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A 1-parameter approach to links in a solid torus

By Thomas FIEDLER and Vitaliy KURLIN
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Abstract. To an oriented link in a solid torus we associate a trace graph in

a thickened torus in such a way that links are isotopic if and only if their trace

graphs can be related by moves of finitely many standard types. The key

ingredient is a study of codimension 2 singularities of link diagrams. For closed

braids with a fixed number of strands, trace graphs can be recognized up to

equivalence excluding one type of moves in polynomial time with respect to the

braid length.

1. Introduction.

1.1. Motivation and summary.

The classical Reidemeister theorem says that plane diagrams represent

isotopic links in 3-space if and only if they can be related by finitely many moves

of 3 types corresponding to the codimension 1 singularities of links diagrams,

namely a triple point , simple tangency and ordinary cusp .

We establish the higher order Reidemeister theorem considering a canonical

1-parameter family of links in a solid torus and studying codimension 2

singularities of resulting link diagrams. The 1-parameter family of link diagrams

is encoded by a new combinatorial object, a trace graph in a thickened torus in

such a way that trace graphs determine families of isotopic links if and only if they

can be related by a finite sequence of the 11 moves in Figure 11, see Theorem 1.4.

The conjugacy problem for braids is equivalent to the isotopy classification of

closed braids in a solid torus. Braids are conjugate if and only if the trace graphs of

their closures are equivalent through only tetrahedral moves and trihedral moves

in Figure 11i, 11xi. Trace graphs of closed braids can be recognized up to isotopy

in a thickened torus and trihedral moves in polynomial time with respect to the

braid length, see Theorem 1.5. The method provides a new geometric approach to

the conjugacy problem for braid groups Bn, which still has no efficient solution for

n � 5 strands, i.e. with a polynomial complexity in the braid length. Very

promising steps towards a polynomial solution were made by Birman, Gebhardt,
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González-Meneses [3] and Ko, Lee [11]. A clear obstruction is that the number of

different conjugacy classes of braids grows exponentially even in B3, see

Murasugi [13].

Usually links are studied in terms of braids using the theorems of Alexander

and Markov, see Birman [2]. The 1-parameter approach is a geometric alternative

to the algebraic one: conjugacy of braids and Markov moves are replaced by a

stronger notion of link isotopy and extreme tangency moves in Figure 11viii,

respectively.

1.2. Basic definitions.

We work in the C1-smooth category. Fix Euclidean coordinates x; y; z in R3.

Denote by Dxy the unit disk with centre at the origin of the horizontal plane XY.

Introduce the solid torus V ¼ Dxy � S1
z , where the oriented circle S1

z is the segment

½�1; 1�z with the identified endpoints, see the left picture of Figure 1.

DEFINITION 1.1. An embedding is a diffeomorphism onto its image. An

oriented link K � V is the image of an embedding f :
Fm
j¼1 S

1
j ! V . An isotopy

between two oriented links K0 and K1 in V is a smooth map F : ð
Fm
j¼1 S

1
j Þ �

½0; 1� ! V such that f0ð
Fm
j¼1 S

1
j Þ ¼ K0, f1ð

Fm
j¼1 S

1
j Þ ¼ K1 and the maps fr ¼

F ð�; rÞ :
Fm
j¼1 S

1
j ! V are smooth embeddings for all r 2 ½0; 1�.

Mark n points p1; � � � ; pn 2 Dxy. A braid � on n strands is the image of a

smooth embedding of n segments into Dxy � ½�1; 1�z such that (see Figure 1)

� the strands of � are monotonic with respect to prz : � ! S1
z ;

� the lower and upper endpoints of � are
S
ðpi � f�1gÞ,

S
ðpi � f1gÞ, respec-

tively.

Braids are considered up to isotopy in the cylinder Dxy � ½�1; 1�z, fixed on its

boundary. The isotopy classes of braids form the group denoted by Bn. The trivial

Figure 1. Basic notations and examples.
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braid consists of n vertical segments
Fn
i¼1ðpi � ½�1; 1�zÞ. A braid � 2 Bn is pure if

the induced permutation ~� 2 Sn of its endpoints is trivial. The closed braid �̂ � V

is obtained from � � Dxy � ½�1; 1�z by identifying the bases fz ¼ 	1g.

The smoothness of a link K implies that the tangent vector _fðsÞ never

vanishes on K. The standard unknot is given by the trivial embedding S1
z !

V ¼ Dxy � S1
z . We introduce a new equivalence relation, strong isotopy, for links

in a solid torus. For closed braids, the usual isotopy through closed braids is

strong.

DEFINITION 1.2. An extreme pair of a link K � V is a pair of either 2 local

maxima or 2 local minima of the projection prz : K ! S1
z with the same

z-coordinate. A smooth isotopy F : ð
Fm
j¼1 S

1
j Þ � ½0; 1� ! V of links is called strong

if all links in the family Kr ¼ F ð
Fm
j¼1 S

1
j ; rÞ � V have no extreme pairs for

r 2 ½0; 1�.

H.Morton proposed the trivial knot in the middle picture of Figure 1. The

Morton unknot is not strongly isotopic to the standard unknot S1
z . The arc

between the marked extrema is a long trefoil that can not be unknotted by strong

isotopy since the marked extrema remain the highest and lowest critical points.

1.3. Trace graphs of links.

Links are usually represented by plane diagrams with double crossings. A

classical approach to the classification of links is to use isotopy invariants, i.e.

functions defined on plane diagrams and invariant under the Reidemeister moves.

The Reidemeister moves in Figure 5 correspond to simplest singularities that can

appear in diagrams of links under isotopy, e.g. Reidemeister move III describes

the change of a diagram when a transversal triple intersection appears in the

projection.

The analogue of a plane diagram in the 1-parameter approach is a 1-parameter

family of diagrams obtained by rotating a link in V around S1
z . This is a 2-

dimensional surface containing more information about the link than only one

plane diagram. The link will be reconstructed up to smooth equivalence from the

self-intersection of the surface, the trace graph. Denote by rott : V ! V the

rotation of the torus V around S1
z through an angle t 2 ½0; 2�Þ, see Figure 2. Here t

is the parameter on the time circle S1
t ¼ R=2�Z of length 2�. Let Axz be the

vertical annulus ½�1; 1�x � S1
z in the solid torus V . Define the thickened torus

T ¼ Axz � S1
t . We illustrate the rotation of V using the piecewise linear trefoil

K � V in Figure 2, which can be easily smoothed. Diagrams of rotated trefoils

rottðKÞ � V under the orthogonal projection prxz : V ! Axz are shown in Figure 2.
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DEFINITION 1.3. The trace graph TGðKÞ � T of a link K � V consists of

the crossings of the diagrams prxzðrottðKÞÞ over all t 2 S1
t . Mark the intersection

points from K
T
ðDxy � f	1gÞ � V and also mark each local extremum of K with

respect to prz : K ! S1
z . If K has m components, in general position, the i-th

component decomposes into ni vertically monotonic arcs labelled by Aiq,

q ¼ 1; � � � ; ni. The 3 monotonic arcs in Figure 2 are numbered simply by 1, 2, 3.

Take a point p 2 TGðKÞ, which is a crossing of Aiq over Ajs in the diagram

prxzðrottðKÞÞ for some t 2 S1
t . Associate to p the ordered label ðqisjÞ. Then the

edges of the graph TGðKÞ are labelled. In the casem ¼ 1 we miss the indices i; j of

components of K and label edges by ordered pairs ðqsÞ, see Figure 3.

For each t 2 S1
t , watch the crossings of the diagram prxzðrottðKÞÞ � Axz �

ftg, e.g. the initial diagram prxzðKÞ � Axz at t ¼ 0 has 3 double crossings, which

evolve during the rotation of K. At t ¼ �=4, the lowest crossing becomes a critical

Figure 3. The trace graph TGðKÞ obtained from the diagrams in Figure 2.

Figure 2. Diagrams of rotated trefoils rottðKÞ � V for t 2 ½0; ��.
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crossing corresponding to a critical vertex of TGðKÞ. At the same t ¼ �=4 a

couple of crossings is born after Reidemeister move II associated to a tangency .

At t ¼ �=2 a new crossing is born from a cusp after Reidemeister move I, which

leads to a hanging vertex of TGðKÞ. The 2 triple vertices of TGðKÞ for t 2 ð0; �Þ
correspond to 2 Reidemeister moves III happening during the rotation of K. A

combinatorial explicit construction of the trace graph is in Lemma 6.8.

THEOREM 1.4. Links K0; K1 � V are isotopic in the solid torus V if and only

if their labelled trace graphs TGðK0Þ;TGðK1Þ � T can be obtained from each

other by an isotopy in T and a finite sequence of moves in Figure 11.

Trace graphs of closed braids have combinatorial features, allowing us to

recognize them up to all but one type of moves. The following result of [8] is one of

very few known polynomial algorithms recognizing topological objects up to

isotopy.

THEOREM 1.5. Let �; �0 2 Bn be braids of length 
 l. There is an algorithm

of complexity Cðn=2Þn
2=8ð6lÞn

2�nþ1 to decide whether TGð�̂Þ and TGð�̂0Þ are related
by isotopy in T and trihedral moves, the constant C does not depend on l and n. In

the case of pure braids, the power n2=8 can be replaced by 1. If the closure of a braid

is a single curve in the solid torus, then the complexity reduces to Cnð6lÞn�1.

1.4. Scheme of proofs.

The first double arrow in Figure 4 is a classical reduction of an equivalence of

links to extended Reidemeister moves on plane diagrams in Figure 5.

The second arrow is a new reduction to generic links and generic equivalence

defined in terms of codimension 1 singularities with respect to the rotation of links

in V .

Figure 4. A scheme to prove Theorem 1.4.
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The third arrow is a reformulation of the previous reduction in terms of

canonical loops of links in the space of all links in the solid torus V .

The fourth arrow is a reduction of generic links to their 2-dimensional

diagram surfaces considered up to 3-dimensional moves in Figure 10.

The fifth arrow is a final reduction of generic links to their trace graphs

considered up to equivalence generated by the moves in Figure 11.

The key ingredient of the proofs is a description of versal deformations and

bifurcation diagrams of codimension 2 multi local singularities of plane curves in

Section 4.

ACKNOWLEDGEMENTS. The second author is especially grateful to Hugh

Morton and Farid Tari for fruitful comments and suggestions. He also thanks

Yu. Burman, M.Kazaryan, V.Vassiliev, V. Zakalyukin for useful discussions.

2. Singular subspaces in the space of all links.

2.1. Codimension 1 singularities of link diagrams.

Let M;N be smooth finite dimensional manifolds. Denote by Jk½l�ðM;NÞ the
space of all l-tuple k-jets of smooth maps � :M ! N for all tuples ðu1; � � � ; ulÞ 2
Ml, see [1, Sections I.2]. Let ðx1; � � � ; xmÞ and ðy1; � � � ; ynÞ be local coordinates inM
and N , respectively. If the map � is defined locally by yj ¼ �jðx1; � � � ; xnÞ,
j ¼ 1; � � � ;m, then the l-tuple k-jet of the map � at a point ðu1; � � � ; ulÞ is

determined by

fx1; � � � ; xmg; fy1; � � � ; yng;
@�j

@xi

� �
; . . .

@k�j

@xi1 � � � @xis

� �
; i1 þ � � � þ is ¼ k:

The above quantities define local coordinates in Jk½l�ðM;NÞ. The l-tuple k-jet
jk½l�� of a smooth map � :M ! N can be considered as the map jk½l�� :M

l !
Jk½l�ðM;NÞ, namely ðu1; � � � ; ulÞ goes to the l-tuple k-jet of the map � at ðu1; � � � ; ulÞ.

Take an open set W � Jk½l�ðM;NÞ for some k; l. The set of smooth maps f :

M ! N with l-tuple k-jets from W is called open. These sets for all open W �
Jk½l�ðM;NÞ form a basis of the Whitney topology in C1ðM;NÞ. So two maps are

close in the Whitney topology if they are close with all theirs derivatives.

DEFINITION 2.1. The space SL of all links K � V inherits the Whitney

topology from C1ð
Fm
j¼1 S

1
j ; V Þ. A link K defined by a smooth embedding

f :
Fm
j¼1 S

1
j ! V is called general if the diagram D ¼ prxzðKÞ � Axz is general,

namely
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� the map prxz � f :
Fm
j¼1 S

1
j ! Axz is a smooth embedding outside finitely

many double crossings, an overcrossing arc is specified at each crossing;

� the extrema of prz : D! S1
z are not crossings and have distinct z-coor-

dinates.

Denote by �ð0Þ � SL the subspace of all general links.

We consider local singularities, so fix coordinates x; z around each point in

Axz. The x-axis is said to be horizontal, i.e. it is perpendicular to the vertical core

S1
z � Axz. Classical codimension 1 singularities of plane curves were described by

David [5, List I on p. 561], namely the ordinary cusp (the A2 singularity in

Arnold’s notations), simple tangency (A3) and triple point (D4). The solid

torus V has the distinguished vertical direction along S1
z , so we also consider

singularities with respect to prz : V ! S1
z , e.g. Reidemeister move IV is generated

by passing through a critical crossing , where one of the tangents is horizontal.

DEFINITION 2.2. A diagramD is the image of a smooth map g :
Fm
j¼1 S

1
j !Axz.

A triple point of the diagram D is a transversal intersection p of 3 arcs such

that all the tangents at p are not horizontal.

A simple tangency is an intersection p of 2 arcs given locally by u ¼ 	v2. We

assume that the tangent at p is not horizontal.

An ordinary cusp is the singular point p of an arc given locally by u2 ¼ v3. We

assume that the tangent at p is not horizontal.

A critical crossing is a transversal intersection p of 2 arcs such that one of the

tangents at p is horizontal.

A cubical point is the singular point p of an arc given locally by z ¼ u3, the

tangent at p is horizontal.

A mixed pair is a pair of a local maximum and a local minimum of the

projection prz : D! S1
z , lying in the same horizontal line.

An extreme pair is a pair of either 2 local maxima or 2 local minima of the

projection prz : D! S1
z , lying in the same horizontal line.

Given a singularity � 2 f ; ; ; ; ; ; g, denote by �� � SL the

singular subspace consisting of all links K � V such that prxzðKÞ is general

outside �.

Set �ð1Þ ¼ �
[

�
[

�
[

�
[

�
[

�
[

� � SL:
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2.2. Extended Reidemeister theorem.

DEFINITION 2.3. Let M be a finite dimensional smooth manifold. A

subspace � �M is called a stratified space if � is the union of disjoint smooth

submanifolds �i (strata) such that the boundary of each stratum is a finite union

of strata of less dimensions. Let N be a finite dimensional manifold. A smooth map

� :M ! N is transversal to a smooth submanifold U � N if the spaces f�ðTxMÞ
and TfðxÞU generate TfðxÞN for each x 2M. A smooth map is � :M ! N

transversal to a stratified space � � N if the the map � is transversal to each

stratum of �.

Briefly Theorem 2.4 says that any map can be approximated by ‘a nice map’.

THEOREM 2.4 (Multi-jet transversality theorem of Thom, see [1, Section

I.2]). Let M;N be compact smooth manifolds, � � Jk½l�ðM;NÞ be a stratified

space. Given a smooth map � :M ! N there is a smooth map � :M ! N such that

� the map � is arbitrarily close to � with respect to the Whitney topology;

� the l-tuple k-jet jk½l�� :M
l ! Jk½l�ðM;NÞ is transversal to � � Jk½l�ðM;NÞ.

LEMMA 2.5.

(a) The subspace �ð1Þ has codimension 1 in the space SL.

(b) The subspace �ð0Þ is open and dense in the space SL.

Sketch:

(a) It is a standard computation in the space J1
½3�ðR;R

2Þ of 3-tuple 1-jets of maps

ðxðrÞ; zðrÞÞ : R ! R2. For instance, fixing 3 parameters r1; r2; r3, the subspace

� maps to the subspace of J1
½3�ðR;R

2Þ given by 4 equations xðr1Þ ¼
xðr2Þ ¼ xðr3Þ, zðr1Þ ¼ zðr2Þ ¼ zðr3Þ and 3 inequalities _zðriÞ 6¼ 0, i ¼ 1; 2; 3, mean-

ing that the tangents are not horizontal, hence the codimension of the subspace

� � SL is 1 after forgetting the 3 parameters. Analogously � maps to the

subspace given by 4 equations _xðr1Þ ¼ _zðr1Þ ¼ 0, r1 ¼ r2 ¼ r3, hence the codi-

mension of � � SL is 1. A similar detailed argument will be given in the proof of

Lemma 3.5.

(b) The conditions of Definition 2.1 define an open subset of SL whose complement

is clearly the closure of the codimension 1 subspace �ð1Þ from Definition 2.2.

The following result immediately follows from Lemma 2.5 since by Theo-

rem 2.4 any isotopy in the space SL of links can be approximated by a path

transversally intersecting the singular subspace �ð1Þ � SL of codimension 1.
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PROPOSITION 2.6. Any smooth link can be approximated by a general link.

General links are isotopic if and only if their diagrams can be obtained from each

other by a plane isotopy and finitely many Reidemeister moves in Figure 5.

In Figure 5, orientations of arcs and symmetric images of the moves are

omitted.

2.3. The co-orientation of codimension 1 subspaces.

Using Gauss diagrams of link diagrams, we define the co-orientation of

codimension 1 subspaces � ;� ;� ;� from Definition 2.2.

DEFINITION 2.7. Let a general link K be defined by f :
Fm
j¼1 S

1
j ! V . The

Gauss diagram GDðKÞ is the union
Fm
j¼1 S

1
j with chords connecting points s1; s2

such that prxzðfðs1ÞÞ ¼ prxzðfðs2ÞÞ. Gauss diagrams GD1;GD2 are equivalent if

there is an orientation preserving diffeomorphism of
Fm
j¼1 S

1
j such that the

endpoints of any chord of GD1 map onto the endpoints of a chord of GD2 and vice

versa.

DEFINITION 2.8. For each of 2 types of oriented triple points, the co-

orientation of � is defined in terms of the Gauss diagrams of the corresponding

links K	 in Figure 6. Assume that, while t 2 S1
t increases, the point rottðKÞ 2 SL

passes through � from the negative side to the positive one. Then associate to

the corresponding triple vertex of TGðKÞ the positive sign þ, otherwise take the

negative sign �. The co-orientations of � , � , � are similarly defined in

Figure 6.

Look at the trefoil K in Figure 2 and its trace graph TGðKÞ in Figure 3.

Consider the first triple vertex of TGðKÞ at the critical moment t1 2 ð�=4; �=2Þ.
The knot rot�=4ðKÞ is on the positive side of � (the 1st type in Figure 6), while

rot�=2ðKÞ is on the negative side of � , i.e. the first triple vertex has the positive

sign. At the second triple vertex for t2 2 ð�=2; 3�=4Þ, the knot rottðKÞ goes from the

negative side to the positive side. So the second triple point also the positive sign.

Figure 5. Reidemeister moves taking into account local extrema.
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Figure 6. How to define the co-orientations of codimension 1 subspaces.
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3. Generic links, equivalences, loops and homotopies.

3.1. The canonical loop of a link and generic links.

Generic links will be defined as the most generic points in the space SL of all

links K � V with respect to the rotation rott of the solid torus V .

DEFINITION 3.1. The canonical loop CLðKÞ � SL of a smooth link K � V is

the union of the rotated links rottðKÞ 2 SL over all t 2 S1
t .

A link K � V is generic if there are finitely many t1; � � � ; tk 2 S1
t such that

� for all t =2 ft1; � � � ; tkg, the links rottðKÞ are general, i.e. rottðKÞ 2 �ð0Þ;

� CLðKÞ transversally intersects �
S
�

S
�

S
� at each t 2

ft1; � � � ; tkg.

Denote by �ð0Þ � SL the subspace of all generic links in V .

Morse modifications of index 1 would change the trace graph dramatically.

Luckily following Lemma 3.2 shows that they can not occur under strong

equivalence. More exactly Lemma 3.2 shows that the canonical loop CLðKÞ never
touches the subspace �

S
�

S
� for any link K. Therefore the transversality

from the last condition of Definition 3.1 is relevant only for the subspace � .

LEMMA 3.2 (Main topological lemma). For any link K � V , the canonical

loop CLðKÞ does not touch the subspace �
S
�

S
� . More formally, if K 2

�� for � ¼ ; ; , the links rot	"ðKÞ are on different sides of �� for small " > 0.

PROOF. For the subspaces � and � , the projections of two small arcs

with a tangent point (respectively, a cusp) are interchanged under the rotation.

Figure 6 shows that the links rot	"ðKÞ are on different sides of � and � ,

respectively, since the tangent at p is not horizontal, i.e. not orthogonal to the

vertical axis S1
z . The argument for � is the same, since one tangent at the

critical crossing is not horizontal, see the last picture of Figure 6. �

EXAMPLE 3.3. The canonical loop CLðKÞ of a knot K � V can touch the

subspace � . Consider the three arcs J1; J2; J3 � R3 defined by (see Figure 7 below)

x1 ¼ �u2;

y1 ¼ 0;

z1 ¼ u;

8><
>:

x2 ¼ u;

y2 ¼ �1;

z2 ¼ u;

8<
:

x3 ¼ �u;
y3 ¼ 1;

z3 ¼ u;

8<
: u 2 R; � > 0:

Under the composition prxz � rott, the arcs J1; J2; J3 map to the following ones:

x1ðtÞ ¼ �z21 cos t; x2ðtÞ ¼ z2 cos tþ sin t; x3ðtÞ ¼ �z3 cos t� sin t;
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where z1; z2; z3 are constants. For small t ¼ " > 0, the double crossing p23 ¼
prxzðrot"ðJ2ÞÞ

T
prxzðrot"ðJ3ÞÞ has the coordinates x ¼ 0, z ¼ � tan ". Then p23 is

at the left of the first rotated arc x1ðtÞ ¼ �z21 cos t with respect to X.

For t ¼ �" < 0, the crossing with x ¼ 0, z ¼ tan " is also at the left of the first

arc. Take a knot K 2 � containing small parts of the arcs described above.

Then rot	"ðKÞ are on the same side of � . This means that, under the rotation of

K, Reidemeister move III is not performed for the diagram prxzðrottðKÞÞ.

3.2. Codimension 2 singularities and generic equivalences.

Classical codimension 2 singularities of plane curves were described by David

[5, List II on p. 561], namely the ramphoidal cusp (the A4 singularity in

Arnold’s notations), intersected cusp (D5), tangent triple point (D4), cubic

tangency (A5) and ordinary quadruple point (X9). We need to distinguish

more refined singularities since the canonical loop of a link may not be transversal

to some singular subspace, e.g. it is transversal to the codimension 2 subspace of

horizontal cusps � , but not to the codimension 1 subspace of all cusps �
S
� .

All tangents below are not horizontal unless stated otherwise.

DEFINITION 3.4 (codimension 2 singularities of link diagrams). Let D be a

diagram, i.e. the image of a smooth map g :
Fm
j¼1 S

1
j ! Axz.

A quadruple point of D is a transversal intersection p of 4 arcs.

A tangent triple point of D is an intersection p of 3 arcs, the first two arcs have

a simple tangency and do not touch the third arc.

An intersected cusp of D is an intersection of 2 arcs, where the first arc has an

ordinary cusp whose vector ð€x; €zÞ does not touch the second arc.

A cubic tangency is an intersection of 2 arcs given locally by u ¼ 0, u ¼ v3.

A ramphoidal cusp is the singular point of an arc, given locally by u2 ¼ v5.

A horizontal cusp is an ordinary cusp with horizontal tangent.

A mixed tangency is a simple tangency with a horizontal tangent such that one

of the extrema is a maximum, another one is a minimum.

Figure 7. CLðKÞ may touch the subspace of triple points.
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An extreme tangency is a simple tangency with a horizontal tangent such that

both extrema are either maxima or minima.

; A horizontal triple point is a triple intersection, where the tangent line of

the first arc is horizontal, the tangent lines of the other arcs are not

horizontal.

Given a singularity � 2 f ; ; ; ; ; ; ; ; ; g, denote by �� the

union of all links K � V such that the diagram prxzðKÞ is general outside �. Set

�ð2Þ ¼ �
[

�
[

�
[

�
[

�
[

�
[

�
[

�
[

�
[

� � SL:

LEMMA 3.5. The singular subspace �ð2Þ has codimension 2 in the space SL.

PROOF. We use multi-jets of maps ðxðrÞ; zðrÞÞ : R ! R2 defining a diagram

D. Fixing 4 points r1; r2; r3; r4, each singularity � from Definition 3.4 can be

described in terms of 4-tuple 3-jets from the space J3
½4�ðR;R

2Þ, where each point

has the 36 coordinates:

J3
½4�ðR;R2Þ : ri;

xðriÞ; zðriÞ; _xðriÞ; _zðriÞ;
€xðriÞ; €zðriÞ; x

...ðriÞ; z
...ðriÞ;

i ¼ 1; 2; 3; 4:

(

The jets over all K 2 �� form the finite dimensional subspace ~�� �
J3
½4�ðR;R

2Þ. A simple tangency of 2 arcs at ri; rj is described by �ij ¼
_xðriÞ _xðrjÞ
_zðriÞ _zðrjÞ

����
���� ¼ 0: The frequent inequality _zðriÞ 6¼ 0 below says that the tangent

of D at ri is not horizontal. The string r1 6¼ r2 6¼ r3 6¼ r4 will mean that r1; r2; r3; r4
are pairwise disjoint.

~�
xðr1Þ ¼ xðr2Þ ¼ xðr3Þ ¼ xðr4Þ;
zðr1Þ ¼ zðr2Þ ¼ zðr3Þ ¼ zðr4Þ;

(
r1 6¼ r2 6¼ r3 6¼ r4;

_zðriÞ 6¼ 0; �ij 6¼ 0; i 6¼ j;

~�
xðr1Þ ¼ xðr2Þ ¼ xðr3Þ;
zðr1Þ ¼ zðr2Þ ¼ zðr3Þ;

(
r1 6¼ r2 6¼ r3 ¼ r4; _zðriÞ 6¼ 0;

�12 ¼ 0; �23 6¼ 0; �13 6¼ 0;

~�
xðr1Þ ¼ xðr2Þ; zðr1Þ ¼ zðr2Þ;
_xðr1Þ ¼ _zðr1Þ ¼ 0;

(
€zðr1Þ 6¼ 0; _zðr2Þ 6¼ 0;

r1 6¼ r2 ¼ r3 ¼ r4;

€xðr1Þ _xðr2Þ
€zðr1Þ _zðr2Þ

����
���� 6¼ 0;

~�

xðr1Þ ¼ xðr2Þ; zðr1Þ ¼ zðr2Þ;
r1 6¼ r2 ¼ r3 ¼ r4; �12 ¼ 0;

_zðr1Þ 6¼ 0; _zðr2Þ 6¼ 0;

8><
>:

€xðr1Þ _xðr2Þ
€zðr1Þ _zðr2Þ

����
���� ¼ 0;

x
...ðr1Þ _xðr2Þ
z
...ðr1Þ _zðr2Þ

�����
����� 6¼ 0;
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~�
_xðr1Þ ¼ _zðr1Þ ¼ 0; €zðr1Þ 6¼ 0;

r1 ¼ r2 ¼ r3 ¼ r4;

(
€xðr1Þ x

...ðr1Þ
€zðr1Þ z

...ðr1Þ

�����
����� ¼ 0;

~�
[

~�
xðr1Þ ¼ xðr2Þ ¼ xðr3Þ;
zðr1Þ ¼ zðr2Þ ¼ zðr3Þ;

(
_zðr1Þ ¼ 0; €zðr1Þ 6¼ 0;

_zðr2Þ 6¼ 0; _zðr3Þ 6¼ 0;

r1 6¼ r2 6¼ r3 ¼ r4;

�ij 6¼ 0; i 6¼ j;

~� f _xðr1Þ ¼ _zðr1Þ ¼ €zðr1Þ ¼ 0; r1 ¼ r2 ¼ r3 ¼ r4; z
...ðr1Þ 6¼ 0;

~�
[

~�
zðr1Þ ¼ zðr2Þ; _zðr1Þ ¼ _zðr2Þ ¼ 0;

xðr1Þ ¼ xðr2Þ; r1 6¼ r2 ¼ r3 ¼ r4;

(
€zðr1Þ 6¼ 0;

€zðr2Þ 6¼ 0;

The conditions above can be obtained using classical normal forms

of the singularities, e.g. the ramphoidal cusp is a degeneration of the

ordinary cusp clearly given by _xðrÞ ¼ _zðrÞ ¼ 0. Locally one has ðx; zÞ ¼
ða2r2 þ a3r

3 þ � � � ; b2r2 þ b3r
3 þ � � �Þ, b2 6¼ 0, which is (left) equivalent to ðx; zÞ ¼

ðða3 � b3a2=b2Þr3 þ � � � ; b2r2 þ � � �Þ, hence a2b3 ¼ b2a3, i.e. the vectors ð€xðrÞ; €zðrÞÞ
and ðx...ðrÞ; z...ðrÞÞ are collinear.

Each subspace ~�� is defined by 6 equations, hence codim ~�� ¼ 6 in J3
½4�ðR;R

3Þ.
The subspaces �� from Definition 3.4 map to the corresponding subspaces ~�� �
J3
½4�ðR;R

2Þ by adding 4 points r1; r2; r3; r4 on a diagram. When we forget these

points, the codimension decreases by 4, i.e. codim�� ¼ 2 in the space SL. �

DEFINITION 3.6. Let � be the set of all links failing to be generic due to

exactly one tangency of CLðKÞ with the codimension 1 subspace � .

Given � 2 f ; ; ; ; ; ; ; ; ; g, let �� consist of all links K

failing to be generic because of exactly one transversal intersection of CLðKÞ with
��. Set

�ð1Þ ¼�
[

�
[

�
[

�
[

�
[

�
[

�
[

�
[

�
[

�
[

� :

A generic equivalence is a smooth path F : ½0; 1� ! SL intersecting transversally

the subspace �ð1Þ, i.e. there are finitely many r1; � � � ; rk 2 ½0; 1� such that

� the links F ðrÞ 2 SL are generic for all r =2 fr1; � � � ; rkg;
� the canonical loop CLðF ðrÞÞ transversally intersects �ð1Þ for r ¼ r1; � � � ; rk.

LEMMA 3.7.

(a) The subspace �ð1Þ has codimension 1 in the space SL.

(b) The subspace �ð0Þ is open and dense in the space SL.

PROOF.

(a) Choose a link K � V given by an embedding f :
Fm
j¼1 S

1
j ! V that fails to be

generic due to exactly one singularity � from Definition 3.6. These singularities
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were introduced using the rotation of the solid torus V . So we describe them in

terms of maps R ! R3, not R ! R2 as in the proof of Lemma 3.5.

There is a 4-tuple ðr1; r2; r3; r4Þ 2 ð
Fm
j¼1 S

1
j Þ

4 defining the chosen singularity of

K 2 ��. The 4-tuple 3-jet j3½4�fðr1; r2; r3; r4Þ is a point in J3
½4�ðR;R

3Þ. These points

over all K 2 �� form the finite dimensional subspace ~�� � J3
½4�ðR;R

3Þ.
We check that ~�� has codimension 5 in J3

½4�ðR;R
3Þ. Denote by xðrÞ; yðrÞ; zðrÞ

the compositions of f :
Fm
j¼1 S

1
j ! V � R3 and the projections to the coordinate

axes. Then the 4-tuple 3-jet of K is determined by the following 52 quantities.

J3
½4�ðR;R3Þ : ri;

xðriÞ; yðriÞ; zðriÞ; _xðriÞ; _yðriÞ; _zðriÞ;
€xðriÞ; €yðriÞ; €zðriÞ; x

...ðriÞ; y
...ðriÞ; z

...ðriÞ;
i ¼ 1; 2; 3; 4:

(

For i; j 2 f1; 2; 3; 4g, i 6¼ j, introduce the differences

�xij ¼ xðriÞ � xðrjÞ; �yij ¼ yðriÞ � yðrjÞ; �zij ¼ zðriÞ � zðrjÞ:

Points fðriÞ; fðrjÞ; fðrkÞ 2 K project to the same point under prxz : rottðKÞ !

Axz � ftg for some t if and only if zðriÞ ¼ zðrjÞ ¼ zðrkÞ,
�xij �xjk
�yij �yjk

����
���� ¼ 0: The last

determinant is (up to the sign) the area of the triangle with the

vertices ðxðriÞ; yðriÞÞ, ðxðrjÞ; yðrjÞÞ, ðxðrkÞ; yðrkÞÞ in the horizontal plane

fzðriÞ ¼ zðrjÞ ¼ zðrkÞg.

Set �ij ¼
_xðriÞ _xðrjÞ �xij
_yðriÞ _yðrjÞ �yij
_zðriÞ _zðrjÞ �zij

������
������: The diagram prxzðrottðKÞÞ contains two

arcs having a simple tangency at r ¼ ri, r ¼ rj and some t if and only if zðriÞ ¼
zðrjÞ and �ij ¼ 0, i.e. the straight line through fðriÞ; fðrjÞ 2 K lies in the plane

spanned by the tangent vectors of K at r ¼ ri and r ¼ rj.

We describe analytically the subspaces ~�� associated to the singularities

; ; ; ; ; ; ; ; ; ; :

~�

zðr1Þ ¼ zðr2Þ ¼ zðr3Þ ¼ zðr4Þ;
r1 6¼ r2 6¼ r3 6¼ r4;

_zðriÞ 6¼ 0; i ¼ 1; 2; 3; 4;

8><
>:

�x12 �x23

�y12 �y23

�����
����� ¼

�x12 �x24

�y12 �y24

�����
����� ¼ 0;

�ij 6¼ 0; i; j 2 f1; 2; 3; 4g; i 6¼ j;

~�

zðr1Þ ¼ zðr2Þ ¼ zðr3Þ;
r1 6¼ r2 6¼ r3 ¼ r4;

_zðriÞ 6¼ 0; i ¼ 1; 2; 3;

8><
>:

�x12 �x23

�y12 �y23

�����
����� ¼ 0;

�12 ¼ 0; �23 6¼ 0; �13 6¼ 0;
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~�

zðr1Þ ¼ zðr2Þ;
_zðr1Þ ¼ 0; €zðr1Þ 6¼ 0;

_zðr2Þ 6¼ 0;

8><
>:

_xðr1Þ _xðr2Þ
_yðr1Þ _yðr2Þ

�����
����� ¼ 0;

r1 6¼ r2 ¼ r3 ¼ r4;

€xðr1Þ _xðr2Þ �x12

€yðr1Þ _yðr2Þ �y12

€zðr1Þ _zðr2Þ �z12

�������
������� 6¼ 0;

~�

zðr1Þ ¼ zðr2Þ; �12 ¼ 0;

r1 6¼ r2 ¼ r3 ¼ r4;

_zðr1Þ 6¼ 0; _zðr2Þ 6¼ 0;

8><
>:

€xðr1Þ €xðr2Þ �x12

€yðr1Þ €yðr2Þ �y12

€zðr1Þ €zðr2Þ �z12

�������
������� ¼ 0;

~�
_zðr1Þ ¼ 0; €zðr1Þ 6¼ 0;

r1 ¼ r2 ¼ r3 ¼ r4;

(
x
...ðr1Þ
€xðr1Þ

¼
y
...ðr1Þ
€yðr1Þ

¼
z
...ðr1Þ
€zðr1Þ

:

The last equations with 3 fractions mean that the vectors of the 2nd and 3rd

derivatives are collinear, which corresponds to the similar condition for ~� in the

proof of Lemma 3.5. If a denominator is zero, the numerator must be also zero.

~�
[

~�
zðr1Þ ¼ zðr2Þ ¼ zðr3Þ; r1 6¼ r2 6¼ r3 ¼ r4;

_zðr1Þ ¼ 0; €zðr1Þ 6¼ 0; _zðr2Þ 6¼ 0; _zðr3Þ 6¼ 0;

(
�x12 �x23

�y12 �y23

�����
����� ¼ 0;

~� f _zðr1Þ ¼ €zðr1Þ ¼ 0; r1 ¼ r2 ¼ r3 ¼ r4; z
...ðr1Þ 6¼ 0;

~�
[

~�
zðr1Þ ¼ zðr2Þ;
_zðr1Þ ¼ _zðr2Þ ¼ 0;

(
r1 6¼ r2 ¼ r3 ¼ r4;

€zðr1Þ 6¼ 0; €zðr2Þ 6¼ 0:

If _zðriÞ 6¼ 0, then locally ri can be considered as a function of z, hence any

function of (several) ri can be differentiated with respect to z. Below the tangency

with � means that the derivative of the vanishing determinant

� ¼ �x12 �x23
�y12 �y23

����
���� defining a triple point under the projection prxz : rottðKÞ !

Axz � ftg also vanishes.

~�

zðr1Þ ¼ zðr2Þ ¼ zðr3Þ; r1 6¼ r2 6¼ r3 ¼ r4

� ¼
d

dz
� ¼ 0;

d2

dz2
� 6¼ 0; � ¼

�x12 �x23

�y12 �y23

�����
�����;

�ij 6¼ 0;

i 6¼ j;

_zðriÞ 6¼ 0:

8><
>:

Generic inequalities dg=dz 6¼ 0 should be added to the descriptions above for each

condition g ¼ 0, which guarantees no tangency of the canonical loop with the

corresponding subspace ��. In important cases like ~� we explicitly accompanied

_zðr1Þ ¼ 0 with €zðr2Þ 6¼ 0 equivalent to _zðr1ðzÞÞ=dz 6¼ 0, but also every equation like

zðr1Þ ¼ zðr2Þ should be accompanied with dzðr1ðzÞÞ=dz 6¼ dzðr2ðzÞÞ=dz.
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Each subspace ~�� is defined by 5 equations, hence codim ~�� ¼ 5 in J3
½4�ðR;R

3Þ.
The subspaces �� introduced geometrically in Definition 3.6 correspond to ~�� by

adding 4 points r1; r2; r3; r4 on a link. When we forget about these points the

codimension decreases by 4, i.e. codim�� ¼ 1 in the space SL of all links K � V .

(b) The conditions of Definition 3.6 define an open subset of SL whose complement

is clearly the closure of the codimension 1 subspace �ð1Þ. �

The following result similar to Proposition 2.6 follows from Lemma 3.7 since

by Theorem 2.4 any isotopy in the space SL of links can be approximated by a

path transversally intersecting the singular subspace �ð1Þ � SL.

PROPOSITION 3.8.

(a) Any smooth link can be approximated by a generic link.

(b) Any smooth equivalence of links can be approximated by a generic one.

3.3. Generic loops and generic homotopies in the space of links.

A loop of links fKtg � SL means a smooth loop, i.e. a smooth map S1
t ! SL.

Generic loops provide a suitable generalization of the canonical loop.

DEFINITION 3.9. A smooth loop of links fKtg � SL, t 2 S1
t , is called generic

if there are finitely many critical moments t1; � � � ; tk 2 S1
t such that

� the link Kt maps to Ktþ� under the rotation through � for every t 2 S1
t ;

� for all t =2 ft1; � � � ; tkg, the links Kt are general, i.e. Kt 2 �ð0Þ;

� fKtg transversally intersects �
S
�

S
�

S
� at each t ¼ t1; � � � ; tk.

Due to Lemmas 2.5, 3.7 any loop can be approximated by a generic loop. But

a generic loop may be too trivial. For instance, a loop S1
t ! SL contractible to a

generic link through generic links carries information about only one diagram.

More interesting objects are generic loops homotopic to canonical loops.

DEFINITION 3.10. A smooth family fLsg of loops, s 2 ½0; 1�, is called a

generic homotopy if there are finitely many critical moments s1; � � � ; sk 2 ½0; 1�
such that

� for s =2 fs1; � � � ; skg, the loop Ls is generic in the sense of Definition 3.9;

� for each s 2 fs1; � � � ; skg, the loop Ls fails to be generic since either Ls
transversally intersects �ð2Þ or Ls touches � at exactly one point.

LEMMA 3.11.

(a) The canonical loop of any generic link is a generic loop.

(b) Any generic equivalence fKsg, s 2 ½0; 1�, of links provides the generic

homotopy of loops fCLðKsÞg of links.
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(c) If canonical loops CLðK0Þ and CLðK1Þ of generic links K0 and K1 are

generically homotopic then K0 and K1 are generically equivalent.

PROOF.

(a) The canonical loop of any link is symmetric in the sense that rottðKÞ maps to

rottþ�ðKÞ under the rotation through � for every t 2 S1
t . The other conditions of

Definition 3.9 correspond to the conditions of Definition 3.1.

(b) Compare Definition 3.6 with Definitions 3.9 and 3.10.

(c) Let fLsg, s 2 ½0; 1�, be a generic homotopy between CLðK0Þ and CLðK1Þ. The
loops Ls can be represented by a cylinder S1

t � ½0; 1�mapped to the space SL. Take

a smooth path connecting K0 and K1 inside the cylinder. This smooth equivalence

can be approximated by a generic one due to Proposition 3.8b. �

By Lemma 3.11 the classification of links reduces to their canonical loops.

PROPOSITION 3.12. Generic links are generically equivalent in V if and only

if their canonical loops are generically homotopic in the space SL of all linksK � V .

4. Through codimension 2 singularities.

4.1. Versal deformations of codimension 2 singularities.

To understand what happens when the canonical loop of a link passes

through the singular subspace �ð2Þ, we study bifurcation diagrams of codimen-

sion 2 singularities.

LEMMA 4.1. The codimension 2 singularities from Definition 3.4 have the

normal forms in the table below, where r is the parameter on the curve and

� A e is the extended right-left equivalence, i.e. diffeomorphisms of R2 don’t

fix 0;

� A z is the restricted right-left equivalence such that left diffeomorphisms of

R2 have the form ðgðx; zÞ; hðzÞÞ, where gðx; zÞ : R2 ! R, hðzÞ : R ! R are

diffeomorphisms.

Sketch: The normal forms up to A e-equivalence are classical, e.g. the parameter

e 6¼ 0 in the normal form of (X9) can not be skipped as the cross-ratio of 4

slopes is invariant under diffeomorphisms, see [14, Lemma 6.5]. The singularities

, , , , should be considered up to A z-equivalence respecting

fz ¼ constg, otherwise they don’t have codimension 2, e.g. the normal form

ðr2; r3Þ of is not A z-equivalent to the normal form ðr3; r2Þ of . Deducing new

normal forms is similar, e.g. the horizontal cusp is defined by the conditions

_xð0Þ ¼ _zð0Þ ¼ €zð0Þ ¼ 0, hence xðrÞ ¼ ar2 þ � � �, zðrÞ ¼ br3 þ � � �, which normalises

to ðr2; r3Þ as required.
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, A e fx ¼ 0; z ¼ rg; fx ¼ r; z ¼ rg; fx ¼ �r; z ¼ rg; fx ¼ er; z ¼ rg
, A e fx ¼ r2; z ¼ rg; fx ¼ 0; z ¼ rg; fx ¼ r; z ¼ rg
, A e fx ¼ r3; z ¼ r2g; fx ¼ r; z ¼ rg
, A e fx ¼ r3; z ¼ rg; fx ¼ 0; z ¼ rg
, A e fx ¼ r5; z ¼ r2g
, A z fx ¼ r2; z ¼ r3g
, A z fx ¼ r; z ¼ r2g; fx ¼ r; z ¼ �r2g
, A z fx ¼ r; z ¼ �2r2g; fx ¼ r; z ¼ �r2g
, A z fx ¼ r; z ¼ �r2g; fx ¼ r; z ¼ rg; fx ¼ �r; z ¼ rg
, A z fx ¼ r; z ¼ �r2g; fx ¼ r; z ¼ rg; fx ¼ 2r; z ¼ rg

Mancini and Ruas [12] have shown that the group A z from Lemma 4.1 is

geometric in the sense of Damon [4]. So the standard technique of singularity

theory can be applied to find versal deformations of corresponding codimension 2

singularities.

We consider horizontal triple points and separately, because the

associated moves on trace graphs look slightly different in Figure 11ix, 11x. A

deformation of a germ ðxðrÞ; zðrÞÞ : R ! R2 with parameters a; b is a germ F :

R�R2 ! R2 such that F ðr; 0; 0Þ � ðxðrÞ; zðrÞÞ. A deformation F is versal if any

other deformation can be obtained from F by actions of the corresponding group

A e or A z.

The versality can be checked using the following tangent spaces at germs in

the space of deformations. Let Tr be the right tangent space at a germ ðxðrÞ; zðrÞÞ
generated by the right diffeomorphisms R ! R, e.g. the right space Tr at ðr5; r2Þ
of consists of ð5r4fðrÞ; 2rfðrÞÞ, where f : R ! R. Denote by T l the left tangent

space at a germ ðxðrÞ; zðrÞÞ generated by the restricted left diffeomorphisms

ðgðx; zÞ; hðzÞÞ : R2 ! R2, where g : R2 ! R, h : R ! R are any germs. For

instance, the left space T l at ðr2; r3Þ of is formed by ðgðr2; r3Þ; hðr3ÞÞ ¼
ða1 þ a2r

2 þ a3r
3 þ � � � ; b1 þ b2r

3 þ � � �Þ. The parameter normal space Np of a

deformation F ðr; a; bÞ consists of linear combinations cð@F=@aÞ þ dð@F=@bÞ at

a ¼ b ¼ 0, where c; d are constants, e.g. the space Np of ðr5 þ ar3 þ br; r2Þ consists
of vectors ðcr3 þ dr; 0Þ.

In the case of a multi-germ the right space Tri is associated to the independent

right diffeomorphisms fiðrÞ around each point ri. The left space T
l
i is generated by

the same left diffeomorphisms at every ri. The parameter space Np
i is spanned by

the derivatives along the parameters of the deformation at each ri.

The following standard statement is a simple application of [1, Section I.8.2].
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PROPOSITION 4.2. A deformation F ðr; a; bÞ of a multi-germ ðxðrÞ; zðrÞÞ :
R ! R2 is versal if at every point ri any germR ! R2 can be represented as a sum

of vectors from the spaces Tri , T
l
i and N

p
i .

LEMMA 4.3. The codimension 2 singularities from Definition 3.4 have the

versal deformations with parameters a; b in the table below.

, A e fx ¼ 0; z ¼ rg; fx ¼ rþ a; z ¼ rg; fx ¼ �r� b; z ¼ rg; fx ¼ er; z ¼ rg
, A e fx ¼ r2 � 2a; z ¼ rg; fx ¼ 0; z ¼ rg; fx ¼ r� b; z ¼ rg
, A e fx ¼ r3 � br; z ¼ r2g; fx ¼ r� a; z ¼ rg
, A e fx ¼ r3 � 3brþ a; z ¼ rg; fx ¼ 0; z ¼ rg
, A e fx ¼ r5 þ ar3 þ br; z ¼ r2g
, A z fx ¼ r2; z ¼ r3 þ ar2 � brg
, A z fx ¼ r; z ¼ r2 � bg; fx ¼ rþ a; z ¼ �r2g
, A z fx ¼ r; z ¼ �2r2 � bg; fx ¼ rþ a; z ¼ �r2g
, A z fx ¼ r; z ¼ �r2g; fx ¼ rþ a; z ¼ rg; fx ¼ �r� b; z ¼ rg
, A z fx ¼ r; z ¼ �r2g; fx ¼ rþ a; z ¼ rg; fx ¼ r=2� b; z ¼ rg

Sketch: Versal deformations of classical codimension 2 singularities (A4),

(D5), (D4), (A5) and (X9) up to A e-equivalence were recently described

by Wall [14, Subsection 6.1]. The remaining cases follow from the table below.

singularity Tri T li Np
i

ð2rfðrÞ; 3r2fðrÞÞ ðgðr2; r3Þ; hðr3ÞÞ ð0; cr2 � drÞ
ðf1ðrÞ; 2rf1ðrÞÞ ðgðr; r2Þ; hðr2ÞÞ ð0;�dÞ
ðf2ðrÞ;�2rf2ðrÞÞ ðgðr;�r2Þ; hð�r2ÞÞ ðc; 0Þ
ðf1ðrÞ;�4rf1ðrÞÞ ðgðr;�2r2Þ; hð�2r2ÞÞ ð0;�dÞ
ðf2ðrÞ;�2rf2ðrÞÞ ðgðr;�r2Þ; hð�r2ÞÞ ðc; 0Þ
ðf1ðrÞ;�2rf1ðrÞÞ ðgðr;�r2Þ; hð�r2ÞÞ ð0; 0Þ
ðf2ðrÞ; f2ðrÞÞ ðgðr; rÞ; hðrÞÞ ðc; 0Þ
ð�f3ðrÞ; f3ðrÞÞ ðgð�r; rÞ; hðrÞÞ ð�d; 0Þ
ðf1ðrÞ;�2rf1ðrÞÞ ðgðr;�r2Þ; hð�r2ÞÞ ð0; 0Þ
ðf2ðrÞ; f2ðrÞÞ ðgðr; rÞ; hðrÞÞ ðc; 0Þ
ð�f3ðrÞ=2; f3ðrÞÞ ðgð�r=2; rÞ; hðrÞÞ ð�d; 0Þ

Case vi of a horizontal cusp . By Proposition 4.2 we should prove that any germ

ðxðrÞ; zðrÞÞ : R ! R2 can be represented as a sum of vectors from the spaces Tr1 , T
l
1
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and Np
1 , i.e. we solve the functional equations from the table xðrÞ ¼ 2rfðrÞ þ

gðr2; r3Þ and zðrÞ ¼ �drþ cr2 þ 3r2fðrÞ þ hðr3Þ, which have one the of the possible

solutions

d ¼ � _zð0Þ; hðr3Þ ¼ zð0Þ; fðrÞ ¼
zðrÞ � _zð0Þr� zð0Þ

3r2
þ

_xð0Þ
2

�
€zð0Þ
6
;

c ¼
€zð0Þ � 3 _xð0Þ

2
; gðr2; r3Þ ¼ xðrÞ � _xð0Þr� 2

zðrÞ � €zð0Þr2=2� _zð0Þr� zð0Þ
3r

:

8>><
>>:

Here h has only the constant term and gðr2; r3Þ has no linear term in r, all other

powers have the form 2jþ 3k for some integers j; k � 0, e.g.

for a germ ða0 þ a1rþ a2r
2 þ � � � ; b0 þ b1rþ b2r

2 þ � � �Þ one has

f ¼ a1=2þ � � � ; gðx; zÞ ¼ a0 þ a2xþ � � � ; h ¼ b0; d ¼ �b1; c ¼ ð2b2 � 3a1Þ=2:

Case vii of a mixed tangency . We prove that at each point ri, i ¼ 1; 2, any germ

ðxi; ziÞ : R ! R2 can be represented as a sum of vectors from Tri , T
l
i , N

p
i , i.e. in

terms of suitable c; d and f, g, h. Write down the equations from the table above.

x1ðrÞ ¼ f1ðrÞ þ gðr; r2Þ; z1ðrÞ ¼ 2rf1ðrÞ þ hðr2Þ � d;

x2ðrÞ ¼ cþ f2ðrÞ þ gðr;�r2Þ; z2ðrÞ ¼ �2rf2ðrÞ þ hð�r2Þ:

(
ð Þ

For a function fðrÞ denote its constant term simply by f . The equations

z1ðrÞ ¼ 2rf1ðrÞ þ hðr2Þ � d and z2ðrÞ ¼ 2rf2ðrÞ þ hð�r2Þ in degree 1 determine the

constant terms f1; f2 of f1ðrÞ; f2ðrÞ. Then system ð Þ in degree 0 has a unique

solution:

x1 ¼ f1 þ g; z1 ¼ h� d;

x2 ¼ cþ f2 þ g; z2 ¼ h:

(
g ¼ x1 � f1; h ¼ z2;

c ¼ x2 � x1 þ f1 � f2; d ¼ z2 � z1:

(
ð 0Þ

For a function fðrÞ define its odd and even part as Odd fðrÞ ¼ ðfðrÞ � fð�rÞÞ=2,
Even fðrÞ ¼ ðfðrÞ þ fð�rÞÞ=2. We look for solutions gðx; zÞ ¼ g1ðxÞ þ g2ðzÞ and

hðzÞ such that g2ð�zÞ ¼ �g2ðzÞ, hðzÞ ¼ hð�zÞ. Split each equation of ð Þ:

Oddx1ðrÞ ¼ Odd f1ðrÞ þOdd g1ðrÞ; Even z1ðrÞ ¼ 2rOdd f1ðrÞ þ hðr2Þ � d;

Evenx1ðrÞ ¼ Even f1ðrÞ þ Even g1ðrÞ þ g2ðr2Þ; Odd z1ðrÞ ¼ 2rEven f1ðrÞ;
Oddx2ðrÞ ¼ Odd f2ðrÞ þOdd g1ðrÞ; Even z2ðrÞ ¼ �2rOdd f2ðrÞ þ hðr2Þ;
Evenx2ðrÞ ¼ cþ Even f2ðrÞ þ Even g1ðrÞ � g2ðr2Þ; Odd z2ðrÞ ¼ �2rEven f2ðrÞ:

8>>>><
>>>>:
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The resulting system has a solution below, where Even z1ðrÞ � Even z2ðrÞ þ d is

divisible by r due to ( 0). So the deformation is versal by Proposition 4.2.

Even f1ðrÞ ¼ Odd z1ðrÞ=2r; Even f2ðrÞ ¼ �Odd z2ðrÞ=2r;
Odd f1ðrÞ ¼ ðEven z1ðrÞ � Even z2ðrÞ þ dÞ=4rþ ðOdd x1ðrÞ �Oddx2ðrÞÞ=2;
Odd f2ðrÞ ¼ ðEven z1ðrÞ � Even z2ðrÞ þ dÞ=4rþ ðOdd x2ðrÞ �Oddx1ðrÞÞ=2;
Even g1ðrÞ ¼ ðEven x1ðrÞ þ Evenx2ðrÞ �Odd z1ðrÞ=2rþOdd z2ðrÞ=2r� cÞ=2;
Odd g1ðrÞ ¼ ðEven z2ðrÞ � Even z1ðrÞ � dÞ=4rþ ðOdd x1ðrÞ þOdd x2ðrÞÞ=2;
g2ðr2Þ ¼ ðEvenx1ðrÞ � Even x2ðrÞ �Odd z1ðrÞ=2r�Odd z2ðrÞ=2rþ cÞ=2;
hðr2Þ ¼ ðEven z1ðrÞ þ Even z2ðrÞ þ dÞ=2þ rðOddx2ðrÞ �Oddx1ðrÞÞ:

8>>>>>>>>>>>><
>>>>>>>>>>>>:
Case viii of an extreme tangency is similar to Case vii.

Case ix of a horizontal triple point . The table above gives

x1ðrÞ ¼ f1ðrÞ þ gðr;�r2Þ; z1ðrÞ ¼ �2rf1ðrÞ þ hð�r2Þ;
x2ðrÞ ¼ cþ f2ðrÞ þ gðr; rÞ; z2ðrÞ ¼ f2ðrÞ þ hðrÞ;
x3ðrÞ ¼ �d� f3ðrÞ þ gð�r; rÞ; z3ðrÞ ¼ f3ðrÞ þ hðrÞ:

8><
>:ð Þ

The equation z1ðrÞ ¼ �2rf1ðrÞ þ hð�r2Þ in degree 1 determines the constant term

f1 of the function f1ðrÞ. Then system ð Þ in degree 0 has a unique solution.

x1 ¼ f1 þ g; z1 ¼ h;

x2 ¼ cþ f2 þ g; z2 ¼ f2 þ h;

x3 ¼ �d� f3 þ g; z3 ¼ f3 þ h:

8><
>:

g ¼ x1 � f1; h ¼ z1;

f2 ¼ z2 � z1; c ¼ x2 � x1 þ f1 þ z1 � z2;

f3 ¼ z3 � z1; d ¼ x1 � f1 � x3 þ z1 � z3:

8><
>:

We look for gðx; zÞ ¼ g1ðxÞ þ g2ðzÞ. Apply elementary operations to ð Þ

2rx1ðrÞ þ z1ðrÞ ¼ 2rg1ðrÞ þ 2rg2ð�r2Þ þ hð�r2Þ;
x2ðrÞ � z2ðrÞ ¼ cþ g1ðrÞ þ g2ðrÞ � hðrÞ;
x3ðrÞ þ z3ðrÞ ¼ �dþ g1ð�rÞ þ g2ðrÞ þ hðrÞ:

8><
>:ð 1Þ

The functions f1; f2; f3 can be expressed in terms of the solutions of ð 1Þ. Split the
1st equation of ð 1Þ into the odd and even parts, then apply operations to ð 1Þ:

2rOdd x1ðrÞ þ Even z1ðrÞ ¼ 2rOdd g1ðrÞ þ hð�r2Þ;

2rEven x1ðrÞ þOdd z1ðrÞ ¼ 2rEven g1ðrÞ þ 2rg2ð�r2Þ;ð 2Þ

x3ðrÞþz3ðrÞþx2ðrÞ�z2ðrÞ�2Evenx1ðrÞ�
Odd z1ðrÞ

r
¼ c�dþ2g2ðrÞ�2g2ð�r2Þ;
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which determines the coefficients of g2ðrÞ ¼
P1

i¼0 eir
i splitting into parts as

follows. Taking the odd part, we compute ei with all odd i, the consider terms with

powers 4i and 4iþ 2 separately, find all e4iþ2 and continue splitting into parts.

Having found g2ðrÞ, compute Even g1ðrÞ from ð 2Þ and work out hðrÞ, Odd g1ðrÞ
from

x2ðrÞ � z2ðrÞ � x3ðrÞ � z3ðrÞ ¼ cþ dþ 2Odd g1ðrÞ � 2hðrÞ;
2rOddx1ðrÞ þ Even z1ðrÞ ¼ 2rOdd g1ðrÞ þ hð�r2Þ;

(

excluding Odd g1ðrÞ and then splitting the result into parts as above.

Case x of another horizontal triple point is similar to Case ix.

4.2. Bifurcation diagrams of codimension 2 singularities.

The bifurcation diagram of a codimension 2 singularity � from Definition 3.4

is formed by the pairs ða; bÞ 2 R2 from the versal deformation of � from

Lemma 4.3. We will describe curves representing codimension 1 subspaces ��

adjoined to �� in the space SL of all links K � V .

Oriented arcs in bifurcation diagrams of Figure 8 are associated to canonical

loops CLðK	"Þ � SL, where links K	" are close to a given link K0. At the zero

critical moment, the loop CLðK0Þ defines an arc through the origin fa ¼ b ¼ 0g.
These arcs are transversal to the codimension 1 subspace �ð1Þ apart from the cases

below. In Figure 8ix and 8x the canonical loop CLðKsÞ is parallel to � , � ,

� in the following sense: ifK 2 � , then CLðKÞ � �
S
� . IfK 2 � , then

CLðKÞ � �
S
� . Similarly, K 2 � implies that CLðKÞ � �

S
� .

LEMMA 4.4. Figure 8 contains the bifurcation diagrams of the codimen-

sion 2 singularities � : ; ; ; ; ; ; ; ; ; and shows how the

canonical loops CLðK	"Þ intersect the adjoined codimension 1 subspaces ��.

PROOF. In Cases i–v below the canonical loops transversally intersects all

the singular subspaces since the tangents of intersecting arcs are not horizontal.

Case i of a quadruple point . There are 4 singular subspaces � intersecting

each other transversally at the singular subspace � . Using the normal form of

from Lemma 4.1, we show 4 subspaces in the bifurcation diagram of Figure 8i,

namely fa ¼ 0g (branches 1, 2, 4 intersect), fb ¼ 0g (branches 1, 3, 4 intersect),

fa ¼ bg (branches 1, 2, 3 intersect), feðaþ bÞ ¼ b� ag (branches 2, 3, 4 intersect).

Case ii of a tangent triple point . The branches fx ¼ z2 � ag, fx ¼ 0g have a

tangency if a ¼ 0. The triple point appears when z2 � a ¼ 0 ¼ z� b, i.e. a ¼ b2.

The bifurcation diagram of Figure 8ii has 1 parabola and 1 line touching each

other.
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Figure 8. Bifurcation diagrams of codimension 2 singularities.
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Case iii of an intersected cusp . The branch ðr3 � br; r2Þ has a self-intersection at

r ¼ 	
ffiffiffi
b

p
, b � 0, which becomes an ordinary cusp if b ¼ 0. The self-intersection is a

triple point when it is on the branch ðr� a; rÞ, i.e. a ¼ b. Finally, we get a simple

tangency of ðr3 � br; r2Þ and ðr� a; rÞ if a ¼ 2r3 � r2; b ¼ 3r2 � 2r or 3a� 2br ¼ r2

has a double root, i.e. b2 þ 3a ¼ 0. The bifurcation diagram of Figure 8iii contains

1 parabola, 1 line and 1 ray meeting at 0.

Case iv of a cubic tangency . The branch ðr3 � 3brþ a; rÞ has extrema of the

x-coordinate at r ¼ 	
ffiffiffi
b

p
, which lie on ð0; rÞ if r3 � 3brþ a ¼ 0, i.e. a2 ¼ 4b3. The

only subspace � is adjoined to � in the bifurcation diagram of Figure 8iv.

Case v of a ramphoidal cusp . The curve ðr5 þ ar3 þ br; r2Þ has an ordinary cusp

when _x ¼ _z ¼ 0, i.e. r ¼ 0 and b ¼ 0, and a self-tangency when 5r4 þ 3ar2 þ b ¼ 0

has two double roots, i.e. 9a2 ¼ 20b. The bifurcation diagram of Figure 8v

contains 1 parabola and 1 line touching each other at 0.

Case vi of a horizontal cusp . The curve ðr2; r3 þ ar2 � brÞ has a crossing at 	r,
hence r3 ¼ br and r ¼ 	

ffiffiffi
b

p
, b > 0. This crossing is critical, i.e.

_z ¼ 3r2 þ 2ar� b ¼ 0, if b ¼ a2. The critical point becomes degenerate, i.e.

€z ¼ 6rþ 2a ¼ 0, if b ¼ �a2=3. The subspace � of ordinary cusps, where

_x ¼ _z ¼ 0, is represented by fb ¼ 0g. The bifurcation diagram of Figure 8vi

shows 2 parabolas, 1 line and 1 ray meeting at 0. The arc associated to a canonical

loop moves in the vertical direction and remains parallel to the parabola

fb ¼ �a2=3g representing the subspace � .

Case vii of a mixed tangency . The branch ðr; r2 � bÞ touches ðrþ a;�r2Þ if

r2 � b ¼ �ðr� aÞ2 has a double root, i.e. a2 ¼ 2b. Both curves have extrema in the

same horizontal line when b ¼ 0. The bifurcation diagram of Figure 8vii has 1

parabola and 1 line touching each other at 0.

Case viii of an extreme tangency . The branch ðr;�2r2 þ bÞ touches ðrþ a;�r2Þ
if b�2r2 þ b ¼ �ðr� aÞ2 has a double root, i.e. 2a2 þ b ¼ 0. Both branches have

extrema in the same horizontal line when b ¼ 0. The branch ðr;�2r2 þ bÞ passes
through an extremum of ðrþ a;�r2Þ at r ¼ 0 if b ¼ 2a2. The branch ðrþ a;�r2Þ
passes through an extremum of ðr;�2r2 þ bÞ at r ¼ 0 if b ¼ �a2. The bifurcation

diagram of Figure 8vii has 3 parabolas and 1 line touching each other at 0.

Case ix of a horizontal triple point . The branches ðrþ a; rÞ and ð�r� b; rÞ pass
through the extremum of ðr;�r2Þ at r ¼ 0 when a ¼ 0 and b ¼ 0, respectively. The

crossing of ðrþ a; rÞ and ð�r� b; rÞ at r ¼ �ðaþ bÞ=2 lies in the same horizontal

line with the extremum of ðr;�r2Þ at r ¼ 0 if aþ b ¼ 0. The branches ðr;�r2Þ,
ðrþ a; rÞ and ð�r� b; rÞ have a triple point if r ¼ �r2 þ a ¼ r2 � b or

ða� bÞ2 ¼ 2ðaþ bÞ, which is a parabola in the bifurcation diagram of Figure

8ix. The arc associated to a canonical loop is transversal to the subspaces, because

only one tangent remains horizontal under the rotation.

Case x of another horizontal triple point is similar to Case ix. �
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5. The diagram surface of a link.

In this section the classification problem of generic links K � V reduces to

their diagram surfaces DSðKÞ in the thickened torus T ¼ Axz � S1
t , Axz ¼

½�1; 1�x � S1
z .

5.1. The diagram surface of a link and generic surfaces.

Briefly the diagram surface of a loop fKtg of links is the 1-parameter family of

the diagrams prxzðKtÞ � Axz � ftg. This family can be considered as the union of

link diagrams, i.e. as a 2-dimensional surface in the thickened torus T ¼ Axz � S1
t .

DEFINITION 5.1. Let fKtg � SL be a loop of links. The diagram surface

DSðfKtgÞ � Axz � S1
t is formed by the diagrams prxzðKtÞ � Axz � ftg, t 2 S1

t . If

Kt are knots, DSðfKtgÞ is the torus S1 � S1
t mapped to the thickened torus

T ¼ Axz � S1
t . The diagram surface DSðKÞ of an oriented link K � V consists of

the diagrams prxzðrottðKÞÞ � Axz � ftg and is oriented by the orientations of K

and S1
t .

Figure 9 shows vertical sections of DSðKÞ for a smoothed trefoil K from

Figure 2, t 2 ½0; ��. Each section is the diagram of a rotated trefoil rottðKÞ for

some t 2 S1
t . Local extrema of rottðKÞ form horizontal circles parallel to S1

t .

Several arcs in Figure 9 are dashed or dotted, because they are invisible in the

x-direction.

By Definition 3.9 the shift t 7! tþ � maps the surface DSðfKtgÞ to its image

under the symmetry in S1
z . Actually the link Ktþ� is obtained from Kt by the

symmetry rot�, i.e. the diagrams prxzðKtþ�Þ and prxzðKtÞ are symmetric for all

t 2 S1
t . For a generic loop fKtg, the vertical sections of DSðKÞ are the diagrams

prxzðKtÞ and allow the codimension 1 singularities ; ; ; only. It follows

from the fact that any critical point of prz : Kt ! S1
z remains critical under rott.

For any t 2 S1
t , the points from Kt

T
ðDxy � fz ¼ 	1gÞ and the critical points

of prz : Kt ! S1
z divide the i-th component of Kt into arcs At;i;q, q ¼ 1; � � � ; ni. The

total number of these arcs does not depend on t since any critical point at 2 Kt of

prz remains critical while t varies. The union
S
at of the extrema of prz : Kt ! S1

z

for all t 2 S1
t splits into critical circles Ci of DSðfKtgÞ. The union Bi;q ¼

S
At;i;q

over all t 2 S1
t is called a trace band of DSðfKtgÞ. The 3 trace bands in the bottom

picture of Figure 9 have different colours. The arcs At;i;q are monotonic with

respect to przt : Kt ! S1
z � ftg. Then the trace bands project 1-1 under przt :

DSðfKtgÞ ! S1
z � S1

t . Successive bands Bi;q, Biþ1;q meet at a critical circle.

The singular points of DSðfKtgÞ are crossings and codimension 1 singularities

of the diagrams prxzðKtÞ over all t 2 S1
t . A trace arc is an intersection of the

interiors of 2 trace bands in DSðfKtgÞ. The triple points, tangent points, cusps
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and critical crossings of link diagrams prxzðKtÞ are called triple vertices, tangent

vertices, hanging vertices and critical vertices of DSðfKtgÞ, respectively. So a

trace arc may contain several vertices of DSðfKtgÞ in the usual sense.

Take a singular point p 2 DSðKÞ that is not a vertex and does not belong to a

critical circle of DSðKÞ. Then p is a double crossing of two arcs At;i;q and At;j;s in a

diagram prxzðKtÞ. If the arc At;i;q passes over (respectively, under) At;j;s then

associate to p the label ðqisjÞ (respectively, the reversed label ðsjqiÞ). IfKt is a knot

then we miss the indices i; j ¼ 1 as in Figure 3.

Trace arcs of DSðfKtgÞ end at hanging vertices, meet each other at critical

vertices and intersect at triple vertices. Each trace arc of DSðKÞ is the evolution

trace of a double crossing in Axz � S1
t while t varies. The label of a point p does not

change when p passes through tangent vertices and triple vertices.

The diagram surface can be defined for any loop of links and can be extremely

complicated. The surfaces corresponding to generic loops are simple and play the

role of general link diagrams in dimension 3. As in the case of links, we define a

generic surface associated to a generic loop. A generic surface will be an immersed

surface with all combinatorial features of diagram surfaces of generic loops. For

any generic surface, a corresponding generic loop is constructed in Lemma 5.6.

Figure 9. Half the diagram surface of a smoothed trefoil from Figure 2.
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DEFINITION 5.2. Decompose S1
i into arcs Ai;1; � � � ; Ai;ni . Introduce the trace

bands Bi;q ¼ Ai;q � S1
t , q ¼ 1; � � � ; ni. A generic surface S is the image of a smooth

map h : ð
Fm
i¼1 S

1
i Þ � S1

t ¼
Sm
i¼1ð

Sni
q¼1BiqÞ ! Axz � S1

t such that Conditions (i)–(v)

hold

(i) Conditions on symmetry and trace bands.

� under t 7! tþ � the surface S maps to its image under the symmetry in S1
z ;

� each trace band Bi;q � S projects one-to-one under przt : S ! S1
z � S1

t .

The surface S should be simple enough. More formally we require the following.

(ii) Conditions on sections Dt ¼ S
T
ðAxz � ftgÞ, t 2 S1

t .

There are finitely many critical moments t1; � � � ; tl 2 S1
t such that

� for all t =2 ft1; � � � ; tlg, the sections fDtg are general diagrams;

� for each t¼ t1; � � � ; tl, the sectionDt has one of the singularities ; ; ; ;

� while t passes a critical moment, Dt changes by a move I–IV in Figure 5.

Conditions (ii) on sections imply some restrictions on trace bands. These

requirements can be stated independently to define trace arcs and critical circles.

(iii) Conditions on trace arcs and critical circles.

� a trace arc is an intersection of the interiors of 2 trace bands Bi;q and Bj;s;

� a critical circle Ci;q is the common boundary of successive bands Bi;q, Bi;qþ1.

The arcs defined above allow us to introduce vertices of a generic surface S.

(iv) Conditions on vertices.

� a triple vertex is a transversal intersection of 3 trace bands Bi;q; Bj;s; Bk;r;

� a hanging vertex of S is the endpoint of a trace arc in Bi;q

T
Bi;qþ1;

� a critical vertex is the intersection of a critical circle Ci;q and Bj;s 6 Ci;q;

� a tangent vertex is a critical point of prt on the interior of a trace arc;

� all the vertices are distinct and map on different points under prt : S ! S1
t .

Finally fix labels ði; qÞ and ðj; sÞ. Take a trace arc from the intersection Bi;q

T
Bj;s

of interiors of 2 trace bands. Endow the chosen arc with a label: either ðqisjÞ or

ðsjqiÞ in such a way that the following restrictions apply.

(v) Conditions on labels.

� under the time shift t 7! tþ �, each label reverses: ðqisjÞ 7! ðsjqiÞ;
� trace arcs intersecting at a triple vertex are endowed with ðqisjÞ, ðsjrkÞ,

ðqirkÞ;
� a hanging vertex is endowed with the label of the trace arc containing it;

� each circle Ci;q has 2 hanging vertices endowed with ððq þ 1Þi; qiÞ,
ðqi; ðq þ 1ÞiÞ;
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� if a trace band Bj;s intersects a critical circle Ci;q in a vertex c then the label

at c transforms as follows: ðqisjÞ $ ððq þ 1Þi; sjÞ or ðsjqiÞ $ ðsj; ðq þ 1ÞiÞ.

To get the following result compare Definitions 3.9, 5.1 with Definition 5.2.

LEMMA 5.3. For any generic loop L of links, the diagram surface DSðLÞ is a
generic surface in the sense of Definition 5.2.

5.2. Three-dimensional moves on generic surfaces.

DEFINITION 5.4. A smooth family of surfaces fSr � Axz � S1
t g, r 2 ½0; 1�, is

an equivalence if there are finitely many critical moments r1; � � � ; rk 2 ½0; 1� such
that

� for all non-critical moments r =2 fr1; � � � ; rkg, the surfaces Sr are generic;

� if r passes through a critical moment, Sr changes by a move in Figure 10.

Each move in Figure 10 denotes 2 symmetric moves since the surfaces Sr are

symmetric in S1
z under t 7! tþ �. The following claim will be proved using

bifurcation diagrams of codimension 2 singularities of link diagrams, see

Lemma 4.4.

LEMMA 5.5.

(a) Suppose that a family of loops fLsg, s 2 ½�1; 1�, in the space SL of all links

K � V transversally intersects the subspace �ð2Þ at s ¼ 0. Then the diagram

surface DSðLsÞ changes near 0 by a move in Figure 10i–x.

(b) If a family of loops fLsg, s 2 ½�1; 1�, in the space SL has a simple tangency with

� at s ¼ 0, then DSðLsÞ changes near 0 by the move in Figure 10xi.

Sketch: The pictures in Figure 10 are obtained from the corresponding pictures in

Figure 8. For instance, in Figure 8iii the canonical loop CLðK�"Þ meets 3

subspaces � ;� ;� . Therefore the surface DSðK�"Þ has three distinguished

points: a hanging vertex, a tangent vertex and a critical one as in Figure 10iii.

Right after the move when all three points pass through each other, the surface

DSðKþ"Þ has 4 interesting points: three have the previous types, the new one is a

triple vertex. This situation agrees with 4 intersections of CLðKþ"Þ with

codimension 1 subspaces in Figure 8iii. The remaining cases are absolutely

analogous.

We produced Figure 10 first using our geometric intuition and then justified

the moves applying the singularity theory in Section 4. Since the family of

sections in a generic surface is a general equivalence of diagrams then Lemma 5.6

follows.
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Figure 10. Three-dimensional moves on diagram surfaces.
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LEMMA 5.6.

(a) For any generic surface S, there is a generic loop L of links such that the

diagram surface DSðLÞ coincides with S.

(b) For any equivalence of surfaces fSr � Axz � S1
t g, there is a generic homotopy

of loops fLrg such that DSðLrÞ ¼ Sr, r 2 ½0; 1�.

Lemma 5.5 and Definition 3.10 of a generic homotopy imply Lemma 5.7.

LEMMA 5.7. Any generic homotopy of loops fLsg, s 2 ½0; 1� in the space SL

provides an equivalence fDSðLsÞg of diagram surfaces.

LEMMA 5.8. Let L0; L1 be generic loops of links. If DSðL0Þ and DSðL1Þ are
equivalent in the sense of Definition 5.4, then L0 and L1 are generically homotopic.

PROOF. Any equivalence of diagram surfaces gives rise to a smooth family

of loops fLrg by Lemma 5.6b. The constructed family fLrg is a generic homotopy

since all moves in Figure 10 correspond to singularities in the sense of

Definition 3.4. �

By Lemmas 5.7 and 5.8 the classification of generic links reduces to the

equivalence problem for their diagram surfaces.

PROPOSITION 5.9. Generic links K0; K1 are generically equivalent if and

only if the diagram surfaces DSðK0Þ;DSðK1Þ are equivalent in the sense of

Definition 5.4.

The isotopy class of a link can be easily reconstructed from its plane diagram,

hence from its diagram surface with labels. Formally, one has the following.

LEMMA 5.10. Suppose that the diagram surface DSðKÞ of a generic link K is

given, but K is unknown. Then one can reconstruct the isotopy class of K � V .

6. The trace graph of a link as a link invariant.

6.1. The trace graph of a link and generic trace graphs.

Here the classification of links K � V will be reduced to their trace graphs.

DEFINITION 6.1. Let S � Axz � S1
t be the diagram surface of a loop of links.

The trace graph TGðSÞ is the self-intersection of S, i.e. a finite graph embedded

into Axz � S1
t . The trace graph TGðKÞ of a link K is the trace graph of its diagram

surface DSðKÞ. The trace arcs of DSðKÞ are called trace arcs of TGðKÞ. The trace
graph inherits the vertices and labels from DSðKÞ.
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DEFINITION 6.2. A finite graph G � Axz � S1
t is generic if Conditions (i)–

(ii) hold.

(i) Conditions on trace arcs and vertices.

� the graph G consists of finitely many trace arcs, which are monotonic arcs

with respect to the orthogonal projection prz : G! S1
z ;

� any endpoint of a trace arc of G has either degree 1 (a hanging vertex ) or

degree 2 (a critical vertex );

� the critical vertices of G coincide with the critical points of prz : G! S1
z ;

� trace arcs of G intersect transversally at triple vertices ( );

� the critical points of prz : G! S1
t are called tangent vertices ( ).

(ii) Conditions on labels.

� each trace arc of G is labelled with a label ðqisjÞ as in Definition 4.2;

� under t 7! tþ � the graph G maps to its image under the symmetry in S1
z ;

� under the time shift t 7! tþ � each label ðqisjÞ reverses to ðsjqiÞ;
� every triple vertex v 2 G is labelled with a triplet ðqisjÞ, ðsjrkÞ, ðqirkÞ

consisting of the labels associated to the trace arcs passing through v;

� each hanging vertex is labelled with the label of the corresponding trace

arc;

� for any i and q ¼ 1; � � � ; ni, there are exactly two hanging vertices of G

labelled with ððq þ 1Þi; qiÞ and ðqi; ðq þ 1ÞiÞ, respectively;
� at every critical vertex of G the labels of trace arcs may transform as

follows: either ðqisjÞ $ ðqi; ðs	 1ÞjÞ or ðqisjÞ $ ððq 	 1Þi; sjÞ.

A trace arc of a generic graph may consist of several edges in the usual sense.

LEMMA 6.3.

(a) For any generic surface S, the trace graph TGðSÞ is generic in the sense of

Definition 6.2. So the trace graph TGðKÞ of a generic link K is generic.

PROOF. Conditions (i)–(v) of Definition 5.2 imply Conditions (i)–(ii) of

Definition 6.2. �

DEFINITION 6.4. A smooth family of trace graphs fGsg, s 2 ½0; 1�, is called
an equivalence if there are finitely many critical moments s1; � � � ; sk 2 ½0; 1� such
that

� for all non-critical moments s =2 fs1; � � � ; skg, the trace graphs Gs are

generic;

� if s passes through a critical moment, Gs changes by a move in Figure 11.
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Figure 11. Moves on trace graphs.
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The moves in Figure 11 should be considered locally, i.e. the diagrams do not

change outside the pictures. Various mirror images of the moves are also possible.

Moreover, some labels sþ 1 can be replaced by s� 1 and vice versa. Trace graphs

are symmetric under t 7! tþ �, i.e. each move in Figure 11 denotes two symmetric

moves. The most non-trivial moves are tetrahedral moves 11i and trihedral moves

11xi. Their geometric interpretation at the level of links is shown in Figure 12.

Notice that both moves in Figure 11i can be realized for links and closed

braids. In general a tetrahedral move corresponds to a link or a braid with a

horizontal quadrisecant. Geometrically two arcs intersect a wide band bounded

by another two arcs. Under a tetrahedral move, the two intersection points swap

their heights as in Figure 12. The first picture of Figure 11i applies when the

intermediate oriented arcs go together from one side of the band to another like

�. The second picture means that the arcs are antiparallel as in the British rail

mark �. It is easier to understand Lemma 6.5 first for knots, when the indices

i; j ¼ 1 can be missed.

LEMMA 6.5.

(a) For a generic trace graph G such that G
T
ðAxz � f0gÞ are crossings of a general

diagram, there is a generic surface S such that TGðSÞ ¼ G.

(b) For any equivalence of trace graphs fGrg, there is an equivalence of surfaces Sr
with TGðSrÞ ¼ Gr, r 2 ½0; 1�.

PROOF.

(a) Consider a vertical section Pt ¼ G
T
ðAxz � ftgÞ not containing vertices of G.

Then Pt is a finite set of points with labels ðqisjÞ, where i; j 2 f1; � � � ;mg, see

Definition 5.2. The points in Pt will play the role of crossings of sections of S.

The labelled set Pt defines the Gauss diagram GDt as follows, see

Definition 2.7. Take
Fm
i¼1 S

1
i , split each circle S1

i into ni arcs and number them

by 1; � � � ; ni according to the orientation. We mark several points in the q-th arc of

S1
i in a 1-1 correspondence and the same order with the points of Pt projected

under prz : Pt ! S1
z and having labels ðqisjÞ or ðsjqiÞ, s ¼ 1; � � � ; nj.

Figure 12. A trihedral move and a tetrahedral move for links.
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So each point of Pt gives 2 marked points in
Fm
i¼1 S

1
i , labelled with ðqisjÞ and

ðsjqiÞ. Connect them by a chord and get the Gauss diagram GDt. The zero Gauss

diagram GD0 is realizable by the given general diagram. Hence all Gauss

diagrams GDt give rise to a family of diagrams Dt, i.e. to a surface S ¼S
ðDt � ftgÞ.

(b) Apply the construction from (a) to each trace graph Gr, r 2 ½0; 1�. �

PROPOSITION 6.6.

(a) Trace graphs TGðS0Þ;TGðS1Þ of generic surfaces are equivalent in the sense of

Definition 6.4 if and only if the surfaces S0; S1 are equivalent in the sense of

Definition 5.4.

(b) Generic surfaces S0; S1 are equivalent in the sense of Definition 5.4 if and only

if TGðS0Þ;TGðS1Þ are equivalent in the sense of Definition 6.4.

PROOF. (a), (b) Any equivalence fSrg of surfaces gives rise to the

equivalence TGðSrÞ of trace graphs. Any equivalence of trace graphs gives rise

to a smooth family of diagram surfaces fSrg by Lemma 6.5b. The family fSrg is an
equivalence of diagram surfaces since the moves in Figure 11 are restrictions of

the moves in Figure 10. �

Theorem 1.4 directly follows from Propositions 3.8, 3.12, 5.9 and 6.6.

LEMMA 6.7. Suppose that the trace graph G ¼ TGðKÞ of a generic link K is

given, butK is unknown. Then one can construct a generic linkK0 equivalent toK.

PROOF. Lemma 6.5a provides a generic surface S such that TGðSÞ ¼ G.

Due to labels of trace arcs, the section D0 ¼ S
T
ðAxz � f0gÞ gives rise to a link

K0 � V with prxzðK0Þ ¼ D0. The link K0 can be assumed to be generic by

Proposition 3.8a and is equivalent to K since K and K0 have the same Gauss

diagram. �

6.2. Combinatorial construction of a trace graph.

LEMMA 6.8. Let K � V be a link with 2e extrema of the projection prz :

K ! S1
z and l crossings in the diagram prxzðKÞ. Let the extrema and intersection

points from K
T
ðDxy � fz ¼ 	1gÞ divide K into n arcs monotonic with respect to

prz. Then K is isotopic in V to a link K0 such that TGðK0Þ contains 2lðn� 2Þ triple
vertices, 4ðn� e� 1Þe critical vertices and 2e hanging vertices.

PROOF. Take a generic link K0 smoothly equivalent to K and having an

isotopic plane diagram. We split K0 by horizontal planes into several horizontal

slices such that each slice contains exactly one crossing or one extremum with
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respect to prz : K
0 ! S1

z . We may assume that all maxima are above all minima,

otherwise deform K0 accordingly. To each slice we associate the corresponding

elementary trace graph and glue them together, see examples in Figure 13 and

Figure 14.

Figure 13 shows two explicit examples for the opposite crossings in the braid

group B4. In general we mark out the points  k ¼ 21�k�, k ¼ 0; � � � ; n� 1 on the

boundary of the bases Dxy � f	1g. The 0-th point  0 ¼ 2� is the n-th point.

The crucial feature of the distribution f kg is that all straight lines passing

through two points  j;  k are not parallel to each other. Firstly we draw all

strands in the cylinder @Dxy � ½�1; 1�z. Secondly we approximate with the first

derivative the strands forming a crossing by smooth arcs, see the left pictures in

Figure 13.

Then each elementary braid �i constructed as above has exactly n� 2

horizontal trisecants through the strands i; iþ 1 and j for j 6¼ i; iþ 1. Each

trisecant is associated to a triple vertex of the trace graph, see 4 horizontal

trisecants in the left picture of Figure 13. The trace graphs in Figure 13 are not

generic in the sense of Definition 6.2, e.g. parallel strands 3 and 4 lead to the

vertical trace arc labelled with ð34Þ. But we may slightly deform such a trace

graph to make it generic.

Figure 13. Half trace graphs of the 4-braids �1; �
�1
2 2 B4.

A 1-parameter approach to links in a solid torus 209



In the first picture of Figure 14 the arc with a maximum is the intersection of

the cylinder @Dxy � ½�1; 1�z with an inclined plane containing the straight line 1–2

in the base Dxy � f�1g. The highest maximum of K0 leads to exactly 2ðn� 2eÞ
critical vertices (with symmetric images under t 7! tþ �), the next maximum

gives 2ðn� 2eþ 2Þ critical vertices and so on, i.e. the total number is

2ðn� 2eÞ þ 2ðn� 2eþ 2Þ þ � � � þ 2ðn� 2Þ ¼ 2ðn� e� 1Þe. The number of critical

vertices associated to minima ofK0 is the same. Moreover each of 2e extrema gives

one hanging vertex. �
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