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1. Let X Xoy ceenee , X5, (2 =>2) be the sample variables from a certain
population, that is, let X; (/=1,2, ...... ,72) be independent random variables
having same distribution #(x). In the mathematical statistics, the following

“fact is well known and is of fundamental importance in the theory of exact
'sampling. : ' : :
If F(x) is the normal a’zstrzézz/zozz fzmcz‘zo;z then the two sz’atzstzcs

1

(1.1) - X=— 3 X,
and : , : .
(1-2) | S=—i—ﬁ (X—X)?
. o =1

are statistieally independent. ' .

R. C. Geary®™ has proved the converse of this theorem and given the
'charactei'isz.{tion of the normal population by using the formulae® due to
Fisher for relations between semi-invariants of various algebraic forms of
sample variables. The object of the present papef is to give another proof,
“under the more general conditions assuming nothing about the moments of
X;, while Geary has supposed‘ the existence of moments of every order.

2. We restate the theorem. ' -

Theorem. Let X3 Xoyooeo-- ., X’n (2> 2) be t/ze z;za’epmdent random vari-
ables whose distvibutions are equal to the same F(x). If two random vari-

‘ables V= é X, Z :ﬁ (X, — X)) (X= 7l~ éXz) are independently distributed,
=1 . =1 73 . .,

~

~
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then F(x).must be the normal distribution functzmz, excludmg the unit distri-
bution.

We consider the charactermtm function® of the simultaneous vauable\

(X, X2)
(2-1) St s)= j e ),

where 7 is a real number but we consider s as a cenmiplex numbel s=o+417,
t>0. f(4s) is obviously an analytic function of s regular in the upper half
-plane >0. Since X;(7=1,2,...... ,7#) are independent variables, the charac-

teristic function of variable (¥, 3}), 37 being %‘X‘;T, is {f(a‘, s)}* which
i=1
noticing that 3} >0, can also be written as

(2.2) | j*m j'mefmﬁsndp(% 0),

where (3, 0) xs the distribution function of (¥, Z‘)
Since Z+—— Y= >0, denotmg the distribution of (Y Z) as G (7, 0), /

we ‘have further

. (2:3) typ=[” [ daca, o).

The statistical independence 6f Y and Z shows that "
(2-4) dG (3, §) =dG:(7)dG:(L),

Gi(y) and G,(¢) being the distribution function of Y and Z respectively.
‘Hence we can write (2-3) as

2:6) A= aG () [ e (o).

"~ Now we observe that, putting g//(t, ~%—->=Jt’“””%"’dGl(Jy) and « (s)
=) =[G (0),

\ .
(3) 1In the ordinary sense of the.characteristic function, #, s are real, but in this paper,

we use the same terminology in the case where s is complex.

-
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(2-6) ’ . 82f(t s)—-———f(t $); r>0:.
i
@D I YE az- ( )_— ""(’ ”'")
and '
(2-8) - —id(s) =0 for =0, r>0.

We differentiate both sides of (2-5) with respect to s, we have
n{ f(2, ) D .—_é(s)_% ¢(z, l-fl—) +¢ (z, —:;—)a’(s).“’
which becomes, byr (26) and (27), .
2-9) 2/ ) por 2 R sy = a(s)—g—;, ot ) +ip (5 ) (s).
In differentiating two times (2:5) with respect to ¢ we get

(2-'1_0.) n{ f(2, 8) }"-

2 DAL - {2 s, s>}

= ()5 ¢(" fT)-

The elimination of a(s)—a%;z ¢(t, ——‘E—) from (2-9) and (2-10) gives

»

RVCDY ~~*~;/(z D—{ S} "*’{Tﬂt syf=ic “_1¢(z, )
By (2 5), this becomes further

@-11)  {A45) ) "";

UGB FCRY

o (s) :
f(f» s) ;(s)
From' this equation we can easily prove that in the #interval, for fixed s,
such that /(s s) 5=0, : .

L]

(4) The dash in a’(s) means the differentiation with respect to' s,



\

114 S T. Kawara and H. SAKAMOTO.

(2- 12) f(t, s) exp[ 'i f— ’;((;)) { + C(s)t-i-D(s)H

But since f(2,5) "is a continuous function of ¢ and the right side of 2- 12)
has no zeros as a functlon of ¢, we seé that (2-12) holds for all values
of 2. ‘
Now we take =0, and thus s=zr. Then it holds that

(2-13) * lim (2, z'r)=J3mzzF(x),
T>+0 —©

for every ¢, since

[ ol () — e ‘”‘“’a’f(x)l<” (1 “”’)dF(x)l

+

fz1>4 zl>A

j efwa'ﬁ(x)[JrH prrn “’a’['(x)l < rA‘-’(dF(x) +2j dF(x) <e,
J—-4 LJizi>4
if we take A such that QJ. dF(x) <—’-;— aﬁd then take 7 so small that
21> 4 . .
(4 :
rA“S dF(x) <5

Now if we.take £=0 in (1-12) and let  tend to zero, then by (2:13)
(0, 7r)—1, and hence

lim 2 () D(Z«.) 0. ) )

T->0 a(h )

Next noticing the existence of hmf(t zr)f(——t ir), (t=l=0) we can
show the existence of lim o (i7). And hencé we also get the existence of
T>0 .
lim C(é7). '
>0
" Let
Im 2 (/(”)—:—an, lim t . (2‘) -C(i7) =pn-

T>0 n—l a(zt) w20 22— 1 a(it)

If ,==0, then lettmd s=ir—0 in (2-12), we have

(2-14) . (Z‘) =/( 0)-—2‘7‘“""‘

But since the left side is independent of #, «, and B. are constants in-



On the characterisation of the normal population etc. 115

’

dependent of 2® and thus we can put «,=gq, ﬂn_zﬂ, where ,@ is real for
A)=A=0). |
If «==0; then by (2- 8) a>O and (2-14) can be written as

)=

which shows that F(x) is a normal distribution function. :
If =0, then f(¢)=e"*. This shows that F(x) is an unit distribution
function having only one point spectrum at x=p.

'

(5) This can also be proved e\{plicitly..» From the existence of lim g, we can show that
the varianceé of Z is hmte, and —1— hm a’(zr) £(Z), the mean value of Z, whxch is (rz——l)tr
I 150

a* being the variance of X;» This is a well knowa fact in the samplmg theory. Ience a, is
independent of ». For B,, we can alsolprove its independence of 7 directly.
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