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On the faithful representations of Lie groups

Yoz\^o MATUSHIMA

(Received May 15, 1948 $j$

It is well known that any Lie algebra may be represented faithfully
by matrices. This result, which was first established by I. Ado, was by
his powerful method proved by E. Cartan.2) K. Iwasawa3) has recently given
purely algebraic proof; His result is most general in the sense that he
proved the theorem for Lie algebras over an arbitrary field. But Cartan’s
analytical method of proof is a most direct one and has an advantage
enabling us to discuss simultaneously the problem in the large. In the
present paper we first attempt to simplify the Cartan’s proof. Namely we
construct a Lie algebra (which we shall call normal) containing the given
algebra and having a more simple structure than the given one. Hence
the problem is reduced to that of the faithful representations of normal
Lie algebras and this may readily be reduced to nilpotent case by Cartan’s
method. Thus we may proceed without the rather complicated arguments
in solvable and general cases. Further we prove some results on the fai-
thful representations of Lie groups in the large. Some of them were already
obtained by E. $Car\tan^{4)}and$ A. Malcev.5)

\S 1. Let $L$ be a Lie algebra over a field P. A linear mapping $d$ on
$L$ will be called a derivation if

$d[x, y]=[dx_{9^{\prime}]+[X}, dy]$ .
The mapping $d_{a}$ : $x\rightarrow[a, x]$ is, as we may readily verify, a derivation which
we shall call inner derivation defined by an elemeut a $\epsilon L$ .

In the following we assume that $P$ is of characteristic $0$ .
Lemma 1 Let $d$ be a derivation of $L$ Then we may represent $d$

uniquely in the $fol\cdot m$

(1) $d=d^{o}+d$ , $d^{o}d^{s}=d^{s}d^{o}$,

1) Ado $[[\rfloor$

2) Cartan [3]
3) Iwasawa [1]
4) Cartan [$J
5) Malcev [3]. Malcev’s papers $\lceil 2$] and $\lceil 3$] are not yet accessible to the writer. I knew

his results on reading Mathematical Reveiews. Some were also obtained in M. Got\^o [2] independently.
(6 Gantmacher [1]
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where $d^{0}$ and $d^{s}$ are derivations which are, as the linear mappings on $L$

nilpotent and semi-simple7) respectively. If $M$ is a linear subspace in $L$

such that $dM\subseteqq M$, then $d^{o}M\subseteqq M$. Moreover if $\ell ff$ is a derivation such
that $dt^{\prime}=d^{\prime}d$, then we have $d^{\prime}d^{o}=d^{o}d^{\prime}$ and $d^{\prime}d^{s}=d^{s}d^{\prime}$ .

Proof. First let $P$ be algebraically closed. We decompose $L$ into the
eigen-spaces of $ d:L=L_{\alpha}+L_{\beta}+\cdots\cdots$ , where $L_{\rho}$ mean the eigen-spaces
corresponding to the eigen-values $\rho(\rho=a,\beta, )$ . Then $[L_{\rho}L_{\sigma}]\subseteqq L_{\rho+\sigma}$ ,
where $L_{\rho+\sigma}=0$ if $\rho+\sigma$ is not an eigen-value. Now we define the linear
mapping $d^{s}$ by

$d^{s}x=\rho x$ , for $x\in L_{l)}(\rho=a,\beta,\ldots\ldots)$ .
We may easily see that d’ is a semi-simple derivation such that $dd^{s}=d^{s}d$

and $d=d-d^{s}$ is nilpotent. Then $d=d\ovalbox{\tt\small REJECT}+d^{s},$ $d^{o}d^{s}=d^{s}d^{o}$ . The uniqueness
and the other propositions may easily be seen from the above construction.
Next let $P$ be arbitrary and $K$ be the finite Galois extension containing all
the characteristic roots of $d$. Since $d$ is also a derivation of $L_{R}$ , we may
decompose $d$ as above into the form (1), where $d$ and $d^{s}$ are derivations
of $L_{K}$. Let $\ell_{1},\ldots\ldots,e_{r}$ be a basis of $L$ over $P$ and $a$ a derivation of $L_{K}$

defined by
$a\cdot e_{i}=\Sigma_{k=1}^{r}e_{k}a_{ki},$ $a_{ki}\epsilon K$.

Since the structural constants corresponding to the basis $e_{1},\ldots\ldots,e_{r}$ belong
to $P$, the linear mapping $\theta a$ defined by

$\theta a\cdot e_{i}=\Sigma_{k=1}^{r}e_{k}(\theta a_{ki})$

is also a derivation, where $\theta$ denotes a substitution of the Galois group of
$K/P$. Hence $\theta d=d=\theta d^{o}+\theta d^{S}$ and clearly $\theta d^{o}\cdot\theta d^{s}=\theta d^{S}\cdot\theta d$ . Morcover,
as we may easily see, $\theta d^{o}$ and $\theta d^{\epsilon}$ are nilpotent and semi-simple $re$spectively.
Hence we have $\theta d‘=d^{o}$ and $\theta d^{S}=d^{S}$ for any $\theta$ by the uniqueness of the
decomposition (1) and this shows that $d^{o}$ and d’ are derivations of $L$ .

Lemma 2. Let $R$ be a solvable ideal in $L$ and $N$ the maximal nilpo-
tent ideal in $R$ . Then $[L,R]\subseteqq\Lambda^{\gamma}$.

Pro $r$. Let $R_{1}$ and $N_{J}$ be the radical and the maximal nilpotent ideal
in $L$ . Then $[L,R_{1}]\subseteqq\Lambda^{t_{1}^{8)}}$. Hence $[L,R]\subseteqq R\cap\Lambda^{7_{1}}\subseteqq N$.

Definition. Let $L=S+R,$ $S\cap R=0$ be a Levi decomposition of $L$ ,
where $S$ and $R$ denote a semi-simple subalgebra and the radical of $Lre$s-
pectively. We call $L$ normal, if $R$ contains a nilpotent ideal $N$ in $L$ and

7) A linear transfomation is called $semi\cdot simple$, if it has simple elementary divisors.
8) Cartan [1] P. 108 or Iwasawa [1], Matsushima [li
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an abelian subalgebra $A$ such that $R=A+N$, $A\cap N=0,$ $[S,A]=0^{9)}$

Theorem 1. We may construct a normal Lie algebra $I_{\triangleleft}$ containing the
given Lie algebra $LStlC/l$ that every ideal in $L$ is also an ideal in $L_{1}$ and

$L_{1}=A+L$ , $A\cap L=0$ ,

wltere $A$ is an abelian subalgebra.
Proof. Let $S,$ $R$ and $N$ be a maximal semi-simple subalgebra, the

radical and the maximal nilpotent ideal in $L$ respectively. $R$ is a completety
$re$ducible S-module by the well known complete reducibility of representa-
tions of semi-simplc Lie algebras. Hencc $tl$)$ere$ exists an S-module $M$ such
that $R=M+N$. Since $[S,R]\subseteqq N$ by Lemma 2, we have $[S, M]=0$ . Let
$h$ be a regular element of $R$ , i.e. an element which has as many different
eigen-values as possible in the regular representation of $R$ , and let $/l=/l_{1}$

$+1_{l_{2}},$ $/\iota_{1}\in M,$ $/l_{\sim^{\supset}}\epsilon 1V$. We may easily see that $J\iota_{I}$ is also $re$gular and $[/\ell_{1}$ ,
$S]=0$ . Let $\varphi(x)=x^{t}\varphi_{1}(x)$ be the characteristic polynomial of the inner
derivation $d=d_{h_{1}}$ . where $(x,\varphi_{1}(x))=1$ . Let $R_{0}$ and $R_{1}$ be the linear subs-
paces in $R$ composed of all elements $x\in R$ such that $d^{l}x=0$ and $\varphi_{1}(d)x=$

$0re$spectively. Then $R=R_{0}+R_{1}$ and since $d$ induces in $R$ a non-singular
linear mapping, $dR_{1}=[/p_{1}, R_{1}]=R_{1}$ , whence $R_{1}$ is contained in $N$ by Lemma
2. As is well known, $R_{0}$ is a nilpotent subalgebra. Furthermore since $dS$

$=0$ , we have $[S,R_{0}]\subseteqq R_{0}$ and $[S,R_{1}]\subseteqq R_{1}$ . Let $N_{0}=R_{0}\cap N$. Then $N_{o}$ is an
S-module and there exists an S-module $M_{0}$ such that $R_{0}=1$]$\gamma_{0}+N_{0}$ . We
have as above $[S,M_{0}]=0$ . As we may easily see, $N=N_{0}+R_{1}$ . Let $ a_{1},\ldots$

$a_{m}$ be a basis of $M_{0}$ over $P$. We decompose th $e$ inner derivations $d_{a_{i}}$

into the form (1) and put $d_{i}=d_{a_{i}^{s}}$ . Then we have $dx=0$ , for $x\in S$ or $x$

$\epsilon R_{0}$ , because $d_{a_{i}}$ induce in $S+R_{0}$ nilpotent linear transformations. Then
$d_{i}d_{a_{j}}x=d_{i}[a_{j}x]=[a_{j}, d_{i}x]=d_{a_{j}}d_{\ell}x$ for all $x\in L$ , whence $d_{i}$. $d_{a_{j}}=d_{a_{i}}\cdot d_{i}$ .
Therefore $d_{\iota}d_{j}=d_{j}d_{i}(ij=1,\ldots\ldots, m)$ by Lemma 1. Let now $A$ be the
abelian Lie algebra spanned by the derivations $d_{1},\ldots\ldots,d_{m}$ and let $L_{1}=A+$

$L$ be the direct sum of two vector spaces $A$ and $L$ . We define the mul-
tiplication between elements of $I_{\triangleleft}$ as follows:

$[u_{1}+x_{1}, u_{2}+x_{2}]=u_{1}x_{2}-u_{2}x_{1}+[x_{1}x_{2}]$

where $u_{i}\in A$ and $x_{i}\in L(i=1,2)$ and $ux_{j}$ mean the element of $L$ which
are the images of $x_{j}$ under the derivations $u_{i}$ . We may easily verify that
$L_{1}$ becomes a Lie algebra. Furthermore $A$ is an abelian subalgebra and

9) Normal Lie algebras have the similar structure to algebraic Lie algebras. For algebraic
Lie algebras, see Chevalley and Tuan [1], Got6 [1], Matsushima [1]
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every ideal in $L$ is also an ideal in $L$ by Lemma 1. Clearly $A+R$ is the
radical of $L_{1}$ and $A+R=A+M_{0}+N$. Let $\Lambda^{\gamma_{1}}=P(a_{1}-d_{1})+\cdots\cdots+P(a_{m}$–

$d_{m})+1V$. then $A+R=A+N_{1}$ . We easily. verify that $N_{1}$ is an ideal in $L_{1}$ .
Moreover, since $N_{1}$ is solvable and $N$ is nilpotent and every eigenvalue of
$a_{i}-d_{i}$ in the adjoint representation is $0,$ $N_{1}$ is nilpotent. Further we have

$[S,A]=0$ . Thus $L_{1}$ is normal.
Remark. In the above proof, we used the semi-simplicity of $S$ only

in the point that $R$ is a completely reducible S-module. Further we may
prove that $N_{1}$ is the maxImal nilpotent ideal and the derived algebra of
$L_{1}$ coincides with that of $L$ .

\S 2. In this section we apply Theorem 1 on the proof of faithful re-
presentability of Lie algebras. It is sufllcicnt by Theorem 1 to prove the
problem for normal Lie algebras. Let $L$ be a normal Li $e$ algebra over
the field $P$ of all real or complex numbers and let

$L=S+A+N$, $A+N=R$, $[S,A]=0$ ,

as in \S 1. Then $T=S+A$ is a subalgebra in $L$ , whose center equals $A$ .
Let $\mathfrak{N}$ and $\mathfrak{T}$ be local subgroups in $\mathfrak{L}$ , which correspond to the subalgebras
$N$ and $T$ respectively, where $\mathfrak{L}$ denotes the Lie group whose Lie algebra
is $L$ . Then $\mathfrak{N}$ is a nilpotent invariant subgroup and we may introduce
canonical coordinates $(x)$ in $\mathfrak{N}$ such that, if $x^{\prime}=ax$ , where $a$ and $x$ denote
the elements of $\mathfrak{N}$ whose coordinates are $(a)$ and $(x)$ respectively, then
$x_{i}^{\prime}=g_{i}(a,x)$ are polynomials of $(a)$ and $(x)$ . Moreover

$\mathfrak{L}=\mathfrak{N}\mathfrak{T}$ , $\mathfrak{N}\cap \mathfrak{T}=1$ .
Hence every element of $\mathfrak{L}$ , which is sufficiently near the unit element, may
be uniquely represented in the form ab, a $\epsilon \mathfrak{N},$ $b\in \mathfrak{T}$ . Then (ab) $(xy)=$

$x^{\prime}y^{\prime}$ , where
(2) $x^{\prime}=a(bxb^{-1}),$ $y^{\prime}=\delta y,$ $x,$ a $\epsilon \mathfrak{R}$ ; $b,$ $y\in \mathfrak{T}$ .

As we may readily verify, the transformations $(x)\rightarrow(x^{\prime})$ of the coordinates
in $\mathfrak{R}$ defined by (2) form a transformation group $\mathfrak{G}$ homomorphic to $\mathfrak{L}$ .
Moreover the elements of $\mathfrak{L}$ , which correspond to the unit transformation
of $\mathfrak{G}$ , are contained in $\mathfrak{T}$ . Hence

$\mathfrak{G}-=\mathfrak{L}/\mathfrak{D}$

where $\mathfrak{D}$ is an invariant subgroup contained in $\mathfrak{T}$ . We represent the trans-
formation in $\mathfrak{G}$ defined by (2) by the $e$quations

$x_{i}^{\prime}=F^{i}$ (ab; $x$).

10) Cartan [SJ
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Let $f(x)=bxb^{-1}$ Then, since the coordinates are canonical,
$f_{i}(x)=\sum_{k}a_{k}(b)x_{k}$ .

and we have $F$ (ab; $x$) $=g_{\ell}(a;f(x))$ . As $g_{t}(a;f(x))$ are polynomials of
$(x)$ . Hence we may faithfu!ly $repre$sent $\mathfrak{G}$ by matrices by Cartan’s lemma. $1\ovalbox{\tt\small REJECT}$)

Hence there exists a representation $R_{1}$ of $L$ such that $R_{1}---- L/D$ , where
$D$ denotes the ideal in $L$ which corresponds to the invariant subgroup $\mathfrak{D}$

in $\mathfrak{L}$ . That is clearly a faithful representation R., because it is the direct
sum of semi-simple ideal and its centre. Since $1^{\prime}’=L/N,$ $R_{2}$ is also a re-
presentation of $D$ . Then, as $D$ is contained in $T$, the representation $R$ of
$L$ defined by

$R=$

is faithful. Thus we proved thc
Theorem 2. Any Lie algebra $L$ ovcr $t/le$ ficld $P$ of real or complex

$\prime mmb’\prime^{J}smny$ be $rcp\prime^{r}\iota’ s’ ntedfait/lfully$ by $mat_{l^{\prime}}\iota c\iota’ s$ .
\S 3. Next we investigate the problem of faithful representability of

Lie groups in the larg $e$ . Let $\mathfrak{N}$ be a simply connected nilpotent Lie group.
The parameters of $\mathfrak{N}$ may be real or complex. $\mathfrak{N}$ is homeomorphic with
an euclidean space and we may introduce coordinates in the large in $\mathfrak{N}$

such that they are canonical in the neighbourhood of the unit element and
if $x^{\prime}=ax$, then the coordinates of $x^{\prime}$ are polynomials of $a$ and $x^{10)}$ . Let
$\theta$ be an antomorphism of $\mathfrak{N}$ and let $x_{i}^{\prime}=\theta_{i}(x)$ , where $\theta_{i}(x)$ are coordinates
of $\theta(x)$ . If $(x)$ is sufficicntly small, then, since th $e$ coordinates are canonical,
$x_{i}^{t}=\Sigma_{j}\overline{\theta}_{ij}x_{j}$ . Now we define the mapping $\theta\rightarrow$ of $\mathfrak{N}$ onto itself by the
equations

$x_{i}^{\prime}=\Sigma_{j}\theta_{ij}x_{j}$

and show that $\theta=\theta$ . For, since $\theta=^{-}\overline{\theta}$ in the neighbourhood of (0). $\theta(ab)$

$=\overline{\theta}(a)\overline{\theta}(b)$ for sufficiently small $(a),$ $(b)$ . But as the coordinates of $\theta^{-}$

$(a\dot{o})$ and $\overline{\theta}(a)\cdot\theta(b)$ are polynomials of $(a)$ and $(b)$ respectively, 0(ab)
$=\theta(a)\cdot\theta(b)$ holds for any $a$ and $b$ Thus $\theta^{-}$ is an automorphism ot thc
connected group $\mathfrak{N}$ and we have $\theta=\overline{\theta,}$ since they coincide in the neigh-
bourhood of the unit element. Thus every automorphism of $\mathfrak{N}$ is represented
(in our coordinate) by linear transformation. Then we may prov $e$ the
following Lemma by the similar argument as in the proof of Theorem 2.

Lcmma 3. Let $\mathfrak{L}$ be a Lie group and let $\mathfrak{T}$ and $\mathfrak{N}$ be a closed sub-
group and a closcd simply connected nilpotent invariant subgroup respe-

10/ Cartan [3].
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ctively such that
$\mathfrak{L}=\mathfrak{T}\mathfrak{N}$ $\mathfrak{T}n\mathfrak{R}=1$

If $\mathfrak{T}$ is faithfully representable (fr.), the $n\mathfrak{L}$ is $dso$ fr.
Now we may prove the following
Theorem 3. Any simplp’ connected complex Lie group $\mathfrak{L}$ is $f.r$ .
Proof. Let $L$ be the Lie algebra of $\mathfrak{L}$ and $L_{1}$ the normal Lie algebra

containing $L$ constructed in \S 1. Then $L_{z}=A+L$ and the simply connect-
ed Lie group $\mathfrak{L}_{1}$ corresponding to $L_{1}$ contains $\mathfrak{L}$ as a closed $subgroup^{1}\rightarrow 1$

)

Hence we may assume that $L$ itself is normal. Then $L=S+A+N$ as in
\S 1 and $L$ contains simply connected closed subgroups $\mathfrak{T}$ and $\mathfrak{N}$ whose Lie
algebras are $S+A$ and $N$ respectively.i2) Moreover $\mathfrak{L}=\mathfrak{T}\mathfrak{N},$ $Tn\mathfrak{N}=1$ and
$\mathfrak{R}$ is nilpotent and invariant and $\mathfrak{T}$ is the direct product of a simply con-
nected complex semi-simple group and a vector group. Since connected
complex semi-simple groups are f.r. by a theorem of Cartan12) and vector
groups are also f.r., the same holds for $\mathfrak{T}$ . Then $\mathfrak{L}$ is f.r. by Lemma 3.

Remark. If $\mathfrak{L}$ is solvable, as we may $see$ from the above proof, th $e$

condition that $\mathfrak{L}$ is of complex parameters is unnecessary.
Theorem 4. Let $\mathfrak{L}$ be a connected Lie group and $L$ its $L_{t}e$ algebra.

Suppose $tl\iota at\mathfrak{L}$ contams connected closed $sub_{\iota^{\circ}},\cdot roups\mathfrak{T}$ and $\mathfrak{R}w/\iota ich$ satisfy tlte
following conditions:

1) $\mathfrak{R}$ is a simply connected solvable invariant subgroup and $\mathfrak{T}$ is fr.
2) $\mathfrak{L}=\mathfrak{T}\mathfrak{R}$ , $\mathfrak{T}\cap \mathfrak{R}=1$ .
3) Dpnote $b\gamma T$ and $R$ the subalgebras of $L$ corresponding to $\mathfrak{T}$ and $\mathfrak{R}$

respectively. $T/\iota enR$ is a completely reducible T-module.i $\mathfrak{n}_{))}T/\iota en\mathfrak{L}$ is fr.
Proof. By the remark in \S 1. we may construct a Lie algcbra $L_{1}$

containing $L$ as an ideal such that
$L_{1}=A+L=T+R+A$ . $Af1L=0$ , $[AT]=0$ .

where $A$ is an abelian subalgebra. Moreover $A+R$ is a solvable ideal in
$L$ and $A+R=A+N$, where $N$ is a nilpotent ideal in $L$ . We construct a
Lie group $\mathfrak{L}_{1}$ whose Lie algebra is $L_{1}$ such that it contains $\mathfrak{L}$ as a closed
subgroup and satisfies the conditions of Lemma 3. Denote by $\mathfrak{A}$ the vector
group whose Lie algebra is $A$ . Let $\mathfrak{L}_{1}$ be the product space of $\mathfrak{T}\times \mathfrak{A}$ and
$\mathfrak{R}$ , where $\mathfrak{T}\times \mathfrak{A}$ denotes the direct product of the groups $\mathfrak{T}$ and $\mathfrak{A}$ We

11) Pontrjagin [1] Chap. IX \S 54
12) Cartan [2]
13) The condition 3) is satisfied, if $\mathfrak{T}$ is compact or semi-simple.
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will define a continuous automorphism $\varphi_{x}$ of $\mathfrak{R}$ for each $x\in \mathfrak{T}\times \mathfrak{A}$ in such
a way that $\varphi_{xy}=\varphi_{\tau}\varphi_{y}$ holds. Put $\varphi_{t}(r)=trt^{\rightarrow 1}$ for $t\in \mathfrak{T},$ $r\in \mathfrak{R}$ . Let
next $\mathfrak{L}_{1^{\prime}}$ be the local Lie group corresponding to $L_{1}$ . Then $\mathfrak{L}_{1^{\prime}}=$

$(\mathfrak{T}^{\prime}\times \mathfrak{A}^{\prime})\mathfrak{R}^{\prime}\cdot(\mathfrak{T}^{\prime}\times \mathfrak{A}^{\prime})\cap \mathfrak{R}‘=1$ , where $\mathfrak{T}^{\prime}$ etc. may be considered as the
neighbourhoods of the unit element of $\mathfrak{T}$ etc. Let $\varphi_{a},(r^{\prime})=a^{\prime}r^{\prime}a^{;-1}$ ,
where $a^{\prime}\epsilon \mathfrak{A}^{\prime}$ , $r^{\prime}\epsilon \mathfrak{R}^{\prime}$ Since $\mathfrak{R}$ is simply connected, we may extend
$\varphi_{a}$, to a continuous automorphism of $\mathfrak{R}$ . More over we may define a
continuous automorphism $\varphi_{a}$ for each $a$

$\epsilon \mathfrak{A}$ by the argument given in
Pontrjagin [1] p. 275-276. Clearly $\varphi_{xy}=\varphi_{x}\varphi_{y}$ for $x,$ $y\in \mathfrak{T}$ or $x,$ $y\in \mathfrak{A}$

We show that
$\varphi_{t}(\varphi_{a}(r))=\varphi_{a}(\varphi_{t}(r)),$ $t\epsilon \mathfrak{T}$ , a $\epsilon \mathfrak{A}$ , $r\epsilon \mathfrak{R}$ .

Since $e$ach group is connected, it is sufficient to prove the above relation
for $t\in \mathfrak{T}^{\prime},$ a $\epsilon \mathfrak{A}^{\prime},$ $r\in \mathfrak{R}$ ‘. Then

$\varphi_{t}(\varphi_{a}(r))=t(ara^{-1})t^{-1}=(ta)r(ta)^{-1}=(at)r(at)^{-1}=\varphi_{a}(\varphi_{\ell}(r))$

Put $\varphi_{x}(r)=\varphi_{t}(\varphi_{a}(r))$ for $x=t$ a $\epsilon \mathfrak{T}\times \mathfrak{A}$ , where $t\in \mathfrak{T},$ $a$
$\epsilon \mathfrak{A}$ Then clearly

$\varphi_{xy}=\varphi_{f}\varphi_{y}$ . We now define the product of two pairs $(r_{1},x_{1})$ , $(r_{2},x_{2})(r_{t}\epsilon$

$\epsilon \mathfrak{R},$ $x_{i}\in \mathfrak{T}\times \mathfrak{A}$) of the set $\mathfrak{L}_{I}$ as follows:
$(r_{1}, x_{1})(r_{2}, x_{2})=(r_{1}\varphi_{x_{1}}(r_{2}), x_{1}x_{2})$ .

Then $\mathfrak{L}_{1}$ becomes a Lie group whose Lie algebra is $L_{1}^{11)}$ . Clearly $\mathfrak{L}$ is a
closed invariant subgroup in $\mathfrak{L}_{1}$ Furthermore $\mathfrak{L}_{1}=(\mathfrak{T}\times \mathfrak{A})\mathfrak{R},$ $(\mathfrak{T}\times \mathfrak{A})\cap \mathfrak{R}$

$=1$ and, as we may see from the above construction $\mathfrak{A}\mathfrak{R}$ is a simply con-
nected subgroup whose Lie algebra is $A+R$ . Since $A+R=A+N$. $\mathfrak{A}\mathfrak{R}$

contains simply connected nilpotent subgroup $\mathfrak{N}$ such that $\mathfrak{A}\mathfrak{R}=\mathfrak{A}\mathfrak{N}$ , Then
$\mathfrak{L}_{1}=(\mathfrak{T}\times \mathfrak{A})\mathfrak{N}$ and since $(\mathfrak{T}\times \mathfrak{A})\cap \mathfrak{A}\mathfrak{R}=\mathfrak{A},$ $(\mathfrak{T}\times \mathfrak{A})n\mathfrak{R}=(\mathfrak{T}\times \mathfrak{A})\cap \mathfrak{A}\mathfrak{R}\cap$

$\mathfrak{N}=\mathfrak{A}\cap \mathfrak{N}=1$ . Further $\mathfrak{T}\times \mathfrak{A}$ is f.r. Thus $\mathfrak{L}_{1}$ satisfies the conditions in
Lemma 3 and is therefore f.r. Since $\mathfrak{L}_{1}\supset \mathfrak{L}$ , the same is true for $\mathfrak{L}$

Remark. Theorem 3 follows also from this theorem.
From Theorem 4 and a theorem of A. Malcev’4) on the structure of linear
solvable Lie groups we obtain immediately the following

Theorem 5 A $com\iota ect\iota d$ solvable Lie group $\mathfrak{L}$ is fr. if and only if it
contains a connected compact abelian group $\mathfrak{A}$ and a closed simply connected
invariant subgroup $\mathfrak{R}$ such tltat

$\mathfrak{L}=\mathfrak{A}\mathfrak{R}$ , $\mathfrak{A}\cap \mathfrak{R}=1$ .
Nagoya University

14) Maldev [1], [ $ 2\rfloor$ Got\^o [21 15) Malcev $\lfloor 3J$ , Got\^o [2]
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