A remark on Schottky's theorem.

Masatsugu Tsuji.

(Received December 11, 1948.)

Let $f(z) = a_0 + a_1 z + \dots$ be regular for |z| < 1 and f(z) = 0, = 1, then by the precise form of Schottky's theorem due to Bohr and Landau,¹⁾

$$|f(z)| \le \exp \frac{D \log(|a_0|+2)}{1-r} \ (|z|=r<1), \ (1)$$

where D is a numerical constant.

Since from (1), $\{f(z)\}$ forms a normal family, we can easily prove that if $a_0 \rightarrow 0$, then $f(z) \rightarrow 0$ uniformly in the wider sense in |z| < 1. But the right hand side of (1) does not tend to zero for $a_0 \rightarrow 0$. Hence it is desirable to obtain a majorant of |f(z)|, which tends to zero for $a_0 \rightarrow 0$. We will now prove the following

Theorem.
$$|f(z)| \leq \exp\left(A \log|a_0| \cdot (1-r) + B \frac{\log|(|a_0|+2)|}{1-r}\right),$$

where A, B are positive numerical constants.

Proof. Let D_0 be the domain on $\zeta = \dot{x} + iy$ -plane, such that o < x < 1, y > 0, $|\zeta - \frac{1}{2}| > \frac{1}{2}$ and we map D_0 on the upper half w-plane by $w = \lambda(\zeta)$, such that $\lambda(o) = o$, $\lambda(1) = 1$, $\lambda(\infty) = \infty$.

Then $\lambda(\varsigma)$ is automorphic with respect to a modular group G, whose fundamental domain is $\Delta = D_0 + D_0'$, where D_0' is the image of D_0 with respect to the imaginary axis.

As well known, $w=\lambda(\zeta)$ has a simple pole at t=0, where $t=e^{\pi i \zeta}$, so that if $y \ge \eta$ (>1),

$$e^{\frac{\pi}{2}y} \le |\pi v| \le e^{2\pi y} \quad (y \ge \eta), \quad \text{or}$$
 (2)

¹⁾ H. Bohr und E. Landau: Über das Verhalten von $\zeta(s)$ und $\zeta_{\aleph}(s)$ in der Nähe der Geraden $\sigma=1$. (Göttinger Nachr. 1910).

$$\frac{\pi}{2} y \leq \log |w| \leq 2\pi y, \tag{3}$$

hence the line $y=\eta$ is mapped on a curve, which lies in a ring donain:

$$e^{\frac{\pi}{2}\eta} \le |w| \le e^{2\pi\eta} . \tag{4}$$

Let $\zeta = \nu(w)$ be the inverse function of $zv = \lambda(\zeta)$, which is infinitely many valued. We consider the branch of $\nu(zv)$, which lies in Δ and let $\zeta_0 = x_0 + iy_0 = \nu(\alpha_0)$ lie in Δ .

We assume that $|a_0|$ is so large that

$$|a_0| \ge e^{-8\pi\eta}$$
, (5)

then a_0 lies outside the circle $|w| = e^{2\pi\eta}$, so that by (4), $y_0 \ge \eta$ and hence by (3),

$$\frac{\pi}{2} y_0 \leq \log |a_0| \leq 2\pi y_0. \tag{6}$$

Since

$$\zeta = x + iy = \nu(f(z)) = \nu(a_0) + b_1 z + \dots = \zeta_0 + b_1 z + \dots$$

is regular for |z| < 1 and $y = \Im(\nu f(z)) > 0$, we have

$$y_0 \frac{1+r}{1-r} \ge y \ge y_0 \frac{1-r}{1+r} \quad (|z|=r). \tag{7}$$

Since by (6)

$$y \ge y_0 \frac{1-r}{1+r} \ge y_0 \frac{(1-r)}{2} \ge \frac{\log|a_0|}{4\pi} (1-r), \tag{8}$$

we have for $0 \le r \le \frac{1}{2}$,

$$y \geq \frac{\log |a_0|}{8\pi} \geq \eta$$

so that by (2), (8),

$$|f(z)| \ge e^{\frac{\pi}{2} \cdot y} \ge \exp \frac{\log |a_0|(1-r)}{8} \quad (o \le r \le \frac{1}{2}).$$
 (9)

Since

$$\frac{1}{f(z)} = \frac{1}{a_0} + c_1 z + \dots$$

satisfies the same condition as f(z), we have from (9), if $\frac{1}{|a_0|} \ge e^{8\pi\eta}$, or $|a_0| \le e^{-8\pi\eta}$,

$$\left|\frac{1}{f(z)}\right| \ge \exp \frac{\log \left|\frac{1}{a_0}\right| (1-r)}{8}, \text{ or }$$

$$|f(z)| \le \exp \frac{\log |a_0| (1-r)}{8} \quad (o \le r \le \frac{1}{2}). \quad (10)$$

To obtain the majorant for $\frac{1}{2} < r < 1$, let

$$M(r) = \max_{|z|=r} |f(z)|,$$
 $r_1 = \frac{1}{2}, r_2 = r, r_3 = \frac{1+r}{2},$
(11)

then by Hadamard's three circles theorem,

$$\log M(r) = \log M(r_2) \le \frac{\log r_3 - \log r_2}{\log r_3 - \log r_1} \log M(r_1) + \frac{\log r_2 - \log r_1}{\log r_3 - \log r_1} \log M(r_3)$$

$$= \frac{\log \frac{1+r}{2r}}{\log (1+r)} \log M(r_1) + \frac{\log 2r}{\log (1+r)} \log M(r_3) . (12)$$

By (10), (1),

$$M(r_1) \le \exp \frac{\log |a_0|}{16}, M(r_3) \le \exp \frac{D \log (|a_0|+2)}{1 - \frac{1+r}{2}}$$

$$= \exp \frac{2D \log (|a_0|+2)}{1-r}$$
(13)

and there exists a constant $o < \alpha < 1$, such that

$$\frac{\log \frac{1+r}{2r}}{\log (1+r)} \ge a(1-r), \quad \frac{\log 2r}{\log (1+r)} \le 1 \quad (\frac{1}{2} \le r < 1).$$

Since $\log |a_0| < 0$, we have from (12), (13),

$$M(r) \leq \exp \left\{ \frac{a \log |a_0|}{16} (1-r) + \frac{2D \log (|a_0|+2)}{1-r} \right\}$$

$$= \exp \left\{ a_1 \log |a_0| (1-r) + \beta_1 \frac{\log (|a_0|+2)}{1-r} \right\} \left(\frac{1}{2} \leq r < 1 \right) (14)$$

$$a_1 = \frac{a}{16} , \beta_1 = 2D.$$

Since
$$a_1 < \frac{1}{8}$$
, we have from (10), (14), if $|a_0| \leq e^{-8\pi\eta}$,

$$|f(z)| \le \exp \left\{ a_1 \log |a_0| (1-r) + \frac{\beta_1 \log (|a_0| + 2)}{1-r} \right\} (o \le r < 1).$$
 (15)

If
$$|a_0| \ge e^{-8\pi\eta}$$
, let $\gamma = \frac{8\pi \eta \alpha_1}{\log 2}$, then $-8\pi\eta a_1 + \gamma \log 2 = 0$, so that

$$a_1 \log |a_0| + \gamma \log (|a_0| + 2) > 0$$
,

hence

$$a_1 \log |a_0|(1-r) + \gamma \frac{\log (|a_0|+2)}{1-r} >$$

$$(1-r) (a_1 \log |a_0|+\gamma \log (|a_0|+2)>0.$$
 (16)

Since by (1),

$$|f(z)| \leq \exp \frac{D \log (|a_0|+2)}{1-r}$$
 $(o \leq r < 1),$

we have from (16),

$$|f(z)| \le \exp \left\{ a_1 \log |a_0| (1-r) + \frac{(D+\gamma) \log (|a_0|+2)}{1-r} \right\}$$

$$(o \le r < 1) . \tag{17}$$

From (15), (17), if we put $A=a_1$, $B=D+\gamma+\beta_1$,

$$|f(z)| \le \exp \left\{ A \log |a_0| (1-r) + B \frac{\log (|a_0|+2)}{1-r} \right\} \ (o \le r < 1),$$

which proves the theorem.

Remark. If we apply our theorem on $\frac{1}{f(z)}$, we have a minorant of f(z):

$$|f(z)| \ge \exp\left(A \log |a_o| (1-r) - B \frac{\log \left(\frac{1}{|a_o|} + 2\right)}{1-r}\right).$$

If we change slightly the reasoning, which we have obtained (9), we have the following Valiron's theorem: If $|a_o| \ge a_o(r, \epsilon)$, which depends on r and ϵ ($o < \epsilon < 1$), then

$$\log |f(z)| \geq (1-\epsilon) \frac{1-r}{1+r} \log |a_o|.$$

Mathematical Institute, Tokyo University.

²⁾ G. Valiron: Le théorème de Picard et le complément de M. Julia. Jour. de Math. (1928).