Journal of the Mathematical Society of Japan Vol. 1, No. 4, April, 1950

Note on the Cluster Sets of Analytic Functions.

Kiyoshi Noshiro.

(Received Feb. 15, 1949)

1. Let *D* be an arbitrary connected domain and *C* be its boundary. Let *E* be a closed set of capacity¹⁾ zero, included in *C* and z_0 be a point in *E*. Suppose that W=f(z) is a single-valued function meromorphic in *D*. We associate with z_0 three cluster sets $S_{z_0}^{(D)}$, $S_{z_0}^{(C)}$ and $S_{z_0}^{*(C)}$ as follows: $S_{z_0}^{(D)}$ is the set of all values *a* such that $\lim_{v \to \infty} f(z_v) = a$ with a sequence $\{z_v\}$ of points tending to z_0 inside *D*. $S_{z_0}^{*(C)}$ is the intersection $\bigcap M_r$, where M_r denotes the closure of the union $\bigcup S_{z_1}^{(D)}$ for all z' belonging to the common part of *C*-*E* and $U(z_0, r)$: $|z-z_0| < r$. In the particular case when *E* consists of a single point z_0 , we denote $S_{z_0}^{*(C)}$ by $S_{z_0}^{(C)}$ for the sake of simplicity. Obviously $S_{z_0}^{(D)}$ and $S_{z_0}^{*(C)}$ are closed sets such that $S_{z_0}^{*(C)} \subset S_{z_0}^{(D)}$, and $S_{z_0}^{*(C)}$ becomes empty if and only if there exists a positive number *r* such that C-E and $U(z_0, r)$ have no point in common.

Concerning the cluster sets $S_{z_0}^{(D)}$, $S_{z_0}^{(C)}$ and $S_{z_0}^{*(C)}$ the following theorems are known:

Theorem I. (Iversen-Beurling-Kunugi)²⁾ $B(S_{z_0}^{(D)}) \subset S_{z_0}^{(C)}$, where $B(S_{z_0}^{(D)})$ denotes the boundary of $S_{z_0}^{(D)}$, or, what is the same, $\Omega = S_{z_0}^{(D)} - S_{z_0}^{(C)}$ is an open set.

Theorem II. (Beurling-Kunugi)³⁾ Suppose that $\Omega = S_{z_0}^{(D)} - S_{z_0}^{(C)}$ is not empty and denote by Ω_n any connected component of Ω . Then w = f(z) takes every value, with two possible exceptions, belonging to Ω_n infinitely often in any neighbourhood of z_0 .

Theorem. I* (Tsuji)⁴ $B(S_{z_0}^{(D)}) \subset S_{z_0}^{*(C)}$, that is, $Q = S_{z_0}^{(D)} - S_{z_0}^{*(C)}$ is an open set.

Theorem II*. (Kametani-Tsuji)⁵⁾ Suppose that $\Omega = S_{z_0}^{(D)} - S_{z_0}^{*(C)}$ is not empty. Then w = f(z) takes every value, except a possible set of w-values of capacity zero, belonging to Ω infinitely often in any neighbourhood of z_0 .

Evidently Theorem I* is a complete extension of Theorem I. It seems however that there exists a large gap between Theorem II and Theorem II*. The object of the present note is to show that under the assumption that D is simply connected, Theorem II* can be written in the form of Theorem II.

K. Noshiro.

Namely, the writer proposes to prove the following

Theorem 1. Suppose that D is simply connected and $\mathcal{Q} = S_{z_0}^{(D)} - S_{z_0}^{*(O)}$ is not empty. Let \mathcal{Q}_n be any connected component of \mathcal{Q} . Then, w = f(z) takes every value, with two possible exceptions, belonging to \mathcal{Q}_n infinitely often in any neighbourhood of z_0 .

2. Proof of Theorem 1. Without loss of generality we may suppose that \mathcal{Q}_n does not contain $w = \infty$. Suppose, contrary to the assertion, that there are three exceptional values w_0 , w_1 and w_2 in \mathcal{Q}_n . Then, there exists a positive number r_1 such that

$f(z) \neq w_0, w_1, w_2$

in the common part of D and $U(z_0, r_1)$: $|z-z_0| < r_1$. Inside Q_n we draw a simple closed regular analytic curve I' which surrounds w_0 , w_1 and passes through w_2 , and whose interior consists only of interior points of Q_n . By hypothesis, we can select a positive number r ($< r_1$), arbitrarily small, such that, K denoting the circle $|z-z_0|=r$, $K \cap (C-E) \neq 0$ and the closure M_r of the union $\bigcup_{z'} S_{z'}^{(D)}$ for all z' belonging to the common part of C-Eand $|z-z_0| \leq r$ lies outside Γ . Now, by an extension of Iversen's theorem⁶, either w_0 is an asymptotic value of w = f(z) at z_0 or there exists a sequence of points z'_n in E tending to z_0 such that w_0 is an asymptotic value at each z'_n . Consequently it is possible to find a point z'_0 (distinct from z_0 or not) belonging to $E \cap U(z_0, r)$ such that w_0 is an asymptotic value of w=f(z) at z_0' . Let Λ be the asymptotic path with the asymptotic value w_0 at z_0' . We may assume that the image of Λ by w=f(z) is a curve lying completely in the interior of Γ . Consider the set D_r of points z inside the intersection of D and $U(z_0, r)$ such that w=f(z) lies in the interior of Γ . Then the open set D_r consists of at most an enumerable number of connected components. We shall denote by Δ the component which contains the asymptotic path Λ . It is easily seen that the boundary of Δ consists of a finite number of arcs of the circle K, a finite or an enumerable number of analytic contours inside D and a closed subset E_0 of E. Further it should be noticed that Δ is simply connected. For, any connected component of the intersection $D \cap U(z_0, r)$ is simply connected, as by hypothesis D is simply connected, and the frontier of d contains no closed analytic contour, since every analytic contour of Δ is transformed by w=f(z) into a curve lying on the simple closed curve Γ passing through an exceptional value w_2 .

276

Here we apply Evans' theorem⁷) on the logarithmic potential, to find that there exists a distribution of positive mass $d\mu(a)$ entirely on E_0 such that

(1)
$$u(z) = \int_{E_0} \log \left| \frac{1}{z-a} \right| d\mu(a), \quad \int_{E_0} d\mu(a) = 1$$

is harmonic outside E_0 , excluding $z = \infty$, and has boundary value $+\infty$ at any point of E_0 . Let v(z) be its conjugate harmonic function and put

(2)
$$\boldsymbol{\zeta} = \boldsymbol{\chi}(z) = e^{u(z) + iv(z)} = \rho(z) e^{iv(z)};$$

for the sake of convenience, we shall call the function $\zeta = \chi(z)$ "Evans' function." Let C_{λ} be the niveau curve $\rho(z) = \text{const.} = \lambda \ (0 < \lambda < +\infty)$. Then C_{λ} consists of a finite number of simple closed curves surrounding E_0 . Let us use the niveau curve C_{λ} : $\rho(z) = \lambda$ and v-line $v(z) = \text{const.} = \theta$ in the same manner as the circle $|z| = \lambda$ and the ray $\arg z = \theta$ in the theory of meromorphic functions for $|z| < +\infty$. Further, Evans' function has the important property

(3)
$$\int_{C_{\lambda}} dv(z) = \int_{C_{\lambda}} \frac{\partial u}{\partial n} ds = 2\pi,$$

where ds is the arc length of C_{λ} and n is the inner normal of C_{λ} . Let λ_0 be a fixed positive number such that for $\lambda_0 \leq \lambda$ all the niveau curves C_{λ} intersect the asymptotic path Λ . For $\lambda_0 \leq \lambda$, let θ_{λ} denote the common part of the niveau curve C_{λ} and the domain Λ ; θ_{λ} consists only of a finite number of cross-cuts and does not contain any loop-cut, as Λ is simply connected. Denote $\Lambda(\lambda)$ the common part of Λ and the domain exterior to C_{λ} . It is clear that the open set $\Lambda(\lambda)$ consists of a finite number of simply connected components. Let $\Lambda(\lambda)$ denote the area of the Riemannian image of the open set $\Lambda(\lambda)$ by the function w=f(z) and let $L(\lambda)$ denote the total length of the image of the curve θ_{λ} . Then,

$$A(\lambda) = \iint_{\Delta(\lambda)} |f'(z)|^2 d\sigma \quad (d\sigma: \text{ the area element on the z-plane}),$$
$$L(\lambda) = \iint_{\Theta_{\lambda}} |f'(z)| |dz|.$$

Next we prove that

(4)
$$\lim_{\lambda \to \infty} A(\lambda) = +\infty$$

and

K. Noshiro.

(5)
$$\lim_{\lambda \to \infty} \frac{L(\lambda)}{S(\lambda)} = 0 \quad \text{where } S(\lambda) = \frac{A(\lambda)}{\text{area of the interior of } \Gamma}$$

To prove these, we use Evans' function

$$\boldsymbol{\zeta} = \boldsymbol{\chi}(z) = e^{u(z) + iv(z)}, \quad (0 \leq v(z) < 2\pi).$$

By putting

$$W(\boldsymbol{\zeta}) \equiv f[z(\boldsymbol{\zeta})],$$

we have

$$A(\lambda) - A(\lambda_0) = \int_{\lambda_0}^{\lambda} \int_{\widetilde{\Theta}_{\lambda}} |W'(\zeta)|^2 \lambda d\lambda \ d\theta, \ (\zeta = \lambda e^{i\theta}),$$

where $\tilde{\theta}_{\lambda}$ denotes the image of θ_{λ} on the circle $|\zeta| = \lambda$ transformed by $\zeta = \chi(z)$ ($0 \leq v(z) < 2\pi$), and

$$L(\lambda) = \int_{\widetilde{\boldsymbol{\Theta}}_{\lambda}} |W'(\zeta)| \lambda d\theta.$$

Denote by $\eta > 0$ the distance of Γ from the image of Λ . Then a geometrical consideration gives

(6)
$$L(\lambda) \ge 2\eta$$
 for $\lambda_0 \le \lambda < +\infty$.

Applying Schwarz's inequality

$$[L(\lambda)]^{2} \leq \int_{\widetilde{\Theta}_{\lambda}} \lambda d\theta \int_{\widetilde{\Theta}_{\lambda}} |W'(\zeta)|^{2} \lambda d\theta = \lambda \theta(\lambda) \int_{\widetilde{\Theta}_{\lambda}} |W'(\zeta)|^{2} \lambda d\theta,$$

we have

(7)
$$\frac{[L(\lambda)]^2}{\lambda\theta(\lambda)} \leq \int_{\tilde{\tilde{\theta}}_{\lambda}} |W'(\zeta)|^2 \lambda d\theta.$$

Consequently

(8)
$$\frac{2\eta^2}{\pi}\int_{\lambda_0}^{\lambda}\frac{d\lambda}{\lambda} \leq \int_{\lambda_0}^{\lambda}\int_{\widetilde{\boldsymbol{\Theta}}_{\lambda}}|W'(\boldsymbol{\zeta})|^2\lambda d\lambda d\theta = A(\lambda) - A(\lambda_0),$$

since

• .

(9)
$$\theta(\lambda) = \int_{\theta_{\lambda}} dv(z) \leq \int_{C_{\lambda}} dv(z) = 2\pi.$$

(8) gives (4) when λ tends to infinity. Next we obtain from (7)

$$\frac{d\lambda}{\lambda\theta(\lambda)} \leq \frac{dA(\lambda)}{[L(\lambda)]^2}.$$

Hence, on denoting by M_{λ} the set of all λ such that

$$L(\lambda) \geq A(\lambda)^{\frac{1}{2}+\varepsilon}, \ (\varepsilon > 0),$$

278

we see, by (9), that

$$\frac{1}{2\pi} \int_{M_{\lambda}} d\log \lambda \leq \int_{M_{\lambda}} \frac{d\lambda}{\partial \theta(\lambda)} \leq \int_{M_{\lambda}} \frac{dA(\lambda)}{[A(\lambda)^{\frac{1}{2}+\varepsilon}]^2} \leq \int_{0}^{\infty} \frac{dt}{t^{1+2\varepsilon}} < +\infty,$$

whence $L(\lambda) < A(\lambda)^{\frac{1}{2} + \varepsilon}$ for all λ not belonging to a set M_{λ} where $\int_{\mathcal{N}_{\lambda}} d\log \lambda < +\infty$. Thus (5) holds good.

If $\lambda_0 \leq \lambda$, the open set $\Delta(\lambda)$ consists of a cert in number of simply connected components which we will denote by

$$\Delta^{(1)}(\lambda), \ \Delta^{(2)}(\lambda), \ldots, \ \Delta^{(m)}(\lambda),$$

where $m=m(\lambda)$, $m\geq 1$ depends on λ . Denote by $\mathcal{P}^{(i)}(\lambda)$ the Riemannian image of $\Delta^{(i)}(\lambda)$ transformed by w=f(z) in a one-one manner, where i= $1,2,\ldots,m$. If we denote by \mathcal{P}_0 the domain obtained by excluding two points w_0 and w_1 from the interior of I, then, by hypothesis, $\mathcal{P}^{(i)}(\lambda)$ (i= $1,2,\ldots,m$) is a finite covering surface of the basic surface \mathcal{P}_0 . By Ahlfors' principal theorem on covering surfaces⁸⁾, we have

(10)
$$S^{(i)} \leq hL^{(i)} \quad (i=1,2,\ldots,m),$$

where $S^{(i)}$ denotes the average number of sheets of $\Phi^{(i)}(\lambda)$, i. e., $S^{(i)}$ denotes the ratio between the area of $\Phi^{(i)}(\lambda)$ and the area of Φ_0 and $L^{(i)}$ the length of the boundary of $\Phi^{(i)}(\lambda)$ relative to Ψ_0 , h being a constant dependent only upon Ψ_0 . From (10)

$$\sum_{i=1}^{m} S^{(i)} \leq h \sum_{i=1}^{m} L^{(i)},$$

that is

(11)
$$S(\lambda) \leq h(L(\lambda) + L_0),$$

where L_0 denotes the total length of the image of arcs of K included in the boundary of Δ . Accordingly

(12)
$$\lim_{\lambda \to \infty} \frac{L(\lambda)}{S(\lambda)} \ge \frac{1}{h} > 0.$$

It is clear that (12) contradicts (5), which proves our theorem.

Remark. In our proof of Theorem 1, the assumption that Δ is simply connected plays an important rôle.

3. Consider a particular case that w=f(z) is regular in the common part of the simply connected domain D and a certain neighbourhood $U(z_0)$ of z_0 ; that is, $f(z) \neq \infty$ in $D \cap U(z_0)$. Under an additional condition

we want to show that w=f(z) takes every finite value, save one possible exceptional value, belonging to \mathcal{Q}_n in any neighbourhood of z_0 . Suppose, namely, that there are two finite exceptional values w_0 and w_1 with in \mathcal{Q}_n , and let Γ be any closed simple regular analytic curve, in \mathcal{Q}_n , which surrourds w_0 and w_1 and whose interior consists only of interior points of \mathcal{Q}_n . Let \mathcal{A} be the domain defined in the same way as in the proof of Theorem 1. Then, we easily see that \mathcal{A} is also simply connected. If \mathcal{A} were not simply connected, the boundary of \mathcal{A} would contain at least one closed analytic contour q such that q be a loop-cut of D. Accordingly, w=f(z) would take inside q a value lying outside the simple closed curve Γ , while w=f(z) be regular both inside q and on q and the image of qby w=f(z) would lie on Γ . Repeating the same argument as in the proof of Theorem 1, we would arrive at a contradiction. Thus we have

Theorem 2. Suppose that D is simply connected, $\Omega = S_{z_0}^{(D)} - S_{z_0}^{*(C)}$ is not empty, and further f(z) is regular in the common part of D and a certain neighbourhood $U(z_0)$ of z_0 . Let Ω_n be any connected component of Ω . Then, w=f(z) takes every finite value, with one possible exception, belonging to Ω_n infinitely often in any neighbourhood of z_0 .

As an immediate consequence, we see that under the same condition as in Theorem 2, for any connected component \mathcal{Q}_n which does not contain $w = \infty$, w = f(z) takes every value, with one possible exception, belonging to \mathcal{Q}_n infinitely often near z_0 . Thus we obtain the following

Theorem 3. Suppose that D is simply connected, $\Omega = S_{z_0}^{(D)} - S_{z_0}^{*(C)}$ is not empty, and further that f(z) is regular and bounded in the common part of D and a certain neighbourhood $U(z_0)$ (or that $S_{z_0}^{(D)}$ does not coincide with the whole w-plane). Let Ω_n be any connected component of Ω . Then w=f(z)takes every value, with one possible exception, belonging to Ω_n infinitely often in any neighbourhood of z_0 .

As another immediate consequence of Theorem 2, we get, by using a linear transformation,

Theorem 4. Under the same condition as in Theorem 1, if there are two exceptional values w_0 , w_1 ($w_0 \neq w_1$) belonging to the same component Ω_n , w = f(z) takes every w-value other than w_0 and w_1 infinitely often in any neighbourhood of z_0 and so $S_{z_0}^{(D)}$ coincides with the whole w-plane.

Mathematical Institute, Nagoya University.

280

References.

1) "Capacity" means logarithmic capacity in this note.

2) F. Iversen: Sur quelques propriétés des fonction monogénes au voisinage d'un point singulier, Öfv. af Finska Vet-Soc. Förh. 58 (1916).

A. Beurling: Étude sur un probléme de majoration, Thèse de Upsal, 1933. Cf. pp. 100-103

K. Kunugi: Sur un théorème de MM. Seidel-Beurling, Proc. Acad. Tokyo, 15 (1939); Sur un problème de M. A. Beurling, Proc. Acad. Tokyo, 16 (1940); Sur l'allure d'une fonction analytique uniforme au voisinage d'un point frontière de son domaine de définition, Jap. Journ. Math. 18 (1942), pp. 1-39.

3) Beurling: 1. c. 2); Kunugi: 1. c. 2).

4) M. Tsuji: On the cluster set of a meromorphic function, Proc. Acad. Tokyo, 19 (1943); On the Riemann surface of an inverse function of a meromorphic function in the neighbourhood of a closed set of capacity zero, Proc. Acad. Tokyo, 19 (1943).

5) Tsuji: 1. c. 4).

S. Kametani: The exceptional values of functions with the set of capacity zero of essential singularities, Proc. Acad. Tokyo, 17 (1941), pp. 429-433.

6) K. Noshiro: On the theory of the cluster sets of analytic functions, Journ. Fac. of Sci., Hokkaido Imp. Univ. 6 (1938), pp. 217-231; Cf. Theorem 4.

7) G. C. Evans: Potentials and positively infinite singularities of harmonic functions, Monatshefte für Math und Phys. 43 (1936), pp, 419-424.

K. Noshiro: Contributions to the theory of the singularities of analytic functions, Jap. Journ. Moth. 19 (1948), pp. 299-327.

8) L. Ahlfors: Zur Theorie der Überlagerungsflächen, Acta Math. 65 (1935), pp. 157-194.
R. Nevanlinna: Eindeutige analytische Funktionen, Berlin, 1936, Cf. p. 323.