Note on the Cluster Sets of Analytic Functions.
Kiyoshi Noshiro.
(Received Feb. 15, 1949)

1. Let D be an arbitrary connected domain and C be its boundary. Let E be a closed set of capacity ${ }^{1)}$ zero, included in C and z_{0} be a point in E. Suppose that $W=f(z)$ is a single-valued function meromorphic in D. We associate with z_{0} three cluster sets $S_{z_{0}}^{(D)}, S_{z_{0}}^{(C)}$ and $S_{z_{0}}^{*(C)}$ as follows: $S_{2_{0}}^{(D)}$ is the set of all values α such that $\lim _{\nu \rightarrow \infty} f\left(z_{\nu}\right)=\alpha$ with a sequence $\left\{z_{\nu}\right\}$ of points tending to z_{0} inside $D . S_{z_{0}}^{*(C)}$ is the intersection $\cap M_{r}$, where M_{r} denotes the closure of the union $\underset{z^{\prime}}{\cup} S_{z^{\prime}}^{(D)}$ for all z^{\prime} belonging to the common part of $C-E$ and $U\left(z_{0}, r\right):\left|z-z_{0}\right|<r$. In the particular case when E consists of a single point z_{0}, we denote $S_{z_{0}}^{*(C)}$ by $S_{z_{0}}^{(C)}$ for the sake of simplicity. Obviously $S_{z_{0}}^{(D)}$ and $S_{z_{0}}^{*(C)}$ are closed sets such that $S_{z_{0}}^{*(C)} \subset$ $S_{z_{0}}^{(D)}$ - and $S_{z_{0}}^{(D)}$ is always non-empty while $S_{z_{0}}^{*(C)}$ becomes empty if and only if there exists a positive number r such that $C-E$ and $U\left(z_{0}, r\right)$ have no point in common.

Concerning the cluster sets $S_{z_{0}}^{(D)}, S_{z_{0}}^{(C)}$ and $S_{z_{0}}^{*(C)}$ the following theorems are known :

Theorem I. (Iversen-Beurling-Kunugi) ${ }^{2)} B\left(S_{z_{0}}^{(D)}\right) \subset S_{z_{0}}^{(C)}$, where $B\left(S_{z_{0}}^{(D)}\right)$ denotes the boundary of $S_{z_{0}}^{(D)}$, or, what is the same, $\Omega=S_{z_{0}}^{(D)}-S_{z_{0}}^{(C)}$ is an open set.

Theorem II. (Beurling-Kunugi) ${ }^{3)}$ Suppose that $\Omega=S_{z_{0}}^{(D)}-S_{z_{0}}^{(C)}$ is not empty and denote by Ω_{n} any connected component of Ω. Then $w=f(z)$ takes every value, with two possible exceptions, belonging to Ω_{n} infinitely often in any neighbourhood of z_{0}.

Theorem. I* (Tsuji) ${ }^{4)} B\left(S_{z_{0}}^{(D)}\right) \subset S_{z_{0}}^{*(C)}$, that is, $\Omega=S_{x_{0}}^{(D)}-S_{z_{0}}^{*(C)}$ is an open set.

Theorem II*. (Kametani-Tsuji) ${ }^{5)}$ Suppose that $\Omega=S_{z_{0}}^{(D)}-S_{z_{0}}^{*(C)}$ is not empty. Then $w=f(z)$ takes every value, except a possible set of w-values of capacity zero, belonging to Ω infinitely often in any neighbourhood of z_{0}.

Evidently Theorem I* is a complete extension of Theorem I. It seems however that there exists a large gap between Theorem II and Theorem II*. The object of the present note is to show that under the assumption that D is simply connected, Theorem II* can be written in the form of Theorem II.

Namely, the writer proposes to prove the following
Theorem 1. Suppose that D is simply connected and $\Omega=S_{x_{0}}^{(D)}-S_{x_{0}}^{*(C)}$ is not empty. Let Ω_{n} be any connected component of Ω. Then, $w=f(z)$ takes every value, with two possible exceptions, belonging to Ω_{n} infinitely often in any neighbourhood of z_{0}.
2. Proof of Theorem 1. Without loss of generality we may suppose that Ω_{n} does not contain $v=\infty$. Suppose, contrary to the assertion, that there are three exceptional values v_{0}, v_{1} and v_{2} in Ω_{n}. Then, there exists a positive number r_{1} such that

$$
f(z) \neq w_{0}, w_{1}, w_{2}
$$

in the common part of D and $U\left(z_{0}, r_{1}\right):\left|z-z_{0}\right|<r_{1}$. Inside Ω_{n} we draw a simple closed regular analytic curve Γ which surrounds w_{0}, w_{1} and passes through v_{2}, and whose interior consists only of interior points of Ω_{n}. By hypothesis, we can select a positive number $r\left(<r_{1}\right)$, arbitrarily small, such that, K denoting the circle $\left|z-z_{0}\right|=r, K \cap(C-E) \neq 0$ and the closure M_{r} of the union $\cup_{z \prime} S_{z^{\prime}}^{(D)}$ for all z^{\prime} belonging to the common part of $C-E$ and $\left|z-z_{0}\right| \leqq r$ lies outside Γ. Now, by an extension of Iversen's theorem ${ }^{6)}$, either w_{0} is an asymptotic value of $v=f(z)$ at z_{0} or there exists a sequence of points z_{n}^{\prime} in E tending to z_{0} such that w_{0} is an asymptotic value at each $z^{\prime}{ }_{n}$. Consequently it is possible to find a point $z^{\prime}{ }_{0}$ (distinct from z_{0} or not) belonging to $E \cap U\left(z_{0}, r\right)$ súch that w_{0} is an asymptotic value of $w=f(z)$ at z_{0}^{\prime}. Let A be the asymptotic path with the asymptotic value w_{0} at z_{0}^{\prime}. We may assume that the image of Λ by $v=f(z)$ is a curve lying completely in the interior of Γ. Consider the set D_{r} of points z inside the intersection of D and $U\left(z_{0}, r\right)$ such that $z v=f(z)$ lies in the interior of Γ. Then the open set D_{r} consists of at most an enumerable number of connected components. We shall denote by Δ the component which contains the asymptotic path 1 . It is easily seen that the boundary of Δ consists of a finite number of arcs of the circle K, a finite or an enumerable number of analytic contours inside D and a closed subset E_{0} of E. Further it should be noticed that Δ is simply connected. For, any connected component of the intersection $D \cap U\left(z_{0}, r\right)$ is simply connected, as by hypothesis D is simply connected, and the frontier of Δ contains no closed analytic contour, since every analytic contour of Δ is transformed by $w=f(z)$ into a curve lying on the simple closed curve Γ passing through an exceptional value $z v_{2}$.

Here we apply Evans' theorem ${ }^{7}$ on the logarithmic potential, to find that there exists a distribution of positive mass $d \mu(a)$ entirely on E_{0} such that

$$
\begin{equation*}
u(z)=\int_{E_{0}} \log \left|\frac{1}{z-a}\right| d \mu(a), \int_{F_{0}} d \mu(a)=1 \tag{1}
\end{equation*}
$$

is harmonic outside E_{0}, excluding $z=\infty$, and has boundary value $+\infty$ at any point of E_{0}. Let $v(z)$ be its conjugate harmonic function and put

$$
\begin{equation*}
\zeta=\chi(z)=e^{u(z)+i v(z)}=\rho(z) e^{i_{V}(z)} ; \tag{2}
\end{equation*}
$$

for the sake of convenience, we shall call the function $\zeta=\chi(z)$ " Evans' function." Let C_{λ} be the niveau curve $\rho(z)=$ const. $=\lambda(0<\lambda<+\infty)$. Then C_{λ} consists of a finite number of simple closed curves surrounding E_{0}. Let us use the niveau curve $C_{\lambda}: \rho(z)=\lambda$ and v-line $v(z)=$ const. $=\theta$ in the same manner as the circle $|z|=\lambda$ and the ray $\arg z=\theta$ in the theory of meromorphic functions for $|z|<+\infty$. Further, Evans' function has the important property

$$
\begin{equation*}
\int_{C_{\lambda}} d v(z)=\int_{C_{\lambda}} \frac{\partial u}{\partial n} d s=2 \pi \tag{3}
\end{equation*}
$$

where $d s$ is the arc length of C_{λ} and u is the inner normal of C_{λ}. Let λ_{0} be a fixed positive number such that for $\lambda_{0} \leqq \lambda$ all the niveau curves C_{λ} intersect the asymptotic path Λ. For $\lambda_{0} \leqq \lambda$, let θ_{λ} denote the common part of the niveau curve C_{λ} and the domain $\Delta ; \theta_{\lambda}$ consists only of a finite number of cross-cuts and does not contain any loop-cut, as Δ is simply connected. Denote $\Delta(\lambda)$ the common part of Δ and the domain exterior to C_{λ}. It is clear that the open set $\Delta(\lambda)$ consists of a finite number of simply connected components. Let $A(\lambda)$ denote the area of the Riemannian image of the open set $\Delta(i)$ by the function $z=f(z)$ and let $L(\lambda)$ denote the total length of the image of the curve θ_{λ}. Then,

$$
\begin{aligned}
& A(\lambda)=\left.\iiint_{\Delta(\lambda)}^{\prime}(z)\right|^{2} d \sigma(d \sigma: \text { the area element on the z-plane }) \\
& L(\lambda)=\iint_{\Theta_{\lambda}}\left|f^{\prime}(z)\right||d z|
\end{aligned}
$$

Next we prove that

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} A(\lambda)=+\infty \tag{4}
\end{equation*}
$$

and
(5) $\quad \lim _{\lambda \rightarrow \infty} \frac{L(\lambda)}{S(\lambda)}=0 \quad$ where $S(\lambda)=\frac{A(\lambda)}{\text { area of the interior of } \Gamma}$.

To prove these, we use Evans' function

$$
\zeta=\chi(z)=c^{u(z)+i v(z)}, \quad(0 \leqq v(z)<2 \pi) .
$$

By putting

$$
W(\zeta) \equiv f[z(\zeta)]
$$

we have

$$
A(\lambda)-A\left(\lambda_{0}\right)=\int_{\lambda_{0}}^{\lambda} \int_{\tilde{\theta}_{\lambda}}\left|W^{\prime}(\zeta)\right|^{2} \lambda d \lambda d \theta, \quad\left(\zeta=\lambda e^{i \theta}\right)
$$

where $\tilde{\theta}_{\lambda}$ denotes the image of θ_{λ} on the circle $|\zeta|=\lambda$ transformed by $\xi=\chi(z) \quad(0 \leqq v(z)<2 \pi)$, and

$$
L(\lambda)=\int_{\tilde{\theta}_{\lambda}}\left|W^{\prime}(\zeta)\right| \lambda d \theta
$$

Denote by $\eta>0$ the distance of Γ from the image of Λ. Then a geometrical consideration gives
(6)

$$
L(\lambda) \geqq 2 \eta \text { for } \lambda_{0} \leqq \lambda<+\infty .
$$

Applying Schwarz's inequality

$$
[L(\lambda)]^{2} \leqq \int_{\tilde{\theta}_{\lambda}} \lambda d \theta \int_{\tilde{\theta}_{\lambda}}\left|W^{\prime}(\zeta)\right|^{2} \lambda d \theta=\lambda \theta(\lambda) \int_{\tilde{\theta}_{\lambda}}\left|W^{\prime}(\zeta)\right|^{2} \lambda d \theta
$$

we have

$$
\begin{equation*}
\frac{[L(\lambda)]^{2}}{\lambda \theta(\lambda)} \leqq \int_{\tilde{\theta}_{\lambda}}\left|W^{\prime}(\zeta)\right|^{2} \lambda d \theta \tag{7}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
\frac{2 \eta^{2}}{\pi} \int_{\lambda_{0}}^{\lambda} \frac{d \lambda}{\lambda} \leqq \int_{\lambda_{0}}^{\lambda} \int_{\tilde{\theta}_{\lambda}}\left|W^{\prime}(\zeta)\right|^{2} \lambda d \lambda d \theta=A(\lambda)-A\left(\lambda_{0}\right), \tag{8}
\end{equation*}
$$

since

$$
\begin{equation*}
\theta(\lambda)=\int_{\theta_{\lambda}} d v(z) \leq \int_{C_{\lambda}} d v(z)=2 \pi \tag{9}
\end{equation*}
$$

(8) gives (4) when λ tends to infinity. Next we obtain from

$$
\begin{equation*}
\frac{d \lambda}{\lambda \theta(\lambda)} \leqq \frac{d A(\lambda)}{[L(\lambda)]^{2}} \tag{7}
\end{equation*}
$$

Hence, on denoting by M_{λ} the set of all λ such that

$$
L(\lambda) \geqq A(\lambda)^{\frac{1}{2}+\varepsilon}, \quad(\varepsilon>0),
$$

we see, by (9), that

$$
\frac{1}{2 \pi} \int_{M_{\lambda}} \mathrm{d} \log \lambda \leqq \int_{M_{\lambda}} \frac{d \lambda}{\lambda \theta(\lambda)} \leqq \int_{M_{\lambda}} \frac{d A(\lambda)}{\left[A(\lambda)^{\frac{1}{2}+\varepsilon}\right]^{2}} \leqq \int^{\infty} \frac{d t}{t^{1+2 \varepsilon}}<+\infty,
$$

whence $L(\lambda)<A(\lambda)^{\frac{1}{2}+\varepsilon_{\text {for }}}$ all λ not belonging to a set M_{λ} where $\int_{{ }_{\prime \lambda}} \mathrm{d} \log$ $\lambda<+\infty$. Thus (5) holds good.

If $\lambda_{0} \leqq \lambda$, the open set $\boldsymbol{\Delta}(\lambda)$ consists of a cert in numbei of simply connected components which we will denote by

$$
\Delta^{(1)}(\lambda), \Delta^{(2)}(\lambda), \ldots \ldots \ldots, \Delta^{(m)}(\lambda),
$$

where $m=m(\lambda), m \geq 1$ depends on λ. Denote by $\mathscr{D}^{(i)}(\lambda)$ the Riemnnnian image of $\Delta^{(i)}(\lambda)$ transformed by $z=f(z)$ in a one-one manner, where $i=$ 1,2, \qquad ,m. If we denote by Φ_{0} the domain obtained by excluding two points τv_{0} and v_{1} from the interior of I, then, by hypothesis, $\Phi^{(i)}(\lambda)(i=$ $1,2, \ldots \ldots \ldots, m)$ is a finite covering surface of the basic surface Φ_{0}. By Ahlfors' principal theorem on covering surfaces ${ }^{8) \text {, we have }}$

$$
\begin{equation*}
S^{(i)} \leqq h L^{(i)} \quad(i=1,2, \ldots \ldots \ldots, m), \tag{10}
\end{equation*}
$$

where $S^{(i)}$ denotes the average number of sheets of $\Phi^{(i)}(\lambda)$, i. e., $S^{(i)}$ denotes the ratio between the area of $\Phi^{(i)}(\lambda)$ and the area of Φ_{0} and $L^{(i)}$ the length of the boundary of $\Phi^{(t)}(\lambda)$ relative to Φ_{0}, h being a constant dependent only upon Φ_{0}. From (10)

$$
\sum_{i=1}^{m} S^{(i)} \leqq h \sum_{i=1}^{m} L^{(i)},
$$

that is

$$
\begin{equation*}
S(\lambda) \leqq h\left(L(\lambda)+L_{0}\right), \tag{11}
\end{equation*}
$$

where L_{0} denotes the total length of the image of arcs of K included in the boundary of Δ. Accordingly

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} \frac{L(\lambda)}{S(\lambda)} \geqq \frac{1}{h}>0 \tag{12}
\end{equation*}
$$

It is clear that (12) contradicts (5), which proves our theorem.
Remark. In our proof of Theorem 1, the assumption that Δ is simply connected plays an important rôle.
3. Consider a particular case that $z=f(z)$ is regular in the common part of the simply connected domain D and a certain neighbourhood $U\left(z_{0}\right)$ of z_{0}; that is, $f(z) \neq \infty$ in $D \cap U\left(z_{0}\right)$. Under an additional condition
we want to show that $z=f(z)$ takes every finite value, save one possible exceptional value, belonging to Ω_{n} in any neighbourhood of z_{0}. Suppose, namely, that there are two finite exceptional values τv_{0} and v_{1} witl in Ω_{n}, and let Γ be any closed simple regular analytic curve, in Ω_{n}, which surrourds τv_{n} and v_{1} and whose irteior consists only of \mathbf{i} telior points of Ω_{n}. Let Δ be the domain defined in the same way as in the proof of Theorem 1. Then, we easily see that Δ is also simply connected. If Δ were not simply connected, the boundary of Δ would contrin at least one closed analytic contour q such that q be a loop-cut of D. Accordingly, $\tau=f(z)$ would take inside q a value lyirg ot tside the simple closed curve Γ, while $\tau=f(s)$ be regular both inside q and on q and the image of q by $w=f(z)$ would lie oin Γ. Repeating the same argument as in the proof of Theorem 1, we would arive at a contraciction. Thus we have

Theorem 2. Suppose that D is simply connected, $\Omega=S_{z_{0}}^{(D)}-S_{z_{0}}^{*(c)}$ is not empty, and furtluer $f(s)$ is regular in the common part of D and a certain neighibourhood $U\left(z_{0}\right)$ of z_{0}. Let Ω_{n} be any connicted componcnt of Ω. Then, $w=f(z)$ takes cucry finite value, with one possible exception, bclonging to Ω_{n} infinitcly often in any neighbourlood of z_{0}.

As an immediate consequence, we see that under the same condition as in Theorem 2, for any connected component Ω_{n} which does not contain $z=\infty, z=f(z)$ takes every value, with one possible exception, belonging to Ω_{n} infinitely often near z_{0}. Thus we obtain the following

Theorem 3. Suppose thai D is simply connected, $\Omega=S_{z_{0}}^{(D)}-S_{z_{0}}^{*(C)}$ is not empty, and further that $f(z)$ is regular and bounded in the common part of D and a cirtain ncighbourhood $U\left(z_{0}\right)$ (or that $S_{z_{0}}^{(D)}$ docs not coincide vivith the whole zu-plane). Let Ω_{n} be any connected component of Ω. Then $w=f(s)$ takes cwery vaiue, zuth one possible exccption, belonging to Ω_{n} infinitcly often in any neighbourhood of z_{0}.

As another immediate consequence of Theorem 2, we get, by using a linear transformation,

Theorem 4. Under the same condition as in Thcorcm 1, if there are two exceptional values $\tau v_{0}, \tau \psi_{1}\left(z v_{0} \neq v_{1}\right)$ belonging to the same componint $\Omega_{n}, w=$ $f(z)$ takes every zu-value other than w_{0} and $z v_{1}$ infinitely often in any noighbourlacod of z_{0} and so $S_{z_{0}}^{(D)}$ coincides with the whole w-plane.

Mathematical Institute,
Nagoya University.

References.

1) "Capacity" means logarithmic capacity in this note.
2) F. Iversen: Sur quelques propriétés des fonction monogénes au voisinage d'un point singulier, Öfv. af Finska Vet-Soc. Förh. 58 (1916).
A. Beurling: Étude sur un probléme de majoration, Thèse de Upsal, 1933. Cf. pp. 100-103
K. Kunugi: Sur un théorème de MM. Seidel-Beurling, Proc. Acad. Tokyo, 15 (1939); Sur un problème de M. A. Beurling, Proc. Acad. Tokyo, 16 (1940); Sur l'allure d'une fonction analytique uniforme au voisinage d'un point frontière de son domaine de définition, Jap. Journ. Math. 18 (1942), pp. 1-39.
3) Beurling : 1. c. 2) ; Kunugi : 1. c. 2).
4) M. Tsuji : On the cluster set of a meromorphic function, Proc. Acad. Tokyo, 19 (1943) ; On the Riemann surface of an inverse function of a meromorphic function in the neighbourhood of a closed set of capacity zero, Proc. Acad. Tokyo, 19 (1943).
5) Tsuji: 1. c. 4).
S. Kametani: The exceptional values of functions with the set of capacity zero of essential singularitics, Proc. Acad. Tokyo, 17 (1941), pp. 429-433.
6) K. Noshiro: On the theory of the cluster sets of analytic functions, Journ. Fac. of Sci., Hokkaido lmp. Univ. 6 (1938), pp. 217-231; Cf. Theorem 4.
7) G. C. Evans: Potentials and positively infinite singularities of harmonic functions, Monatshefte für Math und Phys. 43 (1936), pp, 419-424.
K. Noshiro: Contributions to the theory of the singularities of analytic functions, Jap. Journ. Moth. 19 (1948), pp. 299-327.
8) L. Ahlfors: Zur Theorie der Überlagerungsfächen, Acta Math. 65 (1935), pp. 157-194.
R. Nevanlinna: Eindeutige analytische Funktionen, Berlin, 1936, Cf. p. 323.
