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Abstract. In this paper, we compute Alexander polynomials of a torus
curve C of type (2,5), C: f(x,y) = fa(z,y)” + f5(x,y)* = 0, under the assumption
that the origin O is the unique inner singularity and fo = 0 is an irreducible conic.
We show that the Alexander polynomial remains the same with that of a generic
torus curve as long as C'is irreducible.

1. Introduction.

A plane curve C C P? of degree pq is called a curve of torus type (p,q) with
p > q > 2, if there is a defining polynomial F of C of the form F = Fl‘f + Fg’, where
F,, F, are homogeneous polynomials of X,Y, Z of degree p and g respectively. A
singularity P € C' is called inner if F,(P) = F,(P) = 0. Otherwise, P is called an
outer singularity. A torus curve C is called tame if it has no outer singularity. We
assume O = (0, 0) hereafter. In [6], the first author classified the topological types
of the germs of inner singularity of curves of (2,5) torus type. In this paper, we are
interested in the Alexander polynomial of C' which is an important topological
invariant ([17]). In the case of irreducible sextics of torus type (2,3), there are
only 3 possible Alexander polynomials: A} ,(t) = (£ —t + 1)/, j=1,2,3 ([13]).

A tame torus curve C of type (p,q) is said to be generic if the associated
curves C, = {F, =0} and C, = {F, =0} intersect transversely at pq distinct
points. It is known that the Alexander polynomial of a generic C'is equal to A, 4(t)
([14]) where

("~ 1) (¢ - 1)

Apg(t) = 1)t —1) r = ged(p, q).

Moreover it is also known that the Alexander polynomial of C is still equal to
A, 4(t), if C is tame and C,, C, intersect at O with intersection multiplicity pg and
C, is smooth ([2], [3]).
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Let C be a torus curve of type (2,5) such that C' has a unique inner
singularity, say O € C (thus I(Cy, Cs; O) = 10) and we assume that C has no outer
singularity. Then we will show that there are 22 possible singularities for (C,O)
under the assumption that Cs is irreducible ([6]). For 8 classes among 22 type of
singularities, C' can be either irreducible or reducible. We list those 22-
singularities below. Throughout this paper, we use the same notations of
singularities as in [6], [12].

(I) Assume that C is irreducible, the possibilities are:

Bsoa, DBiz20 B3, DBsga0DBs3, DBagpoDBs3, DBagoBs3, Dis20DBio3, DBy,

(BiQ)Bm.erBz,z, (3372)332.2+32,2, <B§72)Bz3.2+33.2, (33.2)31~1.2+31,2, (B%U.Z)QBBVZ’
(B%LQ)BM’ (3%2,2)2&'27 (Bg,Q)Bm'ﬁBI‘Z o Bayi, (B§72)B7'2+BZ'2 o By,
(B?)Q)BS‘Q o] B?,l» B2972 o BQ,l o) (Bg.’l)Bk‘Q (k = 17 27 37 5)
II) If C is reducible, the possibilities are:
( , the p
(a) with a line component:
Baga 0 Bs,s, (BE,Q)B'“’”B“ o By, (B§,2)37‘2+B2'2 o By, (33$2)35‘2 o By,
Bygs 0 By o (35,1)Bk'2a k=1,2,3,5.
(b) with five conics: Bygs.
We recall some of the notations.
B,,: +y?=0,
Bygo B (" +y")(a"+y°) =0, q/p<s/r.
The singularities listed below have degenerate faces in their Newton boundaries

and we need one more toric modification for their resolutions. See [6] for the
detail.

)

Biga+Bys Biga+ By Baga+Bss Buia+Bus 2B;;
(3?1.2) 32,21 2.27 (BZ,Q) 32,2+ z.z, (B(QSQ) 23,2+ 3.27 (BE,Q) 142+ 4.2, (B%O,Q) 2
(331,2)3627 (B%Q,Q)QBuv (Bg,Q)BIG'2+Bl'2 °Bay, (B§,2)B7'2+Bz'2 ° By,
(B?),Q)BS’Q ©Bjy1, Byao0Bsio (33,1)Bk’2 (k=1,2,3,5).

In this paper, we use the method of Libgober [8], Loeser-Vaquié [9] and
Esnault-Artal ([1], [5]) for the computation of the Alexander polynomials.
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THEOREM 1. Let C be a tame torus curve of type (2,5). Suppose that C has a
unique inner singularity and Cy is irreducible. Then the Alerander polynomial
Ac(t) of C is given as follows.

(1) If C is irreducible (case (1)), then

Ac(t) = Asa(t) where Asa(t) =t — 13 + 2 —t + 1.
(2) If C is reducible and have a line component (case (1I-a)),
Ac(t) = (t -1t =3+ 12 —t+1).
(3) If C is reducible and (C,0) ~ By (case (II-b)),
Act) =t -0t + )" =B+ 2 —t+ D'+ 2+ 2+t +1)°

COROLLARY 1. Let C be a torus curve of type (2,5) and assume that there is
a degeneration family Cy, t € W such that Cy = C, t # 0 and Cy is an irreducible
tame curve with a unique singular point P where W is an open neighbourhood of
the origin in C. Then the Alezander polynomial Ac(t) is given by Aso(t).

COROLLARY 2. Let C be a tame irreducible torus curve of type (2,5) such
that Cs5 is smooth and Cy is irreducible. Then the Alexander polynomial is given by
Aj(t).

2. Alexander polynomial.

Let us consider the affine coordinate C? = P*\ {Z =0} and let z = X/Z,
y=Y/Z. Let C be a given plane curve of degree d defined by f(x,y) =0 and let
O € C be a singular point of C where O = (0,0). We assume that the line at
infinity {Z = 0} is generic with respect to C.

2.1. Loeser-Vaquié formula.

Consider an embedded resolution of (C,0) c (C?,0), 7 : U — U where U is
an open neighborhood of O and let Ei, ..., Es be the exceptional divisors. Let
(u, v) be a local coordinate system centered at O and k; and m; be respective order
of zero of the canonical two form 7*(du A dv) and «*f along the divisor E;. The
adjunction ideal /O,k,d of O¢ is defined by

Fora={0€ 00| (x¢) > Z([kzmi/d] —k)EY, k=1,...,d—1

where [r] is the largest integer n such that n < r for r € Q ([1], [5]).
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Let O(j) be the set of polynomials in z, y whose degree is less than or equal to
j.- We consider the canonical mapping o : Clz,y] — O and its restriction:

O O(k‘—3) — ﬁo.

Put Vi(0) = 0o/ 7,4 and we denote the composition O(k —3) — 0o — V;(O)
by ;. Then the Alexander polynomial is given as follows.

LEMMA 1 ([8], [9], [1], [5]). The reduced Alexander polynomial Ac(t) is
given by the product

Ac(t) = [T an®)" (1)

k=1

where d is the degree of f, i is the dimension of Coker 6}, and

st - en(25)) - (2.

We use the method of Esnault-Artal ([1]) to compute £j.

REMARK 1. The Alexander polynomial Ax(t) is given as
Ao(t) = (= 1) Ac()

where 7 is the number of irreducible components of C' ([14]). Note that for the case
of curve of degree 10.

As(t) = (t+1)%, Ast)As(t) =t + 2+ 2+t +1,
Ar()Ag(t) =t =3 2 —t + 1.

2.2. Plicker’s formula.

We denote the Milnor number of the singularity of (C, P) by u(C, P) and the
number of locally irreducible components of (C,P) by r(C, P). We recall the
generalized Pliicker’s formula. Let C, ..., C, be irreducible components of C' and
let Cy, ..., C, be their normalizations, let g(C;) be the genus of C; and let (C) be
the singular locus of C. Then

T

X(C)=>(2-29(C))) =d(B—d)+ »_ (u(C,P)+r(C,P)—1)<2r
i=1 Pex(0)

For further details, we refer to [10], [11], [16].
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3. Outline of the proof of Theorem 1.

We have to consider the following 22-singularities. We denote a class of a
singularity (C,O) which can appear both as an irreducible curve and a reducible
curve by #(C,0). In the section 3.2, we will use notation " (C,0), "*(C,0) to
distinguish the case of C being irreducible and reducible.

Bso2, Bizao Bag, Bagao Bua, *Bagao Bss, Basao Bss, Bisao Bioa, Bas, Bosa,
2 \Bsaa+DBao 2 \Bssa+DBaa 2 \DBa232+DB32 2 \Biia+Bi2 2 2Bs 5
(B4,2) ’ (B4,2) ’ (B(i.z) ’ (BS,Z) ’ (Bl[J,Z) ’
2 Bg2 2 2By 2 \Big2+DBi2 # 2 \Bra2+Ba2
(311,2) ) (Blzz) ) (BG,Q) o By, (BS,Z) / ° By,

u<Bg,2)BS'2 0By, *Bags0 By o (35,1)3“ (k=1,2,3,5).

3.1. Divisibility principle and Sandwich principle.

Suppose we have a degeneration family Cs, s € W of reducible curves such
that C,, s 20 are equisingular family of plane curves. Here W is an open
neighbourhood of the origin in C. We denote this situation as C; =9 Cy. Then we
have the divisibility A¢,(¢) | A, (t) (Theorem 26 of [14]). Suppose that we have
two degeneration series C, S—HQC’O and D, ﬂ3D0 such that Cy = D, (r # 0) and
assume that Ac¢ (t) = Ap,(t). Then the divisibility implies that Ac, (¢) = Ag, (1)
(the Sandwich principle).

3.2. Degeneration series.
Recall that we have the following degeneration series among the above
singularities ([6]):

(1) Main sequence:

2 \Bs2a+DBa2
Bsps — BgaoByz —  (B],) — Bsgp o By
(a)
— 'Byyy0 By — ByypoBgy — Bisp 0Bz --+ Boygs

TGN

where the branched sequences (a) from (BiQ)BmHBz'2 and (b), (c) from Bag s o

B3 in the main sequence are as follows.

Bss 2+ B: By3 2+ B: By 2+ B; 2Bs.
(a) (Biz) 32,2+ 522 N (ng) 232+ D532 N (B?;,z) 142+ D542 N (B%O‘Q) 2 _

(B%l.z)BG‘Q — (332’2)2312 — Bos .
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(b) (1) i7'7*32972 o BG,B _ m-(Bgz)Blﬁ,erBl,Q o BQ,I _ i7'7'(B§’2)B7,2+Bz,2 ° B271 _
iTT(Bst)BS'Q o Byj.
(11) ’ér'rB?g’Q ° B6,3 N z'rr‘BQg’2 ° B271 ° (3371)31,2 N iw-B2972 ° ‘BQ’1 ° (33,1)32'2 .
iW'BQQQ ° Bg,l ° (3371)33_2 N i'r'r‘BQQ’2 ° BQ,I ° (B%l)Bsxz.
(C) (1) Y'Edegg ° B&3 N 'r-ed(B(Qs‘Q)Bm,zwLBl,z ° BQJ _ red(B%Q)BnJrBzz ° BZ,I _
TEd(Bg,z)BS'Q o Byj.
(11) red‘BQQ"2 ° B6,3 N redB2g72 ° BQJ ° (33’1)31,2 N redsz ° Bg’l o (B%ﬂl)Bz.z _

B. Bs.
7! Bygs 0 By 0 (B3,)™* — "By 0 By o (B3,)™.

The main sequence is obtained through the degenerations of the tangent cone
of C5 at O, keeping the irreducibility of Cy. In the last degeneration Bjss o
B3 -+ Byo 5 of the main sequence, C' degenerates into a reducible curve.

The branched sequence (a) from (B?LQ)B‘"ﬁBQ'2
(Cs,0), fixing the tangent cone of C5 at O. More precisely, the tangent cone of
(Cs,0) is a line with multiplicity 2 and the generic singularity of (Cs, O) is A3 and
the corresponding degenerations of (Cs, O) are:

is obtained by degenerating

(C5,0):  Bys — Bga — Bsa — Biga — Biia — Bias — Bispo.

The branched sequence (b) (respectively, (c)) from “"Bygso Bss (resp.
"d Byg 5 0 Bg3) is also obtained by degenerating (Cj, O) fixing the tangent cone
of Cs at O (See Section 3.4).

3.3. Strategy.

Our strategy is the following. The singularity Bsoo is obtained when Cy and
C; has a maximal contact at O and (Cj, O) is smooth. In this case, it is known that
Ac(t) =t* — 3 + 12 —t + 1 by Theorem 2 of [2]. Hence by virtue of the Sandwich
principle, it is enough to show

(1) the irreducibility of C' and

(2) Ac(t) = Asa(t) for the case (C,0) being one of the following singularities
which are the end of the degenerations.

Bs, 5.
Biss0 Bis, DBasa, (33,2) *0By1, "BagsoBy;o (B§,1)B°'Z.
By virtue of Lemma 1, to show A (t) = Ass(t) is equivalent to show that

(#): 0r:O(k—3) — Vi(O) has one-dimensional cokernel for k=179 and
surjective for other cases.
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REMARK 2. Let C be a reduced curve of degree d and assume that the line
at infinity is generic with respect to C. It is known that the Alexander polynomial
Ac(t) is a product of cyclotomic polynomial. This follows by the following
observation. First, A¢(¢) is a monic polynomial with Z coefficients by the result of
Randell ([15]). On the other hand, the divisibility result of Libgober ([7]) says
that Ac(t) divides Agq(t) = (t2—1)*2(t —1). As cyclotomic polynomials are
irreducible, the assertion follows.

Therefore for the calculation of the Alexander polynomial of our curves, it is
enough to compute the cokernel for k=7 and k =6 (and k = 5).

So for the proof of the assertions (1) and (2) of Theorem 1, we will actually
show the above property (f).

The last singularity Bos of the main sequence appears when C' consists of
five conics. We treat this case separately in the later section.

3.4. Irreducibility of C.

Now we will discuss the irreducibility of C' using the generalized Pliicker’s
formula. First we show that C is irreducible if (C,0) is one of 2 singularities
Bis2 0 Bigz and Bos 4.

CASE (C,0) ~ Biss 0 Byos: Note that the singularities Bz and Bjgg are
locally irreducible singularities. As p(Bisz2) = 14, pu(Bios) = 18 and each singu-
larity appears for sextics or higher degree curves. Thus C must be irreducible, as
the degree of C is 10.

CASE (C, O) ~ Bas 4: The singularity Bas4 is a locally irreducible singularity
and thus C is irreducible.

CASE (C,0) ~ Bsgs 0 Bgs: Next we consider the case (C,0) ~ Bags 0 Bgs
and we will show that C' can be either irreducible or reducible. Recall that the
singularity Bag s o Bg3 appears in the case that Cy and Cj5 satisfies following three
conditions ([6]):

(1) Cy is irreducible and I(Cs, C5; O) = 10.

(2) (C5,0) has the multiplicity 3 and the tangent cone consists of a multiple
line Ly of the multiplicity 2 and a single line L.

(3) The conic Cs is tangent to the line Ly at O.

Under the condition I(Cs, Cs; O) = 10, we have generically (C,0) ~ Bags 0 Bgs.
The singularity Bag s is locally irreducible and Bsg o appears for curves of degree
d > 7 as u(Bayo) = 28. Hence we have four possibilities:

(1) C: irreducible, (2) C=DyUD;, (3)C=DsUDy, (4)C=D;UDs
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where Dy is a curve of degree d. But the cases (3) and (4) are impossible. Indeed, if
C= D7 U D3, then either (a) (D7, O) ~ BQQ,Q, (Dg, O) ~ B(;’g or (b) (D7,0) ~
Bygs 0 By, (D3,0) ~ Byy or (¢) (D7,0) ~ Bags o By, (D3,0) ~ Byy. We ob-
serve that p(D3,O) = 10 in the case (a) and u(D7,0) = 35 in the case (b). Thus
p(B2g2 0 Big) > 35 and neither cases are possible by the generalized Pliicker’s
formula. By the same argument, we see that the case (3) is impossible. Hence we
have two possibilities:

(i) C is irreducible or

(ii) C consists of a line and a curve of degree 9.
If C has a line component, this line must be defined by {y = 0}. In fact, this case is
given by the normal forms of f5, fs:

fo(2,y) = apy® + (a1 + 1)y — kK 2,
fs(@,y) = (t+ a2 bos) ¥ + da(2) y* + ¢3(2) ¥* + do(2) P + d1(2) y — K 2

where ¢1, @2, P3, ¢4 take the forms:

apz b1z — @y bia + a1 boa)T + boy,

a2 K + K aga bia — k* biz — b12a%1 + by arn) 2° + by’ +bia,

)=
) = (big ary — K bos — 2b13 g an + baz ag2) & + biz ,

) =(

) = (an K + b1o K ay; — boo k‘2) $4 + (kis — K blg) z°.
The branched sequence (b), (¢) in Section 3.2 are obtained by degenerating
(Cs,0), fixing the tangent cone of (C5,0) and keeping irreducibility of C.

CASE (C, O) ~ By s: This is the last singularity in the main sequence. We will
show that C' can not be irreducible in this case. As pu(Bys) = 76, the number of
irreducible components r of C' must be at least 5 by the generalized Pliicker’s
formula. On the other hand, the singularity Bsps consists of 5 smooth local
components. Any two components intersects with intersection multiplicity 4.
Thus each local component corresponds to a global component and its degree
must be 2, namely a conic.

4. Calculation of Ac(t) I: Non-degenerate case.

We divide the calculation of the Alexander polynomial A¢(t) in two cases,
according to (C, O) being non-degenerate or not in the sense of Newton boundary
([12]). In this section, we treat the first case.
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4.1. Characterization of the adjunction ideal for non-degenerate

singularities.

In general, the computation of the ideal _¢# oka Tequires an explicit
computation of the resolution of the singularity (C,O). However for the case of
non-degenerate singularities, the ideal #,, , can be obtained combinatorially by
a toric modification. Let (u,v) be a local coordinate system centered at O such
that (C,0) is defined by a function germ f(u,v) and the Newton boundary
I (f;u,v) is non-degenerate. Let @1, ..., Qs be the primitive weight vectors which
correspond to the faces Ay,..., A of T'(f;u,v). Let 7: U — U be the canonical
toric modification and let E(Qz) be the exceptional divisor corresponding to Q;.
Recall that the order of zeros of the canonical two form 7*(du A dv) along the
divisor EA(Qz) is simply given by |Q;| — 1 where |Q;| = p + ¢ for a weight vector
Qi = '(pi,q;) (see [12]). For a function germ g(u, v), let m(g, Q;) be the multiplicity
of the pull-back (7*g) on E(Q;). Then

LEMMA 2 ([4], [13]). A function germ g € O¢ is contained in the ideal
Z ora if and only if g satisfies following condition:

k
m(g.Q) > [gm(ﬂczi)] Q4L i=1s

The ideal 7, , is generated by the monomials satisfying the above conditions.

We consider the following integers for each singular point P € %(C):

pe(P) := dimVi(P), p(k) := > pe(P) — dimO(k — 3), 4x(P) := min I(g, f; P),
Pex(C) 9€ 7 pra

where Vi(P) = Op/ 7, ;- Then the multiplicity ¢ in the formula (1) of Loeser-
Vaquié is given as

4, = dim Coker 63, = p(k) + dim Ker 7y,
where oy, is defined in Section 2.1. We consider the integer »_peyy oy te(P). The
following is essential due to [4].

PROPOSITION 1. If 3" pesy oy te(P) > d(k — 3), then
(a) C is irreducible and Gy, is injective and £ = p(k) or
(b) C is reducible.
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PROOF. Suppose 0 # g € Ker; C O(k — 3). Then by Bézout theorem, we
have

d(k—-3)>I(G,C)> Y I(G,C;P)> > u(P)>dk—3)
Pex(C) Pex(0)

where G = {g = 0}. This is an obvious contradiction unless g | f. Thus this implies
either f is irreducible and &y is injective or f is reducible (and g | f). O

4.2. The singularities By52 0 Byg,3 and Bss 4.

Now we consider the following two non-degenerate singularities Bjs2 o Bjg 3,
and Bss4 which appear as the last singularities of the respective degenerations
with C being irreducible. We assume that we have chosen local analytic
coordinates (u,v) so that

BissoBug:  f(u,v) = u® + u'%?* +v° + (higher terms),
Bosa: f(u,0) = u* + v' 4 (higher terms).

The local data are given by the following tables.

k A ox10 pr(O) t:(0)
3 (u,v) 1 5
4 (u?,v) 3 15
Bisy o Bios : 5 (v, uv, v?) 6 23
' ’ 6 (u”, uwdv, v?) 10 33
7 (u'? udv, uv?, v3) 16 43
8 (u'?, uv, udv?, v®) 21 52
9 (u® ubv, udv?, uvd v?) 29 63
k fo,k,lo pr(0) 1(O)
3 {u, v) 1 4
4 (u3, v) 3 12
5 (ub,v) 6 24
Basa:
6 (u8, uv, v?) 10 32
7 (utt, uPv, v?) 16 44
8 (ul® v, uv?, v?) 21 52
9 (ul, uv, udv? v?) 29 62
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CASE (C,0) ~ Bys2 0 Bigg and By 4: In this case, we have the inequalities
1:(0) > 10(k — 3) for all k= 3,...,9 by the local data. Hence &y, is injective for all
k by Proposition 1 and we obtain the property (#):

i 1 k=709,
b= k) = {

0 k#7,9.

Therefore Ac(t) = Aga(t) =t — 3+ 12 —t + 1.

4.3. Exceptional case: (C,0) ~ By .

In this section, we consider the last singularity Bsys which takes place for
reducible C. Recall that C' is a union of five conics. We assume that we have
chosen local coordinates (u,v) so that (C,O) is defined by

Bags : f(u,v) = u* +¢° + (higher terms),

where we ignore the coefficients of the monomials and other monomials
corresponding to other integral points on the Newton boundary.

k fo,k,w pr(O) u:(0)
3 (u?,v) 2 10
4 (ut, v) 4 20
5 (ub, uv, v?) 8 30
By 5
6 (ub, utv, v?) 12 40
7 (ul?, ubv, uv?, v3) 18 50
8 (u'?, ubv, ut?, v3) 24 60
9 | (uM uf, ub? u?v?, v*) 32 70

Again we have the inequalities ¢;,(O) — 10(k — 3) > 0 for all k = 3,...,9. We claim
that &y is injective for all k. In fact, assuming 0 # g € Ker 71, we have g | f by the
proof of Proposition 1 and this means ¢ is a union of conics which are components
of f. Consider the factorization f = hyhyhshihs where {h; = 0} is a smooth conic
component of C. Then we may assume that

5 u® +0° + (higher terms), h; — u* + C'v + (higher terms), i =1,....,5
k

where ¢ = exp(mi/5). Thus suppose that g = h;, -+ h;,. Then 2j <k —3or j < [%3]
and o01(g) must contain v/ with a non-zero coefficient. This implies that j <



224 M. KAWASHIMA and M. OKA

0,0,1,1,2,2,3 for k=3,4,...,9 respectively. On the other hand, v/ € Zorio
implies from the table of By s that j > 1,1,2,2,3,3,4 for k= 3,...,9 respectively.
This gives an obvious contradiction. Hence we have

)47
ék:ﬁ(k): =

3 9

N
|

Therefore by the formula (1) in Lemma 1 we obtain the equality:
Act) = (=Dt + D' =P+ —t+ D' W+ + 2+t +1)°

REMARK 3. This case can be also computed using the observation of the
fundamental groups of maximal contact conics is a free product of Zs and a free
group of rank 4.

5. Calculation of A (t), IT: Degenerate cases.

Next we calculate the Alexander polynomial of following two degenerate
singularities:

. (BgﬁZ)B"’-2 o By1: this is the last singularity of the sequence of (b-i) or (c-i).

® Bys0Byjo (Bg‘l)B""z: this is the last singularity of the sequence of (b-ii) or

(c-ii).

5.1. Characterization of the adjunction ideal for degenerate cases.

For degenerate singularities, we proceed several toric modifications to obtain
their resolutions. Consider an embedded resolution of (C,0) C (C*,0), 7 : U —
U where U is an open neighborhood of O and let Fy,..., E; be the exceptional
divisors. We put the ideal jO.k,d of O¢

Fonai={(M € Oo| M: monomial, (x"M) > ([km;/d] - k)E;), 1 <k<d—1.

In general, #,,,C Zo4q and jO‘kd = Zora if (C,0) is non-degenerate from
Lemma?2. If (C,0) is degenerate singularity, there exist several other (non-
monomial) polynomials h;, i = 1,...,r such that h; € 7, ,\ 7., , and

jka,d:<Mahi|Mej0,k,d,i=1,...,7‘>.
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5.1.1 Formulation of the multiplicities.

We recall how the multiplicities of the pull-back of a function after toric
modifications along the exceptional divisors can be computed.

Let D = {g = 0} be a plane curve and let P € D be a singular point. Suppose
that its Newton boundary I'(g; u, v) consists of m-faces Ay, ..., A,, where (u,v) is a
local coordinates centered at P. Then the face function of g with respect to a face
A,; takes the form:

ki

gn; (u’ U) = cu"" H(UW - ’yiajubz)w'j? c 7& 0
=1

where P, =1'(a;,b;) is the weight vector corresponding to A;. Let
{Ey, Py,..., Py, Es} be the vertices of the dual Newton diagram I'*(g; u, v) where
E; =1(1,0) and Ey = (0,1). Let 7, : X; — C? be the toric modification associated
with {33, (u,v), P} where X} ={E1,Q1,...,Qu,E2} is the canonical regular
simplicial cone subdivision of {E}, Py, ..., Py, F2} ([12]). Then we can write the
divisor (77g) as

n'

(WTQ) = [j + m(ga QS)EA(QG)

s=1

=

where D is the strict transform of D and E(Q;) is the exceptional divisor
corresponding to the vertex @;. We assume that P, = @,, for ¢ =1,...,m. Then
the exceptional divisors E(Q,,) = E(P;) intersects with the strict transform D.
We take the toric coordinates (C’?f , (Ui, v;)) where o,, = Cone (Q,,, Qy,+1) so that
{u; = 0} defines £(Q,,) N C(ZTV . Then D and the total transform 73D are defined in
this coordinate as /

D: o glui,v) = ¢ (vi — %)™ + R(ui,v;) =0, ¢ #0
D wg(us, ) = u?(PM/)U;l(QmHL‘I) Glui,v;)
where R = 0 modulo (u;). Thus & := (0,7;,) is the intersection points of D and
E(Q,,) for j=1,... k. We take an admissible translated coordinates (u;, v}) with
v, =v; —v; +h(y;) in an open neighbourhood of & ; where h is a suitable
polynomial with h(0) = 0. Suppose that (D,&; ;) has a non-degenerate singularity
with respect to the coordinates (u;, v}) and suppose that the Newton boundary has
a unique face A;; for j=1,...,k. (For our purpose, this case is enough to be
considered.) Let S; ; = '(s; j, t; ;) be the primitive dual vector which corresponds to
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the face A;; and assume the germ (D, ;) is equivalent to the Brieskorn
singularity B, 4, with t;;c;; = s;;d;;. This means the dual Newton diagram
F*(g, ui,vg) is given by {El, Si,j; EQ}

We take the canonical regular subdivision 7, of I'(g; w;, v}). Put

i

\
2 =00 Tijas - Tijomys Tijmpr }s Tio = Br, Tijmgar = Eb.

We may assume S, ; = T; ;, for some ky € {1,...,m;}. At each point &, ;, we take
the toric modification 7;;: X;; — Xi with respect to {X7;, (u;,1}), &} These

modifications are compatible with each other and let 7 : X9 — X; be the
composition of these modifications for every i, j so that the exceptional divisors of
my are bijectively corresponding to the vertices of X7, i =1,...,m, j=1,... k.
What is necessary to be checked are the multiplicities of 7*g and 7*(du A dv) along
the exceptional divisors E(E]k) where 7: Xy — C? is the composition of my :
X, — X; and 7 : X; — C?. Then we can write:

m' m ko my
(m"g) =D+ > ml(g,Q.)EQ.) + m(g, Trj) E(Tjx)-
s=1 i=1 j=1 k=1
m/ R m_ ki My .
(T K) =Y k(Q)E(Qs) + (T k) E(T k)
=1 =1 j=1 k=1

where K = du A dv is the canonical two form in the base space.

LEMMA 3.  Under the above situations, the multiplicities are given as follows.
Put Ty 1. = " (i jik Mijik)-

(1) The multiplicities m(g, P,), m(g, T, ;) of ©*g along the divisors E(P;) and
E(T; k) are given by

m(g, P) = d(Pi,g), m(g,T; k) = cijem(g, B) + d(T; jr, g)-

(2) The multiplicities k(Qs), k(T; ;1) of the pull-back of the canonical two form
K = du A dv along the divisors E(Q,) and E(T; ;) are given by

k(Qs) = Q] =1, k(Tijik) = [Tijul = 1+ €ijik(F)
where |'(a,b)| = a + b.

The proof follows easily from Theorem 3.8 and Proposition 7.2, Chapter III
of [12].
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5.2. Generalization of Lemma 2.

LEMMA 4.  Under the above assumptions, a germ @ € O'p is contained in the
ideal ij_d if and only if p satisfies:

(1) m(p. P) > [sm(g. P)| — k(P) fori =1,...,m, and

(2) m(p, Sij) > [[mlg, Sij)] = k(Siy) for j=1,... k.

Note that there are no conditions on other exceptional divisors E(T”k)

PROOF. The proof is almost parallel to that of Lemma?2 of [13]. Assume
that ¢ satisfies the conditions (1) and (2). It is enough to show that

. k ‘
(27 bZS) m(vali,,j,k) > |: (gaT'l], ):| 7k(Ti,j,k)7 J= 17'-'7kia k= 13"'7mj'

d

Note that the condition (2) is equivalent to

(2) mlp, Siz) > §mlg, Sig) — (1Sil + sik(P)) for j=1,... k;.
First we observe that m(g, Tq,,],(]) =m(g, P;) and m(g, T} jm,;+1) = 0. Take Tj j for
k < ko for example. We can write T; ;. = a.S; j + 815 j0 for some positive rational
numbers ay, B;. Note that

IT;.jk| = cwl|Sij| + BrlTijol = awlSi;| + Br,
m(g, T jx) = cum(g, Sij) + Bm(g, T jo)s

Here the second equality follows as A(S;;,77g) N A(T;j0,719) #0 by the
admissibility of the canonical subdivision Y7 ;. Thus we have

m(@v E,jk) Z O‘km(@v Slj) + 61€m(807 n,j,o)

>ak(’; (0.5~ (1 + sk (P))) 41 S0l To)— (1+4())

m(g, T; k) — (|Ti k| + €iik(P))

&IP?‘

as €k = o5ij + OB by the equality Tj ;i = apS;; + 815 0. This inequality is
equivalent:

m(p, T ) > E m(g, Ti,j,k)} — k(T3 jk)-

For T;; with k > kg, the argument is similar. Hence we have p € 7., .. O
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Now we consider the ideal jpkd in more detail. Take ¢ € Op. We compute
the multiplicity of ¢ along the divisors E(P;) and E(S;;). We divide our
consideration into the two cases:

(1) ¢ is a monomial,

(2) ¢ is a polynomial (non-monomial).

First we see the case (1) and we put ¢(u,v) = u®v”’. As 7 is also a monomial in
u;, v;, we can check easily following

m(p, P) = d(Pi,¢) = a;a + b;3, m(p,Si;) = siym(e, ).

Next we consider the case (2). We can write ¢(u,v) = ¢p(u,v) + R(u,v)
where R(u,v) consist of monomials of degree strictly greater than d(P;,¢). If
A(p, B) is zero dimensional, then the multiplicities m(p, P;) and m(yp, S; ;) are
equal to that of the monomial ¢p (u,v). If A(p, P;) is one dimensional, then the
face function ¢p (u,v) can be written by

op (u,v) = ¢;uf 031_[ — ”u ) e, 6 #0.
Then the multiplicities m(p, P,) is given by
Ki
m(p, P) = a;joc + b;3 + a;b; Z i j-
=1

In the admissible translated coordinates (u;,v}), the function 7jp is written by

* AN (1(%¥ &)
mp(ui, v;) = cu;

i

P(ui,v)) = H(U; + (i — 6i5) — h(u))" + R(u;,0))

J=1

@(uhv;)a

where R(u;,v}) = 0mod(u;). Thus we obtain

( g ) s,;_yjm(cp, H) if 67j7j 7é Yi.j for all j,
4 N szﬁjm(go, PL‘) + d(Si,j, (,b) if (Siﬁj = Yij for some j.

Note that the multiplicity d(S; ;, ¢) depends on the form h, R and S; ;.
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5.3. The case of (33’2)35,2 0 Ba1.

By the local classification in [6], this singularity (BS_Q)B5~2 o By appears when
the associated curves Cy and Cj satisfy following conditions:

(1) Cy is irreducible and I(Cs, C5; O) = 10.

(2) The multiplicity of (C5,0) is 3 and the tangent cone of Cs consists of a

line L; with multiplicity 2 and a single line L.

(3) The conic Cs is tangent to the line Ly at O.
Suppose that Cy and C5 satisfy the above conditions. Then we may assume that
the defining polynomials of Cy and Cj are the following forms:

fo(z,y) = y+ az® + anzy + apy?, as # 0,
f5 (ZE, y) = b05y5 + ((a(znbm + a11b04)x + b04)y4 + ((2()12&02&11 + (l20b04)1‘2 + 2(102()1213)1/3
+ ((2agpapbra + braal))z® + 2bipa112° + byax)y?

+ (2a11b12a202" + 2b19agz®)y + G%Obmxs

where by # 0 and ag + b3, # 0 in general. If ag + b3, = 0, (C,0) has the same
type of singularity but C' is not irreducible and has a line component which is
defined by {y = 0}. Now we take a local coordinates (u,v) of the following type so
that
r=1u, y:/U—"_gD(u)? @(U)Z—a20u2+---7 aZ()#07
alav ) = vt e+
fslu,v+p(u)) = bosv* + brauv?® + cou'® + (higher terms), by, co # 0,
Flu, v+ o)) = v° + u?(bav? + cou”)? + (higher terms).

Then the Newton boundary I'( f;u, v) consists of two faces A; (i = 1,2) so that the
respective face functions are given by

I, (u,0) = vt (v + b2u?),  fa, (u,v) = u?(bigv? + cou®)?.
Note that f(u,v) is degenerate on A,. We take the canonical toric modification

m : X1 — C? with respect to {%, (u,v), 0} where ¥ is the canonical regular
simplicial cone subdivision with vertices {E1, Q1,...,Qs, E2} where

o) () o () e () o)
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and the weight vectors @2 and Q5 correspond to the faces A; and A, respectively.
Then we can write the divisor (7} f) as

(m f) = Z: Qi)

where C is the strict transform of C and intersects only with the exceptional
divisors E(Q,) and E(Q5) We can see that C is smooth and intersects
transversely at C'nN E(QQ) but C has the singularity at the intersection
CNE(Qs). Put € =CNE(Qs). In the toric coordinates (uy,v;) of C* with 7=
Cone (Qs, Qs) (see [12] for the notations), & = (0, —c2/b12). To see the singularity
(C,€), we take the admissible translated toric coordinates (u,v}) with v =
v1 + ¢2/b12 + h(uy) where h take the form h(u;) = qrug + 92“1 Then we can see
that 7 f(u1,v,) = cul®(W}® + Bu® + (higher terms)) and (C,€) ~ Bsy. Now we
take the second toric mod1ﬁcat1on my : Xy — X; with respect to {33, (u1,v)),§}
where X3 is the canonical regular simplicial cone subdivision with vertices
{El,Tl, e ,T4,E2} where

()= () 2 ()20

and the weight vector T3 corresponds to the unique face of 7§ f(uq, v}). Note also
the exceptional divisor which corresponds to E; is nothing but the exceptional
divisor F(Qs) in the previous modification m;. Then we have

(7" f) = 5E(Q1) + 10E(Qy) + 14E(Qs) + 18E(Q4) + 40E(Qs) + 20E(Qs)
+42E(Ty) + 44E(Ty) + 90E(Ty) + 45F(T)

(7" K) = E(Q) + 2E(Q2) + 3E(Qs) + 4E(Qu) + 10E(Qs) + 5E(Qy)
F11E(TY) + 12E(Ty) + 26 E(T3) + 13E(Ty)

and we consider two polynomials ho(u,v) and ro(u,v) which are defined by
ha(u,v) = biav? + cou® and ro(u, v) = ha(u,v) — (1b3/ca)u’v. Then we can see by a
direct computation

i ho(ug,v)) = ulg(d31)1 + dquy + (higher terms)),
mra(ug, v)) = u18(
(h27 QQ) (hQ, Q5) = 183 m(h27 T3) = 387

m(ra, Q2) = m(ry, Qs) =18,  m(hy, T3) = 40.

dju? + (higher terms)),
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ASSERTION 1. The adjunction ideals 7, ,, are given by

/0,3,10 = (u,v), f0,4.10 = (u*,v), fo,s,m = (u°, uw,v?), fo,ﬁ,m = <u7,u3v, v?),

F o= W@ u’ v, o4 = W uv,ut? 0P, iy,

_ 14 10, 5.2 3 4 (40)
/0’9’10—@ , U v, uvt, wt, vty )

where héw) (u,v) = u?hy(u,v) and ré4’0)(u, v) == utry(u,v).

The proof follows from Lemma 3 and Lemma4 and by an easy computation.
Thus we have pg(O) = 21, py(O) = 29 and

5(k) {1 BT 0)>10(k—3), 3<k<9
= 9 : > - ) = = J.
P 0 k£79  *

ASSERTION 2.  The map &y is injective for all k=3,...,9.

PROOF. Recall that C can be either irreducible or reducible in this case. As
1:(0) > 10(k — 3), if C is irreducible, then the assertion follows from Proposi-
tion 1.

Assume C' is not irreducible. We have seen in the previous argument in
Section 3.4, C' has two irreducible components of respective degree 1 and 9.
Namely we can write C' = C; U Cy where C; = {y = 0}. Suppose that there exists a
non-zero g € Keray C O(k — 3). As ¢,(0) > 10(k — 3), g divides f by the proof of
Proposition 1. This is possible only if £ > 4 and deg g = 1. By the assumption, we
have g = cy with ¢ #0. As y =v+ ¢(u), we see that g can not be in the ideal
/ka‘w fork>5,asv¢ #,,,, by Assertion 1. This implies that &y, is injective for
k # 4. Assume k = 4. As ay # 0, ord, p(u) = 2 and /074’10 = (u?,v), again we see
that v+ (u) € #4450 This is a contradiction for g € Kerdy and the proof is
completed. O

Therefore we obtain the property (): ¢, = 1 for k = 7,9 and ¢} = 0 otherwise.
Thus the reduced Alexander polynomial is given by Ac(t) =t* — 2+ —t +1
for the case (C,0) ~ (BSQ)B""2 o By;.

5.4. The case of Bygs0 Byjo0 (Bg’l)B"’"".
By local classification [6], this singularity appears in the case that the
associated curves Cy and Cj satisfy following conditions:
(1) Cy is irreducible and I(Cs, C5; O) = 10.
(2) The multiplicity of (Cs, O) is 3 and the tangent cone of Cs at O counsists of
a line L; with multiplicity 2 and a single line Ls.
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(3) The conic Cy is tangent to the line L; at O.
Suppose that Cy and Cj satisfy the above conditions. Then we may assume that
the defining polynomials of Cy and C5 have following forms:

fo(z,y) =y + az® + anzy + apy®, azp # 0
fs(z,y) = bosy” + agybra 2y* + 2a0ebioz(anz + 1)y?

1 2 2 3 2 2
+ 2—7 b12(4a02b12 + 54apeagy + 27a11)x + 2a11b192° + biox |y

2 1
=+ (ﬁ b12$3(2b%2 =+ 27@20)(@11.’B + 1)) Y+ 2—7 b12a20(27a20 + 4[)%2).’1,‘5

where b1y # 0 and b%Q 4+ 9asy # 0 in general. If b%Q 4+ 9asp = 0, C' has the line
component which is defined by {y = 0}. Now we take a local coordinates (u,v) of
the following type so that

r =u, y:’l}+(p(u), (p(u):_a20u2+"'7 aQO#Ov
Fo(u, v+ p(u)) = v+ (u) = v+ fru’ + (higher terms), G # 0,
4
f5(u, v + p(u)) = bys v° + brouw (v + o7 b%2u2> + ¢4 u'® + (higher terms), by # 0,

Flu, v+ o) = v*(v+ diu?) (v + dou®)? + Bu® + (higher terms), dy, dy # 0.

By an explicit calculation, we have dy = (4/9)b}, and dy+ag #0. (If
dy + ago = 0, f becomes a non-reduced polynomial.) Then the Newton boundary
I'(f; u,v) consists of two faces A; and Ay so that their face functions are given by

Iy (u,v) = (v + diu®) (v + dou®)?,  fa, (u,0) = u®(dyd2? + Bou®).
Note that f(u,v) is degenerate on A;. We take the canonical toric modification

m : X1 — C? with respect to {Z3, (u,v),0} where ¥} is the canonical regular
simplicial cone subdivision with vertices

1 2 !
B, Qk:<k>(1<k<l4), Q15=<29>, Q16:<15>, Ey

where Qs and Q15 are the weight vectors of the faces A; and A, respectively. Then
the divisor (77 f) is given by
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16
7T1f Z (f, Qz (Qi),

i=1

where C is the strict transform of C and intersects only with the exceptional
divisors E(Qs) and E(Q15). We can see that C is smooth at C'N E(Qy5) and the
intersection is transverse. On the other hand, C intersects with E(Q;) at two
points & 1, &2 where &1 = (0, —d1), 1.2 = (0, —dy) in the toric coordinates (u1,v1)
of the chart C? with 7= Cone (Qy,Q3). Note that (C,&;) is smooth and the
intersection with E(Qy) is transverse at &, = (0,=di). On the other hand,
(C’ &12) has singularity. To see the singularity (C &12), we take the admissible
translated coordinates (ug,v)) with v} = v1 + da + h(u;) where h takes the form
h(u)) = quu+ qu?. Then we see that wtf(up,}) = cul®(v,> + ful + (higher
terms)) and (C’, &12) ~ Bsa. Now we take the second toric modlﬁcatlon Tyt Xy —
X; with respect to {335, (u1,v]),&12} where 33 is the canonical regular simplicial
cone subdivision with vertices

E T; ! T ! T: 2 T ! E
1, 1= 1 , 42— 9 y 43 — 5 , 44— 3 ) 2

where the weight vector T3 corresponds to the unique face of I'(w} f; w1, v}). Then

we have
14
(7" f) =5E(Q1) + > _ 2(i + 3)E(Q;) + T0E(Qu5) + 35E(Q16)
i=2
+12E(Ty) + 14E(Ty) + 30E(Ty) + 15E(T)).
(7" K) = BE(Q) + Z iE(Q:) + 30E(Qi5) + 15E(Q1s)

+ 3E(Th) + 4E(Ty) + 10E(T3) + 5E(Ty)

and we consider two polynomials hy(u,v) and ri(u,v) which are defined by
hi(u,v) = v + dyu? and 71 (u,v) = hy(u,v) — (q1/d2)u®. Then

mihy (up, ) = u*(e3v] + equy + (higher terms)),
mri(ui, v)) = (637)1 + €ju? + (higher terms)),
m(hi,Q2) =2, m(h,Qi5) =4, m(hi,T3) =6,
m(ry, Q) =2, m(r, Qi) =4, m(r,T3) =8.
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ASSERTION 3.  Under the above situation,
(a) The ideals 7, ,, are given by

/o.3,1o:< /0410 (u v), /0.5,10 (0, uv,v?), /0610 (u®, u?v,0?),

, 02
/077710 = (u', utv, v v ) /0810 (u'® v, wPv?, un®, v 7h(1 ),hg )>,

31) (1,2) (03
Hooi=(u", 7w, ude?, udo?, ut, o° ri ),r(l ’ ),hg )>,

where h(lr’s)(u, v) := u"v*hy(u,v) and r(lr’s)(u, v) == uv'ry (u,v).
(b) The kernel of &), are given by

Kergs = (0), Keray = (y), Keras = (y°,zy), Keras= (yfo,y’),
Kero; = <y2f2>.

REMARK 4. We have also

Keros = (4° f2),
8laiiagg

Kerdo = (3yfs — 2b1azyf? — oy f2), with ¢y = — 220
eray = (3yfs wpryfs —coy fy), with ¢ Tora(9an + 40,
We do not need this calculation.

PROOF. The assertion (a) follows from Lemma 3 and Lemma 4. We consider
the assertion (b). By the choice of the local coordinates (u,v), we have relations:

r=u, y=v+pu)=v—aypui+- -,
Fou, v+ @(u)) = v+ P(u) = v+ Bru’ + (higher terms), B; # 0,

4
f5(u, v+ @(u)) = bos v° + brouw <v + 77 b§2u2> + c4u'® 4 (higher terms).

Put p(u) = Z;iz aju! with ag = —ag). We define

ord jo,k,lo :=min{ordg b | h € /O,k,lo}'

Thus for any g € Ker 5%, we have

ord, ) g = ord,,or(g) > ord f(),k‘l()' (2

~
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CASE k = 4: Ker gy = (y):

PROOF. The inclusion (y) C Kerd, holds by the definition of 4. For any
g € Kerg, C O(1), writing g(z,y) = ¢1 + cx + 3y,

01(9)(u,v) = c1 + u+cs(v+(u) € Lo, 0= (u?,v).
Hence we have ¢; = ¢, = 0 and Keragy C (y). O
CASE k = 5: Keras = (32, xy):
PROOF. First we show that 32, 2y € Ker &5. By the definition of o5, we have

05(y2) = (v+ ga(u))Q =v* = 2as9u’v + a§0u4 + (higher terms) € /035110

o5(zy) = u(v + @(u)) = uv — agou’ + (higher terms) € o510

as _# 510 = (U, uv,v*). Next we show that Keras C (y?, zy). Take g € Keras C
O(2). As ord # 5, = 2, we can write g(z,y) = c12® + coay + c3y” by (2) and

o5(g)(u,v) = c1u® + couv + csv” + (higher terms) € 7, o = (v, uv, v?).

Hence we have ¢; = 0 and Ker a5 = (y?, 21). (]
CASE k = 6: Kerag = (yfs, y°):

PROOF. First we show that yfs, 3> € Ker 4. By the definition of o6, we have

o6(yf2) = (v+ @(u)(v+h(u))
= v — agou’v — agBru’ + (higher terms) € f076,10

3

o6(y?) = (v+ go(u))3 =% = Bagou’v? + 3a§0u4v — agou6 + (higher terms) € /076,10

as 7 o610 = (ub,u?v,0%).
Next we show that Keras C (yf2,y®). Take g € Keras C O(3). As og(g) €
20610 We can write

o6(9)(u,v) = glu,v+ p(u)) = a1 (u, U)u6 + as(u, v)u2v + as(u, v)v2

where a; € Op (i =1,2,3). Define ¢'(u,v) by the above right side polynomial.
Then we see that
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I(y,9:0) = ord,g (u, —p(u)) > 4.

On the other hand, if y does not divide g, I(y, g; O) < 3 by Bézout’s theorem which
is an obvious contradiction. Therefore y divides g. Thus we can write g(x,y) =
yga(z,y) where go € O(2). Dividing g by f2 as a polynomial of x, we can write g,
as go = cofo + (c1 + coy)T + 3y + 4y + 5 for some constants cy,...,c5. As yfs,
y* € Kergg, we need to have y((c1 + cay)w + cyy + ¢5) € Kergg. By a simple
computation, we conclude ¢; = ¢c; = ¢4 = ¢5 = 0 and

9(2,y) = coyfo(z,y) + c39° € (Yfo,y°). O

CASE k= T7: Ker o7 = (42 fo):

PROOF. First we show that 4 f, € Ker 7. By the definition of o7, we have

o7y f) (u,v) = (v + @(w)*(v + ¢(u))

= v* — 2a90u*v? + adyutv + a3y Bru't + (higher terms) € jo: 10

as

2 (1‘1)>

oz =W uln,u?? o), 2o = Wl ute,ut? oy
where hgl’l)(u,v) = uv(v + dau?). Next we show that Kerar; C (y°f2). Take
g € Kera; C O(4) and we can write o7(g) as

o7(9)(u,v) = Zgi(u)vi’, ord,go(w) > 10, ord,g:(u) > 3, ord,go(u) > 1.

>0

Then we see that I(g,y; O) = ord, o7(g)(u, —p(u)) > 5 and by Bézout’s theorem, y
divides g. Similarly we can see that we have I(g, f2; O) = ord, o7(g)(u, —1)(u)) >
10 and again by Bézout’s theorem, we conclude f; divides g. Thus we can write
g(x,y) = yfalcy + c1w + coy) for some cy,ci,co € C. The assumption g, y*fs €
Kera; implies that g(x,y) — c29?fo = (co + c12)yfo € Kera;. Thus we have
or(coyfa)(u,0) = —coasyBru’ + - - € /077710. Therefore ¢y =0 as ord,o7(coyfa)
(u,0) > 10. Moreover we have

o7(9) = or(crzyfo) = ¢ uwv(v — agu?) mOdjO,mO'
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As dy + ag # 0, we see that uwv(v — agou®) ¢ 7, .- Hence we have ¢; = 0 and we
conclude g(z,y) = ca y* fo. g

The proof of Assertion 3 is now completed.

Now we are ready to compute the Alexander polynomial for the case
(C,0) ~ Byys0Bs; 0 (B%l)B“. By above assertions, we have p7(O) = 15, hence
we obtain the property (jj) ls =0, £z = 1. This implies also fg =0, fyg =1 by
Remark 2. Therefore we have A (t) = t* — * + 1> —t + 1 by Lemmal. Thus the
proof of Theorem 1 is completed.

5.5. Linear torus curve.
The singularity Bso2 appears also as a linear torus curve of type (5,2):

C: filz,y)’ -y =0

with I(f5,y;0) =5 (]2]). In this case, C consists of two smooth quintics and the
Alexander polynomial is given by following ([2]):

(t" - 1)
Al ="

5.6. Proofs of Corollary 1 and Corollary 2.

The assertion of Corollary 1 is an immediate consequence of the Sandwich
principle. The assertion of Corollary 2 is a result of [2]. In fact, we only need to
observe that the equivalence class of such torus curves correspond bijectively to
the partitions of 10 by locally intersection numbers of C5 and Cjs. In particular,
such a curve degenerates into an irreducible torus curve with a unique singularity
Bsp 2 which corresponds to the partition 10 = 10.

We thank to the referee for a useful comment which improved this paper
more understandable.
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