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Notes on Fourier Analysis (XI):
On the absolute summability of Fourier series.

Gen-ichirdé SuNoucHI.

(Received Dec. 10, 1947)

In 'the present note the author discusses three different problems con-
cerning the absolute Cesaro summability of Fourier series. TFirstly we
prove a senes theorem and as corqllaries we get some analoga of the ab-
solute convergence theorems of Fourier series (in §1). In §2 we prove
theorems concerning absolute summability factors. Finally, in §3, we prove
a localization theorem of the absolute summability and show that the ana-
logue of the Denjoy-Lusin theorem does not hold in general.
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1) This formula is due to Kogbetlianz
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Smce (1 )"’—V A< 04, 1nd then )_,/1‘ TH=0, we have
t=0,
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n=2

which is the required.
Combmmg this with the following theorems® :

(G) If feLipa,0 < a <1,then 337 (| an|+| . [) Qoo for every f <o,
(i) If fis, in addition, of bounded variation, then AL @i+ 8. ]) <oo,
(i) If felip (4, p), 0<a <1, 1 < p <2, then 2] w (| a, |+ 8. 1) <oo -

for every 7’<a—1/p, -

we get the following corollaries ’

Corollary i. If f(z)Gsz a, then the Fourier serzes of F(x) s |C %~ ﬂl _
sunomable for 3 < B <a. .
| Corollary ii. /f f(x)ész o and is of bounded variation, z/zen the Fourier
sevies qf f(x) is | C,—B/2 |-summable for B <.

Corollary iii. If f(x)eLip (a,p) for 0<a<x1, 1 ngQ then the
Fourier series of f(x) is | C,—y \-summable for O <y <oe—1/p°.

These are. generalizations of theorems .due to Bernstein, Zygmund and
Hardy-Littlewood, respectively. -

§2. We will begin by stating the theorems. :

Theorem 2. [f { L} is a positive, bounded and convex sequence suck -
z‘/zat the series o ‘ -

w . ZBam

converges, then {4} is a |G 1 ]-szémum&z’lz’z‘y Jfactor of the Fourier sevies of an
integrable function. . ‘
For example each:of the sequences :

{(log 2) =9}, {(log 72) " (logs 2) "+ ¥} ,eeeern . (0> 0)

»

are the | C, 1 |-summability factors of Fourier series.
Theorem 3. If {A,} is a positive sequence such that series

2) See Zygmund, Trigonometrical- series, p. ‘143, problem 6.
3) 1 learned from Mathematical Review that this theorem had already been proved by

K. K. Chen [2].
' 4) This is already proved by Chow [3].
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@ . Sy \

n=1 . P
and
- ®3) ' 3 1/

: .
conm’rge then {4,} is a IC‘ 1 ( summability fzzc/or of t/ze Fourzer sevies of
Junctions in the class H?(p.=>1). /

For example
| {(log‘ ”)—-(§+6)}’ {(log n)—«%(log2 n)_@""’)}, , (6>0) -

are | C, 1 |-summability factors of functions in A?(p>1).

- These are generalizatiohq of theorems due to B.N. Prasad and‘
Izumi-Kawata [4] They have proved that the {4,} in the theorem is
the absolute Abel summablhty factor. . ‘

) We will now prove Theorem 2.  Since {4,} is bounded and convex®,

(4 A2} s decreasing,

(5) | ndd, -0, as n—> oo,

6) . £ (4 1), <on.
Lét uS'put

f(x) ~-—La0 + E(an cos nx + b, sin nx) }_, A, (x),

n=1 ne=0

W (2) =P () =) = Ly D), ()= hd(o).

- For the proof of the theorem. it is sufficient to prove that the series 3 2{’(x)
n=1

converges almost everywhere. By Abel’s transformation, we have:
n ) n-—1 & V - - n . '
5 A ) = 5 (S 74, (0)). 4 A 3 A ()

= Z‘, {£(s:(2) —sP (@) A} +n (s () —s&?"(x)-)ln
=Pn(x) + Qn(x)’ |

5) Cf. Zygmund, loc. cit., p. 58.

L]
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say. \THen.
Elu(l)(x)lé —7 ‘Pn(x)‘-l-n%l*_ill?[Qn(x) I

n=1 n=1

=P (x)+ Q0 ().
Since we have

i‘lj S (%) —Sm(x) |= O(fzj, a.e. *

by a theorevm due to J. Marcinkiewicz [7], we have

n=1

Pay= L L 2 £ s0(x) — s (2) | 44,; S
—2 4l su() = ()] 4 RN |
2 () =52 ()] =l 3 Ton—st | hy

=1im{z(>ﬂ s ) A"/l + (L | 5pp— s 1)41,,}

ny»o (k=1 m=1

—lim {z O(%) £+ O(n) - A2 }

7&—}&)

= 0(2 ,éd%c) + 0(hm n4/1,,,) < 4o, a.e.,
k=1 nypo :

y (5) and (6).

le i [‘Sn'—sg) ’ )‘n
7L-=1 72

)+——— 31 Sm—5n }

m=1

=lim {31} | sn s ya(

k> \n=1 m=1

- =lim {z a2, +§3 )+ Ay }

k> \n=1

. < 4%, a.e.,

by (1) and' (4). * Thus we. get the Theorem, 4
We will mow turn to the proof of Theorem 3. By Abel’s transforma-

tion, we have

71(72 + 1) uP ()= kZi}] kA, (ﬂ)

t
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n—1

-—2 (E mA,(x))dA, +1n Z mAm (%)

'=;c§="1(k'+ 1) (sp(x) —s® (x)Alk F4,(n+1) (s.(x) =58 (2))
. say. Summing up by 2z we get : .
2 [up () | <3 m”” () 143 ey 0() !
o —P() + O,
say. Then
Po= S D D (@) () | 4k

<5 EHD 5

71-Ic+l 7&

S B s =) |44

< (i Wc(x)—-f(l)(x) N )é<i E(dR,)? %
k=1 ) k=1

<<+ oo, a.e.,

by (2) and Zygmund’s theorem

n=1 . 7 IL_

Il

\

by (3) and Zygmund’s theorem. Thus we get Theorem 3.

§3. Bosanquet and Kestleman proved that the Fourier series of
integrable functions haver not local property for | C,1|. But we can prove
that the Fourier series of functions in L,(p>1) have the local property

for | C,1|. More precisely we can prove the following theorem.
Theorem 4. J[f f(x)el (p>1) and -

SRIC """)]T:O(l/(log o) as | 0

where s> 1 and €> 1, then the Fourier series of Ax) is | C, 1 |-summable at
the point x.



On the absolute summabtliéy of Fourier sevies.

For the proof we need a lemma, which is due to Mr. T. Tsuchlkura‘ )

[9] For the sake of completeness we reproduce his proof here.
Lemma. If Ax)L,(p>1) and

e 1/s ' » .
<%‘jo}¢”(u)lsd”) =0(1/(log 1/2)%) - as =0,
where s>1 and €>0, then ' |
1 g‘ o ‘ A\ ) . |
(7 215 =) ) =0(1/(log n)*), %>0.

sin (v41/2)¢

Proof. <vé_1‘ Sv-(x) ‘——f(x) Jk)]-/k-'{ 3 ( : [¢‘( ) 2 sin /2

1/n<x

§{=1 k f%(z)D ® }W {2 ) gD }”’“
. v"‘-'fl ot ry 1/ ‘
+’{§.1T LD D) [ }=fl+fz+f3;

say, where- a( <1) will be de’éerm'ined later. Then

o ([Tr.1 =0 e
. = O(n/(log n)*). ’

By the Hausdorff-Young theorem,

[ 3]
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1 /FnG )
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where 1/é+1//é’4——i. We choose. # so large that # < s and é’;mm

- (#,2), then

0{([_(0,“ ) /#] j;z j‘ /n® ¢];,,£f) I'If'}

. 1/n%®’ dr .\
(72 /( Og 71) A tk'(loc 1/&‘)""5

O{ (#* 1/ (log n)* s +u* 7 /(log 1)) ¥}
= O0(7'*/ (log 7)*®).
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' Slmxlarly we - have

o[ { O "} =o{ (e flecora”)

Wthh is O(n‘) for a<1/ré Thus we have

¢:(7)

[+[ + L= 0(#"*/(log #)%). °

We are now in a position to prove  the theorem. By lemma and
Holder’s inequality, we have :

215 =A@ |=0(»/(log )*).
Since ¢>1,

S () D/ r= 3 (3 () —ADI 4L+ L 51y S A

=2 0(<1o§ 2 7 - 'O(U;,g /a)é)
= O(EW) <oe.

Thus the series 3| sn(#)—/f(x)|/7 converges at the point x.
n=1

On the other
hand” we have

SIEICL G|

n=1

si(x) +52(x) + ......

n=1

< 5,2 —f(x>o+| ()=l +|s¢(x> ~A(2)|

©
— \

—”%10( 2(log '(log )¢ ) (n=l n(loor ”)e)< + oo,

Hence we have

f] [5.(2) = (2)/n = Z | s:(2) —A2)l/n+ Z DS‘” (%) = Ax)|/n < oo.

Thus the series Z ]s‘”(x)-—vf,‘),(x)\ converges at x. .

Theorem 5 There mzcz‘s a function tn Ly whick is | C, 1| -mmma&lz ”n

(a,b6) in (0,2m), but not {C 1 ]-summab!e almost everywhere in the comple-
mentary mterva/



o

\

' On the ’aésoluze summability of Fourier series. 129

' This theorem shows that the | C,1|-analogue of the DenJoy-Lusm,

theorem does not hold in general.

Proof. After Zygmund [11], there is a function in Z, which is not
[ A]-summable; almost everywhere. - Taking such f(x) we deﬁr}e the functlon
so(x) by : | o
| 0, .if ze(a,s) S(z), if xe(a,b), .
p(x)={ ¢(x)= '

F(x), if ré(a, &) , o, if . xi(a ).

Then ¢(x) is the required one. * For, by [Theorem 4, Fourier series of ¢(x)

is ]C 1 |-summable in (a, &), but the I‘ouner series of Ax)=e¢(x)+¢(x)
is not | 4{-summable almost everywhere. Since, the Fourier series of ¢(x)
is | C, 1 |-summable in (0, 27) —(a, 4), Fourier series of go(x) is not [A]-
summable almost everywhere in (0, 27)— (@, 4)." Thus we get the theorem.

Mathematical Institute
. ' R Téhoku University.
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