> = 0. So there is a morphism u : Cone(d?) —
(Lny)u ® Wy such that the diagram

dl

(Ln,)u @ W1 (Lny)u © Wy

T~

Cone(d?)



Moduli of stable objects in a triangulated category 409

is commutative. Note that Ext’((Ly)s, Cone(d?)s) = 0 for N >0, i # —1,0 and
s € U. So we have Ext'((Ly)s, Cone(u)s) =0for N > 0,i# —2,—1,0and s € U.
Since & is flat over U, the sequence

Wy ® 427(—77/2) ® k‘(S) — W1 ® %(—nl) ® k(S)
— W@ A (—no) k(s) — ERk(s) — 0

is exact for any s € U. So we obtain the exact commutative diagram

HO(W2® . HO(W1® . HO(WO®
(N —n2) ® k(s)) /(N —n1) ® k(s)) /(N —ng) ® k(s))

] | ]

Hom((Ly)s, Hom((Ly)s, Hom((Ly)s,
(an)s ® (WQ)S) (Ln1)s ® (Wl)s) (Lno)s ® (WO)s)

for N > 0 and s € U. Here we denote W; ® k(s) by (W;)s for i =0,1,2. We have

a factorization

Hom((Ln)s, (Ln,)s @ (W1)s) Hom((Ln)s, (Lno)s ® (Wo)s)

/

Hom((Ly)s, Cone(d?),)

for N > 0 and s € U, and the homomorphism Hom((Ly)s, (Ln,)s ® (W1)s) —

Hom((Ly)s, Cone(d?),) is surjective for N > 0 and s € U, because Ext'((Ly)s,

(Lpy)s @ (Wa)s) =0for N> 0and s € U. So we can see that the homomorphism
Hom((Ly)s, Cone(d?)s) — Hom((Ly)s, (Lng)s @ (Wo)s)

is injective for N > 0 and s € U. Since there is an exact sequence

0= EXtil((LN)Sa (Lng)s @ (Wo)s) — EXtil((LN)sa Cone(u)s)

= Hom((Ln)s; Cone(dQ)s) — Hom((Ln)s; (Lng)s @ (Wo)s)

for N> 0 and s € U, we have Ext™*((Ly)s, Cone(u),) = 0 for N > 0 and s € U.
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By Definition 3.1 (5) and Remark 3.6, there is an object E € 9y and a morphism
a : Cone(u) — E such that R°Hom,((Ly )y, Cone(u)) — R®Hom,((Ly)u, E) is
isomorphic for N > 0 and that Ext’((Ly)s, Es) =0 for N >0, j #0 and s € U.
We can see that the sequence

R° Homy,((Ly)v, (L, ) © Wa) — R Homy,((Ly)u, (L, )u © Wh) —
R°Hom,((Ln)v, (Lny)u ® Wo) — R°Hom, ((Ly )y, Cone(u)) — 0

is exact. Since RYHom,((Ly)v,Cone(u)) = R°Hom,((Ly)u, E) for N > 0,
there is an integer Ny such that for any NV > Ny, there is a unique isomorphism
RYHom,((Ln)u, E) = m.(&(N)) which makes the diagram

RO Homp((LN)U, RO Homp((LN)U, RO Homp .
(Lnl)U®Wl) (L7LO)U®WO) ((LN)UaE)

ui ul ul

T (' (N —n1) @ Wp) —— m (L (N — ng) @ W) ——= m (&(N)) — 0
commute. Note that there is a canonical commutative diagram

R® Homy,((Ln-4m)u,
(Ln)u) ® gJHorzlp((LN)mE) — R?Homy,(Ln+m)u, E)

| |

(2 (m)) @ T (E(N)) T (&(N +m))

for N > Ny and a non-negative integer m. Then we have an isomorphism

P R°Hom,((L,)u, E) = P m(&(n))

n>No n>No

of graded Ay-modules. So we obtain an isomorphism

Y(E) = ( P r° Homp((Ln)U,E))N -, ( P w*(g(n))>~ ~ 8

n>No n>No

Thus 1 becomes an equivalence of categories. O
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DEFINITION 3.10. For a geometric point Speck — S, an object E € %y is
said to be Z-stable (resp. Z-semistable) if Ext'((Ly)g, E) = 0 for n > 0 and
i # 0 and the inequality

dim Hom((L.,)x, F)  dimHom((Ly,)g, E)
dimHom((L,)k, F) ~ dimHom((Ly), E)

(resp dim Hom((L, )k, F) - dimHom((Lm)k,E))
" dimHom((L,)g, F) — dimHom((Ly)g, F)

holds for n > m > 0 and for any non-zero object ' € % satisfying
Ext'((Ln)k, F) = 0 for N > 0 and ¢ # 0 with a morphism ¢ : FF — E such
that ¢ is not isomorphic and Hom((Ly )k, F) — Hom((Ly)g, E) is injective for
n > 0.

REMARK 3.11. Let Speck — S be a geometric point and E an object of &
satisfying Ext’((L,)x, E) = 0 for i # 0 and n > 0. Let & be the coherent .27
module corresponding to E as in Proposition 3.9. Then E is Z-stable (resp. -£-
semistable) if and only if for any coherent 7;-submodule & of & with 0 # .% C &,
the inequality

M) AEm) (o, X

holds for n > m > 0. We say a coherent «%-module & stable (resp. semistable)
if the corresponding object E of 2y, is £-stable (resp. -£-semistable).

REMARK 3.12. For a field K with a morphism Spec K — S and an object
E € Pk, we say that E is Z-stable (resp. Z-semistable) if E is Z-stable (resp.
Z-semistable), where K is the algebraic closure of K.

4. Existence of the moduli space of stable objects.

DEFINITION 4.1. Let p: 2 — (Sch/S) be a fibered triangulated category
with base change property and .2 = {L,},>0 be a strict ample sequence. For a
numerical polynomial P(t) € Q[t], we define a moduli functor ., 5"2 : (Sch/S) —
(Sets) by

//lg’g(T) :=<{ E € 97 |Ext'((Ly)s, Es) = 0 for i # 0 and

for any geometric point s of T', for n > 0, /
Hom((Ly)s, Es) = P(n) and E; is Z-stable



412 M. INABA

where E ~ E’ if there exists a line bundle L on T and an isomorphism E = F'® L.
We also define a moduli functor e///;‘g : (Sch/S) — (Sets) by

jlg’g(T) = E € 97 |Ext'((Ly)s, Es) = 0 for i # 0 and

for any geometric point s of T, for n > 0, /
Hom((Ly)s, Es) = P(n) and E, is #-semistable

where E ~ E’ if there exists a line bundle L on T such that F =~ E’ ® L or there
exist sequences 0 = Ey - F4 — -+ - B, = Fand 0= E) - Ef — -+ —
E;, = E’ such that Ext'((Ly)s, (Ej)s) = Ext"((Ln)s, (E})s) = 0 for n > 0,3 # 0
and s € T, Hom((Ly)s, (Ej)s) — Hom((Ln)s, (Ej+1)s) and Hom((Ly)s, (E)s) —
Hom((Ly)s, (Ej41)s) are injective for n >0 and s € T and @), F; = @Dj_, Fj®
L, where F; = Cone(E;j_1 — Ej), Fj = Cone(E}_; — E}) and for any geometric
point s of T', (F})s and (F})s are Z-stable such that

dim Hom((Ln)s, (Fy)) _ P(m) _ dim Hom((L,)s, (F),)

dim Hom((L,)s, (Fj)s)  P(n)  dimHom((Ly,)s, (F!)s)

forn>m>0and for j=1,2,... a.

PROPOSITION 4.2.  For any numerical polynomial P(t) € Q[t], the family

{E

1s bounded.

E is Z-semistable and Hom((Ly)x, E) = P(n) for n >0

FE € 9, for some geometric point Speck — S, }

Proor. It suffices to show that the corresponding family of coherent .o7-
modules on the fibers of P(V}) over S is bounded. For a coherent sheaf 4 on
P(V7), we can write

with a;(¥) integers and we write u(G) = a1(¥4)/ao(¥4). Let & be a coherent
f-module such that x(&(n)) = P(n) and the corresponding object of 2, is .-
semistable. Note that & is of pure dimension. We can take the slope maximal
destabilizer .7 of & as a sheaf on P(V}). Let .Z be the image of .# @ o — &.
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Note that there exists a locally free sheaf W of finite rank on .S, positive integer
N and a surjection

W®O(-N) — o

Then we obtain a surjection

S,

WeF(—-N) > FRd —
Since W ® .# (—N) is slope semistable, we have
p(F) = N = p(W @ F(-N)) < u(F) < u(&).

So the maximal slope p(.#) is bounded by N + 1(&’). Then we obtain the bound-
edness by [6, Theorem 4.2]. O

PROPOSITION 4.3.  Assume that U € (Sch/S) and E € Dy are given. Then
the subsets

U®={zeU|E, is ZL-stable}
U ={zx €U | E, is £-semistable}

of U are open.

PRrROOF. First we will show that

U'={z €U |Ext'(Ln)s, E;) =0 for n>>0and i #0}

is open in U. By Definition 3.1 (4), there exists a positive integer ngy such that for
any n > ng, exists an integer N,, with N,, > n such that for any N > N,,,

Hom((Ly)s, (Ln)s) ® BExt'((Ly)s, Es) — Ext'((Ly)s, Es)

is surjective for any ¢ and s € U. By Definition 3.1 (4), there are integers ki, ko
with k1 < kg such that Exti((LnD)s,Es) =0 for any s € U except for k1 < i < ks.
Then we have Exti((LN)S, E;)=0for N > N,,, and s € U, except for k1 < i < k.
Now take any point x € U’. For each i # 0 with k; < ¢ < ko, there is an integer
m; with m; > ng such that Ext’((Ly,, )z, Fz) = 0. For any N > N,,.,
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Hom((Ln)s, (Lim,)s) ® Ext' (Lo, )5, Bs) — Hom((Ln)s, Es)

is surjective for any s € U. By using Definition 2.2 (4), we can see that there exists
an open neighborhood U; of x such that Ext*((Lyy, )y, Fy) = 0 for any y € U,. Then
we have Ext"((Ly)y, Ey) = 0 for N > N,,,. If we put

V= ﬂ U;

k1 <i<ks,i#£0
then V' is an open neighborhood of z. Put
N :=max ({Np, | k1 < i < ko,i # 0} U{ Ny, }).

Then we have Ext’((Ly),, E,) =0 for any y € V, i # 0 and N > N, which means
V c U'. Thus U’ is an open subset of U.

By Proposition 3.9, Ey corresponds to a coherent 7 -module & flat over
U’. We can see that U® coincides with

{x €U | & ®k(x) is a stable @-module}.

We can see by the argument similar to that of [3, Proposition 2.3.1], that this
subset is open in U’. By the same argument we can also see the openness of U**.
O

THEOREM 4.4. There exists a coarse moduli scheme M;g of ///5’3 and

an open subscheme Mg"g of Mg’j which is a coarse moduli scheme of t//l;;’j.

Before constructing the moduli space, we first note the following lemma:

LEMMA 4.5. Let P(x) be a numerical polynomial. Then there exists an

integer mg such that for any m > mg, any geometric point s of S, any semi-stable
s-module & with x(&(n)) = P(n),

(1) &(m) is generated by global sections and H*(&(m)) =0 for i > 0,
(2) for any nonzero coherent <fs-submodule F C &, the inequality

. ao(F) ..
dim H(Z (m)) < a‘; @ dim H(&(m))

holds, where
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Moreover the equality holds if and only if x(&(n))/ao(&) = x(F(n))/ao(F)
as polynomials in n.

PROOF. Proof is essentially the same as [8, Proposition 4.10]. O

Take mg as in Lemma 4.5. Replacing S by its connected component, we
may assume that S is connected. Replacing my if necessary, we may assume by

Proposition 4.2 that for any geometric point FE € //lg’g (k) and for any m > my,
Ext'((Lim)k, E) = 0 for i # 0 and

Hom((Lp)g, (Lm)k) ® Hom((Ly, )k, E) — Hom((Ly)g, E)

is surjective for n > 0. For a geometric point E € ///5"3)(/%)7 we consider the
canonical morphism

U (Limg )k @ Hom((Lypg )i, E) — FE

and put F; := Cone(u)[—l]. We can take m; > mg such that for any such F and
for any m > my, Ext"((Lm)g, E1) = 0 for i # 0 and

Hom((Lp)g, (Lim)x) @ Hom((Ly)g, E1) — Hom((Ly,)g, E1)
is surjective for n > 0. We consider the canonical morphism
Vi (L, )k @ Hom((Ly, )k, E1) — E

and put E» := Cone(v)[—1]. We can take ma > 0 such that for any E and for any
m > ma, Ext"((Lm )k, E2) = 0 for i # 0 and

Hom((Ln)ka (L’m)k) & Hom((L'm)k:a EQ) — Hom((Ln)ka EQ)
is surjective for n > 0. We put
ro = dimy Hom((Lym, )k, E), 1= dimg((Limy )k, E1), 72 := dimg((Lm, )k, F2)

and



416 M. INABA
W() = ﬁ?ro, W1 = ﬁ?rl, W2 = ﬁgBTz.

Note that rg, 71,72 are independent of the choice of F and only depend on P and
Z. We set

Z =V (R®Homy (L, Lim,)" @Wa@W') x V (R° Homy (L, , L, ) @ W1 W ).
Let
(Limy)z ® Wa =, (L, )z @ W1 =, (Limg)z @ Wy
be the universal family. There exists a closed subscheme Y C Z such that
Y(T)={g€Z(T)|g"(aov) =0}

for any T' € (Sch/S). Since the sequence

Hom(Cone(dy ), (Lymg )y © Wo) - Hom((Lm, )y @ Wi, (Lmy )y ® Wo)

=z, Hom((Ly, )y @ Wa, (Lim,)y @ W)

is exact and 9*(dy) = @y o 0y = 0, there exists a morphism @ : Cone(dy) —
(Lo )y ® Wy such that §(w) = 4y. We put B := Cone(w) and set

V' :={z €Y |Ext " ((Ly)s, Bs) = 0 for n>> 0}

Thep we can see that Y’ is an open subset of Y. Note that for any =z € Y,
Ext*((Ln)s, Bx) = 0 for n > 0 except for ¢ = —2,0. By Definition 3.1 (5), there
exist an object E' € Py and a morphism By, — F such that Ext"((L,)., Fz) =0

forn > 0,2 € Y" and i # 0 and Hom((Ly,) 4, B;) — Hom((Ly,)., E,) is isomorphic
forn >0 and x € Y'. If we set

Ey = Cone((Lpm,)y: @ Wy — E‘)[—l},
Cone(0)yr — (Lm,)yr ® Wy factors through E;. Moreover, for any z € Y/,

Exti((Ln)m7 (El)z) =0 fori # 0 and Hom((L,, )., Cone(?),.) — Hom((Ly,), (El)m)
is isomorphic for n > 0. If we set
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Ey = CODe((Lml)y/ QR Wi, — E1)[—1],
then ¥y~ factors through E». Now we put

Wo ® k(z) — Hom((Lpy, )e, Es) is isomorphic,
YV =Sz eY' |W,; ®k(z) — Hom((Lm, ), (Ej)z) are isomorphic for j = 1,2,
Hom((Ly)g, Ey) = P(n) for n>> 0 and E, is £-semistable

and
Ve i={zeV>| E, is Z-stable}.
Then we can check that Y5, Y *$ are open subsets of Y. If we put
G := GL(Wy) x GL(W1) x GL(W>),

then there is a canonical action of G on Z and Y, Y’ Y55 Y* are preserved by
this action. For a sufficiently large integer N, we put

ag := rank Wy + N rank Wy

ay := —N rank Wy

ap := —rank Wy

and consider the character
X:G— Gn;  (90,91,92) — det(go)™ det(g1)*" det(g2)**.

Let us consider the quiver consisting of three vertices wvs,v1,v9 and
rank g, R® Hom,(Ly,, Lim, )-arrows from ve to vy and rank g, R Homy, (L, , Lin, )-
arrows from vy to vg. Then the points of Z correspond to the representations of
this quiver (see [5] for the definition of quiver and its representation).

LEMMA 4.6. If we take N > mg > mq > mg > 0, Y*° is contained in
the set Z°°(x) of x-semistable points of Z in the sense of [5]. Moreover, Y* is
contained in the set Z°(x) of x-stable points of Z.

PROOF. Take any geometric point z of Y* and vector subspaces W/ C
(Wi)z (0 < i < 2) which induce commutative diagrams
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Wi —— W{ @ R°Hom,(Ly,, Lin, )z

| |

(Wa)y — (W1), ® RO Homy (Liny, Lin, )

W| —— W} @ R Homp (L, , Lmg )«

| |

(W1)y — (Wo)z ® RO Homy, (L, s Ling )a-

From [5], we should say that
ap dim W] + oy dim W1 + ap dim W3 > 0.

Let & be the Y*®*-flat o/ ss-module corresponding to FEy e by Proposition 3.9.
Then a morphism &7 (—mg) ® W) — &, is induced and we denote its image by
&(W(). Note that &, is of pure dimension and so & (W) is also of pure dimension.
Since the family

{&WE) | Wi € (Wo)a, @ is a geometric point of Y**}

is bounded, we can find an integer m; > myg such that for K| := ker(Wj ®
o (—mg) — E(WY)), Ki(my) is generated by global sections and H! (K} (m1)) = 0,
Hi(e(my —myg)) = 0 for i > 0. Moreover we can find an integer mso > m; such
that for K} := ker(H (K| (m1))®.9/(—m1) — K1), K5(ms) is generated by global
sections and H'(K}(ma)) = 0, H' (o, (ma —mq)) = 0, H (e, (m2 —myg)) = 0 and
HY (K} (ms)) = 0 for i > 0. If we put W{ := H(K/(m;)) and W} := HO(K}(ms)),
then we have

dim H°(&(W§)(m1)) = dim HO (e (m1 — my)) dim W — dim W]
dim H?(&(W})(m2)) = dim H° (Z, (ma — mg)) dim W}
— dim H (o, (m2 — m1)) dim W{ + dim W3,

Since the family {&(W{)} is bounded, we can take by using Lemma 4.5 a positive
integer mg > 0 and a positive number ¢ > 0 such that
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(& Wg)(mo)) _ ao(&(Wp))

P(mo) wP)
for any W such that

X(ETG)(m) _ Plm

x(EWg)(n)) — P(n)
for n > m > 0. Here we write

d . d ,
X(EW) () =D ai(&(WE)) (n ;ﬁ - z>’ P(n) =" a;(P) <n ;ril - 2)
i=0 i=0

with a;(&(W})) and a;(P) integers. Since

L REW ) _ ao( (W)
m1—00 P(ml) ag (P) ’

we can take mq > mg such that

Since

(h° (e (ma — m1)) + N)RO(E(W5)(ma)) — hO(& (W) (m2))

Ry (W0 (Ao (mz —m1)) + N)P(my) — P(m)
RS )
P(ml)

we can take N > mo such that

(h° (e (ma — m1)) + N)RO(E(Wg) (ma)) — hO(& (W) (ma))
(h0(x(m2 —ma)) + N)P(ma) — P(my)

hO(EWg)(ma)) e

Then we have
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h° (& (Wg)(mo))
P(myo)
ao(E(Wy))
GO(P)
hO(EWE)(my)) | e
Pony) T2
- (h° (e (mg —my)) + N)RO(E(Wg) (ma)) — KO (E(Wy)(m2)) | € L€,
(hO( ey (ma —my)) + N)P(my) — P(ma) 2
_ (W (ma — ) + N)RO(E(Wp)(ma)) — hO(E (W) (m2))
(hO( A (ma — m1)) + N)P(mq) — P(m2)

for n > m > 0. Take W{ such that

X(EWp)(m)) _ P(m)
x(EWg)(n)) — P(n)

for n > m > 0. Then we can see by Lemma 4.5 that

hO(EWg)(mo)) _ ao(&(W5))

P(mo) ao(P)

(h° (e (ma — m1)) + N)RO(E(Wg)(ma)) — hO(& (W) (ma2))
(hO(e(my —m1)) + N)P(m1) — P(mz)

Hence we have the inequality

ho(&(W§)(mo))

(h°(x(ma — m1)) + N)RO(E(Wg)(ma)) — hO(& (W) (ma2))
- (h0(z(m2 —ma)) + N)P(ma) = P(ms)

P(mo)  (2)

for any &(W(). Moreover, the equality holds in (2) if and only if x(&(W{)(n))/
ag(&(WY)) = P(n)/ao(P) as polynomials in n. From the inequality (2), we obtain
the inequality
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(ro + Nr1) dim W) — Nro dim W[ — ro dim W3 > 0

by using dim W < hO(&(W§)(mo)). Since dimW{ < dim W] and dim W5 <
dim W3, we have

ap dim W{ + a; dim W, + az dim W3 > 0. (3)

Thus 2 becomes a geometric point of Z%°(y).

In the inequality (3), the equality holds if and only if dim W/ = dim W7,
dim W) = dim W}, h%(&EWY)) = dim Wy and x(&(WE)(n))/ao(E(WE)) =
P(n)/ap(P) as polynomials in n. So, if « is a geometric point of Y*, we have

(ro + Nry) dim W) — Nrg dim W{ — ro dim W3 > 0.

for any (W, Wi, Ws5) with (0,0,0) # (Wg, Wi, Ws) S (Wo)a, (W), (W2)a),
which means that = becomes a geometric point of Z*(x). [

By [5] and [9], there exists a GIT quotient ¢ : YNZ*(x) — (YNZ**(x))//G.
LEMMA 4.7. ¢ 1 (a(Y*%)) = Y*5.

PrOOF. It is sufficient to show that ¢~1(¢(Y*%)) C Y*. Take any k-valued
geometric point z of ¢~ 1(4(Y*%)). Let s be the induced k-valued geometric point
of S. Since ¢(z) is a geometric point of ¢(Y*%), there exists a k-valued geometric
point y of Y** such that ¢(x) = ¢(y).

Let & be the Y*5-flat .o -:-module corresponding to Ey:: as in the proof of
Lemma 4.6. Then there is a Jordan-Hélder filtration

0=FO c W) ...c Fr® =& @ k(y)
of & ® k(y). For each ¢ with 1 <4 <[, we define K{i), KQ(i) by exact sequences

0— K{i) — HO(F(i)(mO)) ® A (—mgy) — FO 0

0 — K3 — HO(K}" (1)) © o (=m1) — K} — 0.
Then y corresponds to the representation of quiver given by

HO(K{ (ma)) — HO(K{" (m1)) ® HO(/,(m2 — m1))
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HO(K" (my1)) — H°(FO(mg)) @ HO (s (my — my))

and the Jordan-Holder filtration of & ® k(y) corresponds to the filtration of the
quiver representation given by

0 c HO (K" (my)) -+ € HO(KSY (my))
0c H (KM (my)) ¢ --- c HO (K (m1))

0C H(FW(mg)) C -+ € H*(FD(my)).

We put BEG) := O /FGE=1) and & := @2:1 E®W. Fori=1,...,1, we define
[_(£Z)7 I_(él) by the exact sequences

0— [_({Z) — HO(E(i)(mo)) ® A (—mgy) — EW 0

We can see from the proof of Lemma 4.6 that the quiver representation y; given
by

HO (K (mg)) — HO (K1 (m1)) @ HO(eu(ma —my))

HO (K (my)) — HY(ED(my)) @ H (o (m1 — mq))

is stable with respect to the weight (ap, 1, @s). The direct sum y; & --- & y;
corresponds to a point ¢’ of Y;** given by the exact sequence

HO(e]laf?;%mz)) © o/ (~ma) — HO(éff{“(ml)) © o/ (~m)

i=1 i=1
l ‘ l ‘
— HO(@E(Z)(m0)> ® 427(*7710) — @E(l) — 0.
i=1 i=1

Then we can see that the quiver representations determined by y and 3y’ are S-
equivalent. So we have ¢(z) = ¢(y) = #(y’). Note that Gsy' is a closed orbit in
(Y NZ%%(x))s by [5, Proposition 3.2]. Thus the closure of the G,-orbit of x must
contain y’. Then, by Proposition 4.3, © becomes a geometric point of Y. 0
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PROOF OF THEOREM 4.4. If we put

M7 = p(Y™),

then we can see by Lemma 4.7 that Mg"y is an open subset of (Y N Z**(x))//G.
We can see by a similar argument to that of [8, Proposition 7.3], that there is a

canonical morphism ® : ///5’3 — Mg"z. For two geometric points x1,29 € Y%°
over a geometric point s of S, ¢(z1) = ¢(x2) if and only if the corresponding
representations of quiver are S-equivalent ([5]), that is, the corresponding objects
of 9, are S-equivalent. Thus for any algebraically closed field k over S, ®(k) :

///5’2)(19) — Mg’x(k) is bijective. We can see by a standard argument that Mg"’?
has the universal property of the coarse moduli scheme. If we put M, 5"% =Y*/G,

then Mg’g becomes an open subset of Mg"g and we can easily see that Mg’g is
a coarse moduli scheme of //{5’3. So we have proved Theorem 4.4. (]

THEOREM 4.8. Assume that S is of finite type over a universally Japanese

ring =. Then the moduli scheme Mg’x is projective over S.
For the proof of Theorem 4.8, the following lemma is essential.

LEMMA 4.9. Let R be a discrete valuation ring over S with quotient field
K and residue field k. Assume that E is an object of D which is £ -semistable.
Then there is an object E € 9g such that Ex = E and Ey, is £ -semistable.

PROOF. The above E corresponds to a coherent o/ -module & and it suffices
to show that there exists an R-flat coherent @p-module & such that & @z K = &
and & ® k satisfies the semistability condition given by the inequality in Remark
3.11. For a sufficiently large integer N, we have H'(&(N)) = 0 for i > 0 and
&(N) is generated by global sections. Then there is a surjection @ (—N)®" — &
which determies a K-valued point 7 of the Quot-scheme Quotf;(_ nyer for some
numerical polynomial P, where r = dim H°(&(N)). Let .# C &/ (—N)®" be the
universal subsheaf and Y be the maximal closed subscheme of Quotf{(_ nyer such
that & ® Fy — o (—N)Y" factors through #y. Then 7 is a K-valued point of Y
and extends to an R-valued point £ of Y because Y is proper over S. £ corresponds
to an R-flat quotient coherent /z-module &” of o7 (—N)E" and we have &' @ K =
&. From the proof similar to that of Langton’s theorem ([3, Theorem 2.B.1]),
we can obtain an R-flat coherent @zp-module & by taking succesive elementary
transforms of &’ along P(V}) x Speck such that Eor K~ & @p K =& and
& ® k is semistable as 7 ® k-module. (]
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Now we prove Theorem 4.8. By construction, the moduli scheme M, g"g is

quasi-projective over S. So it is sufficient to show that M lgj’x is proper over S. Let
R be a discrete valuation ring over .S with quotient field K and let ¢ : Spec K —

M 5’$ be a morphism over S. Then there is a finite extension field K’ of K such
that the composite 1) : Spec K’ — Spec K N Mg’f is given by an .Z-semistable
object E’. We can take a discrete valuation ring R’ with quotient field K’ such
that K N R’ = R. Let k' be the residue field of R’. By Lemma 4.9, there exists
an object F of Pgs such that Fxs & E’ and Ej/ is .£-semistable. Then FE gives a

morphism 1) : Spec R’ — M, 5’2 which is an extension of ¢). We can easily see that

1 factors through Spec R. Thus M, 5’3) is proper over S by the valuative criterion
of properness. O

5. Examples.

In this section, we give several examples of moduli spaces of stable objects
determined by a strict ample sequence.

ExXAMPLE 5.1. Let f: X — S be a flat projective morphism of noethe-
rian schemes and let Ox (1) be an S-very ample line bundle on X such that
HY(Ox,(m)) = 0 for i > 0, s € S and m > 0. Consider the fibered triangu-
lated category Zx/s defined by (Zx/s)u = D(Coh(Xy/U)) for U € (Sch/S).
Then £ = {Ox(—n)},>0 becomes a strict ample sequence in Zx/g.

PROOF. Definition 3.1 (1), (2), (3) are easy to verify. Let us prove Definition
3.1 (4). Take any U € (Sch/S) and any object E® € (Zx/s)v. We may assume
that E*® is given by a complex

00— 0— BN E? —0—0—---

where each E' is a coherent sheaf on Xy flat over U. By flattening stratification
theorem, there is a stratification U = ]_[;nzl Y; of U by subschemes Y; such that
each coker(d")y, = coker(dy ) is flat over Y for any ¢ and j. Then we can see that
im(dgfj) and ker(dgfj) are flat over Y; for any ¢ and j. For any point s € U, the
sequence

0 — im (dgl) ® k(s) — E'® k(s) — coker (dZY]) ®k(s) — 0

is exact because coker(dy,) is flat over Y;. Then the homomorphism im(d%,;l) ®
k(s) — ker(d%) ® k(s) is injective for any s € Y;. Thus the cohomology
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sheaf t%m(E{,]) = ker(d%,j)/im(di,;l) is flat over Y; for any ¢ and j. We can
take a positive integer mg such that for any n > ny, Rp(fyj)*(E% (n)) = 0,
Rp(fn)*(im(dﬁ,j)(n)) = 0 and Rp(fyj)*(kerd%,j (n)) = 0 for any p > 0 and any
i,j. Then we have Rp(fyj)*(%l(E;,J (n))) =0 for any p > 0, any 4, j and n > ng.
From the spectral sequence RP(fy,).(#(Ey, (n))) = Rp+q(fyj)*(E;/j (n)), we
have an isomorphism R'(fy;)(Ey,(n)) = (fyj)*(f%ﬂ’(E;,J)(n)) for any i,j and

n = ng. So we can see that R(fy;).(EY, (n)) is quasi-isomorphic to the complex

e 0 (fyy)e (B () — (fy)) (B ()
Hm%(fyj)*(Ei?j(n)) ) — -

for any 4,7 and n > ng. Note that there are canonical isomorphisms

H'(E:(n)) = R'(fy;)«(Ey,(n) ® k(s) = (fy,)« (A" (Ey,)(n)) ® k(s)
~ 0°(X,, H(ES)(n)).

for any ¢,j, any s € Y; and n > ng. If we take ng sufficiently larger, we may
assume that the homomorphism

(fy;)" (fy)« (A (BN, (n))) — 7 (EY, ) (n)

is surjective for any n > ng and any ¢,j5. Thus there exists a positive integer
Ny > n such that

(fy))«(Oxy, (N = 1)) @ (fy,) (7 (B, (1)) — (fy,) (A7 (EY,)(N))

is surjective for any N > Ny and any 4, j. So we obtain a commutative diagram

(fr;)«(Oxy (N —n)) @ k(s)
® ()« (A&7, (n)) ® k(s)

o o

e () (B (N)) © h(s)

<.

H'(ES(N))
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for any ¢,7, any s € Y; and N > Ny. Hence
Hom(6x, (~N), Ox. (~n)) ® Ext’ (6x, (—n), BS) — Ext’ (0x.(~N), E2)

is surjective for any s € U, any 7 and N > Ny and we have proved Definition 3.1
(4).

Now we prove Definition 3.1 (5). Assume that an object E € (Zx/g)v and
integers i, ng are given such that Ext’(@x, (—n),E?) = 0 for any s € U and
n > ng. Replacing ng by a sufficiently large integer, we have

Ext’ (Ox,(—n), E?) = H'(E2(n)) = H*(X,, #(E2)(n)) = 0
for any s € U and any n > ng. Then we have s#(E?) = 0. If E® is given by

dli+t dl2—1
[N SN

1
Ell d El1+1 Elz’

such that each E7 is flat over U, then the induced homomorphism coker(d'~!) ®
k(s) — E @ k(s) is injective for any s € U. Then coker(d?) is flat over U and
coker(d~!) — ET! is injective. Let F'® be the complex given by

) ) i+2 lo—1
~*>O—>coker(dl)—>E”2d4—%~~d—>Elz*>0—>'~'.

Then there is a canonical morphism « : E®* — F®. Note that
R/ Homy(Ox, (—n), E*) = R (fu)(E*(n)) = (fv): (57 (E*)(n))
for n > 0. So u induces isomorphisms

R Homy (Ox,, (—n), E*) == (fv)« (A7 (E*)(n))
— (fu)« (A7 (F*)(n)) — R’ Homy(Ox, (—n), F*)

for j > i and n > 0. By definition we have R/Hom(Ox,(—n),F*) =
(fu)«(#7(F*(n))) = 0 for j < i and n > 0. Thus we have proved Definition
3.1 (5).

Finally, let us prove Definition 3.1 (6). Let E* and F'* be objects of (Zx/s)u-
Assume that R’ (fy).(E*(n)) = 0for j > 0 and n > 0 and that R7(fy).(F*(n)) =
0 for j < 0 and n > 0. Since R’ (fy)«(E®*(n)) = (fu)« (27 (E*)(n)) for n > 0, we
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have J#7(E®) = 0 for j > 0. Then E*® is quasi-isomorphic to the complex given
by

1
—0— Eh d—E>Ell+1—>-~-—>E‘2—>ker(d;31)—>0—>~-~

On the other hand, we have 7 (F*®) = 0 for j < 0, because R?(fy).(F*®(n)) =
(fr)« (A7 (F*)(n)) for n > 0. Then F*® is quasi-isomorphic to the complex given
by

_ dy
-0 —cokerdp! — F' ... — F™M2 0 — ...

We can take a complex

e Yt 2,

such that each IV is an injective sheaf on Xy and that I*® is quasi-isomorphic to
F*. Then we have Hom(g, o), (E®, F*) = H°(Hom®(E*,I*)) = 0. So we have
proved Definition 3.1 (6). O

For an object E € (Zx/s)v, Ext'(Ox,(—n),Es) = 0 for n > 0, i # 0 and
s € U if and only if E*® is quasi-isomorphic to a coherent sheaf on Xy flat over

U. Hence, for a numerical polynomial P, the moduli space M, ;;js (resp. Mg;fs)
is just the usual moduli space of €x(1)-stable sheaves (resp. moduli space of S-
equivalence classes of Ox(1)-semistable sheaves) on X over S.

EXAMPLE 5.2.  Let X, S, Ox(1) and Zx/,5 be as in Example 5.1. Take a vec-
tor bundle G on X. Replacing O'x (1) by some multiple, Z5 = {G® Ox(—n)}n>0

also becomes a strict ample sequence in Zx /s and the moduli space M g,j’g (resp.

S

P, %
M@x/s
of S-equivalence classes of G-twisted &'x(1)-semistable sheaves) on X over S.

) is the moduli space of G-twisted €'x (1)-stable sheaves (resp. moduli space

ExaMPLE 5.3. Let X, Y be projective schemes over an algebraically closed
field k and let O'x (1) be a very ample line bundle on X such that H (X, Ox(m)) =
0 for ¢ > 0 and m > 0. Assume that a Fourier-Mukai transform

®:DYX) = Db(Y)
E — R(py)«(px(E) @ 2)

with the kernel &2 € D%(X x Y) is given. Then ® extends to an equivalence of
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fibered triangulated categories
P . @X/k L @Y/k-

Since & = {Ox(—n)}ln>o is a strict ample sequence in Zxs;, £* =
{®(Ox(—n))}n>0 is a strict ample sequence in Py ;. Moreover ® determines
an isomorphism

PY ~ P¥®
P M@xﬂc M@Y/k

of the moduli space of stable sheaves on X to the moduli space of stable objects
in D5(Y).

EXAMPLE 5.4. Let G be a finite group and X be a projective variety over
C on which G acts. Take a G-linearized very ample line bundle &x (1) on X such
that H'(X, Ox(m)) =0 for i > 0 and m > 0. Let pg, p1,- .., ps be the irreducible
representations of G. Consider the fibered triangulated category @g e, defined by
(@§/C)U = D% (Coh(Xy/U)), for U € (Sch/C), where D%(Coh(Xy;/U)) is the
full subcategory of the derived category of bounded complexes of G-equivariant
coherent sheaves on Xy consisting of the objects of finite Tor-dimension over U.
For positive integers 7o, 71, . .., 7, Z¢ ={O0x(-n)®@(pg" @B pP") }nx0

(ro,..

PLE ..
becomes a strict ample sequence in @X /C The moduli space M 2 . (ro7e) §g just
the moduli space of G-equivariant sheaves & on X satisfying the stablhty condition:
& is of pure dimension d = deg P and for any G-equivariant subsheaf 0 # % C &,

the inequality

Homg (p5"* @ -+ @ p"*, H(X, .7 ® Ox(n)))
ao(F)
Homg (p5"™ @ -+ @ pg", HO(X, & ® Ox(n)))
<
ao(&)

holds for n > 0, where we define

X(g(m))zz_;ai(g)(m;il;i> and  x(F Zaz (F) (m;-_dz—z>

and so on.
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EXAMPLE 5.5. Let X be a projective variety over C' and let Ox(1) be
a very ample line bundle on X such that H*(X,Ox(m)) = 0 for i > 0 and
m > 0. For a torsion class a € H?(X, 0%), consider the fibered triangulated
category 7% ¢ over (Sch/C) defined by (2% ,c)uv = D*(Coh(Xy/U), ayr), where
D*(Coh(Xy/U), ay) is the derived category of bounded complexes of coherent
ay-twisted sheaves on X x U of finite Tor-dimension over U and «y is the image
of a in H?(Xy, 0%, )- For alocally free a-twisted sheaf G of finite rank on X,
Z& = {G®0x(—n)}n>0 becomes a strict ample sequence in 7 /C after replacing

Ox (1) by some multiple. The moduli space M, P’;’?ﬂf
X

G-twisted stable a-twisted sheaves on X in the sense of [10].

is just the moduli space of
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