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1. Let $D$ be an arbitrary connected domain and $C$ be its boundary.
Let $E$ be a closed set of capacity1) zero, included in $C$ and $z_{0}$ be a point
in $E$. Suppose that $W=f(2)$ is a single-valued function meromorphic in
$D$ . We associate with $z_{0}$ three cluster sets $S_{z_{O}}^{(D)},$ $S_{z_{O}^{(C)}}$ and $S_{z^{*_{O}(C)}}$ as follows:
$S_{z_{0}^{(D)}}$ is the set of all values $a$ such that $\lim_{\nu\rightarrow\infty}f(4\sim_{\nu})=a$ with a sequence $\{2_{\nu}\}$

of points tending to $z_{0}$ inside D. $S_{z^{*_{0}(C)}}$ is the intersection $\cap M_{r}$ , where
$r$

$M_{r}$ denotes the closure of the union $\cup S_{z^{(D)}}$, for all $z^{\prime}$ belonging to the
$a^{\prime}$

common part of $C-E$ and $U(2_{0}, r)$ : $|z-\sim_{0}|<r$ . In the particular case
when $E$ consists of a single point $\sim_{0}$ we denote $S_{z}^{*_{0}(C)}$ by $S_{z_{O}^{(C)}}$ for the sake
of simplicity. Obviously $S_{z_{O}}^{(D)}$ and $S_{z}^{*_{O}(C)}$ are closed sets such that $ S_{z}^{*_{O}(C)}\subset$

$S_{z_{0}^{(D)}}$ , and $S_{z_{O}}^{(D)}$ is always non-empty while $S_{z^{*_{0}(C)}}$ becomes empty if and only
if there exists a positive number $r$ such that $C-E$ and $U(z_{0}, r)$ have no
point in common.

Concerning the cluster sets $S_{z_{0}}^{(D)},$ $S_{z_{O}}^{(0)}$ and $S_{z^{*_{O}(C)}}$ the following theorems
are known:

Theorem I. $(Iversen- Beurling- Kunugi)^{\underline{o}})$ $B(S_{z_{O}}^{(D)})\subset S_{z_{O}}^{(c)}$ , rvkere $ B(S_{z_{0}^{(D)}}\rangle$

$de\prime lotes$ the boundary $rs_{z_{0}^{(D)}}$ , or, what is the same, $\Omega=S_{z_{0}}^{(D)}-S_{z_{O}}^{(C)}$ is an open
set.

Theorem II. $($Beurling-Kuliugi $)^{S)}$ Suppose $t1\iota at\Omega=S_{z_{0}}^{(D)}-S_{z_{0}}^{(C)}$ is not
empty and denote by $\Omega_{n}$ any $co$nnected component of $\Omega$ . Tfaen $w=f(z)$ takes
every value, with two possible exceptions, $belongi\prime lg$ to $\Omega_{n}$ infinitely often in
any neigltbourhood of $2_{0}$ .

Theorem. $I^{*}$ $($Tsuji $)^{}$ $B(S_{lQ}^{(D)})\subset S_{z^{*_{O}(C)}}$ , tliaf is, $\Omega=S_{\approx 0}^{(D)}-S_{z^{*_{O}(C)}}$ is $a;x$

open set.
Theorem $II^{*}$ . (Kametani-Tsuji)5) Suppose that $\Omega=S_{\mathscr{C}}^{(D)}-S_{z^{*_{O}(C)}}$ is not

empty. Then $w=f(z)$ takes every value, $exccp_{t}$ a possible set of w-values of
capacity $2ero,$ beJonpng to $\Omega infnitelp/$ often in any $n\dot{a}g$kbourhood of $z_{0}$ .

Evidently Theorem 1* is a complete extension of Theorem I. It seems
however that there exists a large gap between Theorem II and Theorem $I1^{*}$ .
The object of the present note is to show that under the assumption that $D$ is
simply connected, Theorem $II^{*}$ can be written in the form of Theorem II.
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$\acute{N}$ amely, the writer proposes to prove the following

Theorem 1. Suppose that $D$ is simply conneckid and $\Omega=S_{*0}^{(D)}-S_{*0}^{k(C)}$ is
not empty. Let $\Omega_{n}$ be any connected component of $\Omega$ . Then, $w=f(2)$ takes
every value, with two possible exceptions, belonging to $\Omega_{n}$ injttiitely often in
any neigltbourl $ood$ of $2_{0}$ .

2. Proof of Theorem 1. Without loss of generality we may suppose
that $\Omega_{n}$ does not contain $ w=\infty$ . Suppose, contrary to the assertion, that
there are three exceptional values $w_{0},$ $w_{1}$ and $w_{2}$ in $J2_{n}$ . Then, there exists
a positive number $r_{1}$ such that

$f(\sim\sim)\neq w_{0},$ $w_{1},$ $w_{2}$

in the common part of $D$ and $U(2_{0}, r_{1}):|2-z_{0}|<r_{1}$ . Inside $\Omega_{n}$ we draw
a simple closed regular analytic curve $l^{T}$ which surrounds $w_{0},$ $w_{1}$ and passes
through $w_{2}$ , and whose interior consists only of interior points of $\Omega_{n}$ . By
hypothesis, we can select a positive number $r(<r_{1})$ , arbitrarily small,
such that, $K$ denoting the circle $|2-z_{0}|=r,$ $Kn(C-E)\neq 0$ and the closure
$M_{r}$ of the union $\approx\bigcup_{\prime}S_{z}^{(I))}$ for all $z$

‘ belonging to the common path of $C-E$

and $|z-2_{0}|\leqq r$ lies outside $\Gamma$. Now, by an extension of Iversen’s theorem6),

either $w_{0}$ is an asymptotic value of $’\iota v=f(2)at2_{0}$ or there exists a sequence
of points $z_{n}^{\prime}$ in $E$ tending to $2_{0}$ such that $w_{0}$ is an asymptotic value at
each $z_{n}^{t}$ . Consequently it is possible to find a point $z_{0}^{t}$ (distinct from $2_{0}$

or not) belonging to $EnU(2_{0}, r)$ s\’uch that $’\iota C!_{0}$ is an asymptotic valu $e$ of
$w=f(2)$ at $z_{0}^{\prime}$ . Let $\Lambda$ be the asymptotic path with the asymptotic value
$w_{0}$ at $\sim\sigma_{0^{\prime}}$ . We may assume that th $e$ image of $\Lambda$ by $w=f(2)$ is a curve
lying completely in the interior of $\Gamma$. Consider the set $D_{r}$ of points 2

inside the intersection of $D$ and $U(2_{0}, r)$ such that $w=f(z)$ lies in the
interior of $\Gamma$. Then the open set $D_{r}$ consists of at most an enumerable
number of connected components. We shall denote by $\Delta$ the component
which contains the asymptotic path $\Lambda$ . It is easily seen that the boundary
of $\Delta$ consists of a finite number of arcs of the circle $K$, a finite or an
enumerable number of analytic contours inside $D$ and a closed subset $E_{0}$

of $E$. Further it should be noticed that $\Delta$ is simply connected. For, any
connected component of the intersection $DnU(2_{0}, r)$ is simply connected,
as by hypothesis $D$ is simply connected, and the frontier of $\Delta$ contains no
clos $ed$ analytic contour, since every analytic contour of $\Delta$ is transformed
by $w=f(\alpha)$ into a curve lying on the simple closed curve $\Gamma$ passing
through an exceptional value $’\iota v_{2}$ .
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Here we apply Evans’ theorem7) on the logarithmic potential, to find
that there exists a distribution of positive mass $d\mu(a)$ entirely on $E_{0}$ such
that

(1) $u(z)=\int_{F_{0}}\log|\frac{1}{\epsilon-a}|d\mu(a),$ $\int_{F\ovalbox{\tt\small REJECT} o}d\mu(a)=1$

is harmonic outside $E_{0}$ , excluding $ z=\infty$ , and has boundary value $+\infty$ at
any point of $E_{0}$ . Let $v(2)$ be its $co\urcorner jugate$ harmonic function and put

(2) $\zeta=\chi(.)=e^{\alpha(z)+iv(z)}=\rho(\sim\sigma)e^{i_{l}(z)}$ ;

for the sake of convenience, we shall call the function $\zeta=\chi(z)$
“ Evans’ fun-

ction.” Let $C_{\lambda}$ be the niveau curve $\rho(’)=const.=\lambda(0<\lambda<+\infty)$ . Then
$C_{\lambda}$ consists of a finite $num^{1}\supset er$ of $sim_{1}31e$ closed curves surrounding $E_{0}$ .
Let us use the niveau curve $C_{\lambda}$ : $\rho(2)=\lambda$ and v-line $ v(z)=const.=\theta$ in
the same manner as the circle $|z|=\lambda$ and the ray $\arg z=\theta$ in the theory
of $m^{\underline{z}}romot\cdot p^{1}nic$ functions for $|?|<+\infty$ . Further, Evans’ function has the
important property

(3) $\int_{c_{\lambda}^{dv(\overline,)=\int_{C_{\lambda}}\frac{\partial u}{\partial n}ds=2\pi}’}\sim$

where $ds$ is the arc length of $C_{\lambda}$ and $pt$ is th $e$ inner normal of $C_{\lambda}$ .
Let $\lambda_{0}$ be a fixed positive number such that for $\lambda_{0}<\lambda=$ all the niveau curves
$C_{\lambda}$ intersect the asymptotic path $\Lambda$ . For $\lambda_{0}\underline{<}\lambda-\sim$

’ let $\theta_{\lambda}$ denote the common
part of the niveau curve $C_{\lambda}$ and the domain $\Delta;\Theta_{\lambda}$ consists only of a
finite $num^{\prime}\supset er$ of cross-cuts and does not contain any loop-cut, as $\Delta$ is
simply connected. Denote $\Delta(\lambda)$ the common part of $\Delta$ and the domain
exterior to $C_{\lambda}$ . It is clear that the open set $\Delta(\lambda)$ consists of a finite
number of simply connected components. Let $A(\lambda)$ denote the area of the
Riemannian image of the open set $\Delta(\lambda)$ by th $e$ function $w=f(2)$ and let
$L(\lambda)$ denote the total length of the image of the curve $\Theta_{\lambda}$ . Then,

$ A(\lambda)=\iint|f^{\prime}(z)|\underline{d}\sigma$ ($ d\sigma$ ; the area element on the z-plane),

$L(\lambda)=\int\int_{\Theta}|_{\lambda}f^{\prime}(z)\{|dz|$ .

Next we prove that
(4) $\lim_{\lambda\rightarrow\infty}A(\lambda)=\dotplus\infty$

and
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(5) $\varliminf_{\lambda\rightarrow\infty}\frac{L(\lambda)}{S(j.)}=0$ where $S(\lambda)=\frac{A(\lambda)}{areaoft/lei;lleriorr\Gamma}$,

To prove these, we use Evans’ function
$\zeta=\chi(r)=e^{u(z)+i\cdot,(*)},$ $(0=<v(2)<2\pi)$ .

By putting
$W(\zeta)\equiv f[2(\zeta)]$ ,

we have

$A(\lambda)-A(\lambda_{0})=\int_{\lambda 0}^{\lambda}\int_{\theta}\sim_{\lambda}|W^{\prime}(\zeta)|^{\underline{o}}id\lambda d\theta,$ $(\zeta=\lambda e^{i\theta})$ ,

where $\tilde{\theta}_{\lambda}$ denotes the image of $\theta_{\lambda}$ on the circle $|\zeta|=\lambda$ transformed by
$\zeta=x^{(\alpha}\sim)(0=<v(2)<2\tau)$ , and

$ L(\lambda)=\int_{\tilde{\theta}_{\lambda}}|W^{t}(\zeta)|J.d\theta$ .
Denote by $\eta>0$ the distance of $\Gamma$ from the image of $\Lambda$ . Then a geometrical
consideration gives

(6) $ L(\lambda)=>2\eta$ for $\lambda_{0}<\lambda=<+\infty$ .
Applying Schwarz’s inequality

$[L(\lambda)]^{\underline{o}}=<\int_{\Theta}\sim_{\lambda}\lambda d\theta\int_{\tilde{\theta}_{\lambda}}|W^{\prime}(\zeta)|^{2}\lambda d\theta=\lambda\theta(\lambda)\int_{\tilde{\theta}_{\lambda}}|W^{\prime}(\zeta)|^{\underline{o}}\lambda d\theta$ ,

we have

(7) $\frac{[L(\lambda)]^{2}}{\lambda\theta(\lambda)}\leqq\int_{\partial}\overline{\sim}_{\lambda}|W^{\prime}(\zeta)|^{2}\lambda d\theta$ .

Consequently

(8) $\frac{2\eta^{o}\sim}{\pi}\int_{\lambda\circ}^{\lambda}\frac{d\lambda}{\lambda}\leqq\int_{\lambda 0}^{\lambda}\int_{\partial}\sim_{\lambda}|W^{\prime}(\zeta)|^{\underline{o}}\lambda d\lambda d\theta=A(\lambda)-A(\lambda_{0})$ ,

since

(9) $\theta(\lambda)=\int_{\partial_{\lambda}}dv(z)\leq\int_{C_{\lambda}}dv(z)=2\pi$.
(8) gives (4) when $\lambda$ tends to infinity. Next we obtain from (7)

$\frac{d\lambda}{\lambda\theta(\lambda)}\leqq\frac{dA(\lambda)}{[L(\lambda)]^{2}}$

Hence, on denoting by $M_{\lambda}$ the set of all $\lambda$ such that
$L(\lambda)\geqq A(\lambda)^{g+\epsilon},$ $(\epsilon>0)$ ,
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we see, by (9), that

$\frac{1}{2\pi}\int_{M_{\lambda}}d^{\rceil}$. og $\lambda\leqq\int\frac{d\lambda}{M_{\lambda}\lambda\theta(\lambda)}\leqq\int_{M\chi}\frac{dA(\lambda)}{[A(\lambda)^{k+e}]^{2}}\leqq.\int^{\infty}\frac{d\dot{\prime}}{t^{1+5}\underline{?}}<+\infty$ ,

whence $L(\lambda)<A(\lambda)\not\in+for$ all $\lambda$ not belonging to a set $M_{\lambda}\tau vhere\int_{\lambda}$ dlog
$\lambda<+\infty$ . Thus (5) holds good.

If $\lambda_{0}\leqq\lambda$ , the open set $\Delta(\lambda)$ consists of a cert in $n1^{1}mbe_{1}$ of simply
connected components which we will denote by

$\Delta^{(1)}(\lambda),$ $\Delta^{(^{\underline{o}})}(\lambda),\ldots\ldots\ldots,$ $\Delta^{(m)}(\lambda)$ ,

where $m=m(\lambda),$ $m\geqq 1$ depends on $\lambda$ . Denote bv $\phi^{(i)}(\lambda)$ the Riemannian
image of $\Delta^{(7)}(\lambda)$ transformed by $w=f(z)$ in a one-one manner, where $i=$

$1,2,\ldots\ldots\ldots,m$ . If we denote by $\Phi_{0}$ the domain obtain $ed$ by excluding two
points 7 $v_{0}$ and $’\angle v_{1}$ from the $i_{t1}tef$ ior of $I^{7}$, then, by hypothesis, $\mathscr{O}^{(i)}(\lambda)(i=$

$1,2,\ldots\ldots\ldots,$ $m$) is a finite covering surface of the basic surface $\mathcal{O}_{0}$ . By
Ahlfors’ principal theorem on $co\vee eling$ surfaces8), we have

(10) $S^{i)}’\leqq\nearrow\iota L^{(i)}(i=1,2,\ldots\ldots\ldots,\prime n)$ ,

where $S^{(i)}$ denotes the average number of sheets of $\Phi^{(i)}(\lambda),$ $i$ . $e.,$
$S^{(i)}$ denotes

th $e$ ratio between the area of ($P^{(i)}(\lambda)$ and the area of $\Phi_{0}$ and $L^{(i)}$ the length
of the boundary of $\Phi^{(t)}(\lambda)$ relative to $\mathcal{O}_{0},$ $h$ being a constant dependent
only upon ($p_{0}$ . From (10)

$\sum_{?,=1}^{n}S^{(i)}\leqq\nearrow l\sum_{i=1}^{m}L^{(i)}$ ,

that is
(11) $S(\lambda)\leqq h(L(\lambda)+L_{0})$ ,

where $L_{0}$ denotes the total length of the image of arcs of $K$ included in
the $bo\llcorner lndary$ of $\Delta$ . Accordingly

(12) $\varliminf_{\lambda->\infty}\frac{L(\lambda)}{S(\lambda)}\geqq\frac{1}{\nearrow l}>0$ .

It is clear that (12) $coo$ tradicts (5), $\tau vhi(-\backslash h$ proves our theorem.
Remark. In our proof of Theorem 1, the assumption that $\Delta$ is simply

connected plays an important $r6le$ .
3. Consider a particular case that $’\angle v=f(2)$ is regular in the common

part of the simply connected domain $D$ and a certain neighbourhood
$U(2_{0})$ of $z_{0}$ ; that is, $ f(\sim r)\neq\infty$ in $D\cap U(2_{0})$ . Under an additional conditiol]
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we want to show that $zv=f(2)$ takes every finite value, save one possible
exceptional value, $be^{\mathfrak{s}}\ovalbox{\tt\small REJECT} 01’ gi1^{\urcorner}g$ to $\Omega_{n}$ in any $nei_{o}(rhb_{0_{\llcorner}}\iota$ rhood of $z_{0}$ . Snppose,
namely, that there are $t\iota t^{r}O$ finite exceptional values $’\iota v_{0}$ and $zv_{1}$ witt in $\Omega_{n}$ ,
and let $\Gamma$ be any closed simple regular analytic curve, in $\Omega_{n}$ , which
surrourds $’\ell y_{0}$ and $\tau v_{1}$ and rvhose it $te\downarrow$

’ ior consists o:lly of $i^{\gamma te1}ior$ points of
$\Omega_{n}$ . Let $\Delta$ be the domain defined in the same way as in the $p_{1}oof$ of
Theorem 1. Then, we easily see that $\Delta$ is also simply connected. If
$\Delta$ were not simply $conIlected$ , the boundary of $\Delta wou!d\cot_{1}t_{\overline{r}}$ in at least
one closed analytic contour $qs\llcorner^{1}ch$ that $q$ be a loop-cut of $D$ . Accordingly,
$\prime pv=f(r)$ would $t_{ct}^{-}kei1^{\backslash }\downarrow e\backslash icleq$ a value lyirg ot tside the simple closed curve
$\Gamma$, wkile $’\iota\ell^{\prime}=f(4’)$ be $reg\iota^{\ovalbox{\tt\small REJECT}},$ lar both inside $q$ and on $q$ and the image of $q$

by $\prime lv=f(.?)$ would lie on $\Gamma’$. Repeating $t1Je$ same argument as in the proof
of Theorem 1, we wovld arlive at a contraciction. Thus we have

Theorem 2. Suppose that $D$ is simply connected, $\Omega=S_{z_{0}}^{(D)}-S_{z_{0}^{|(C)}}$’ is not
empty, and further $f(-)$ is rcgnlar in the $com$mon part of $D$ and a certain
neiglbo$l/r/loodU(z_{0}\sim)$ of $2_{0}$ . Let $12_{n}$ be any comlt ctcd $compom\cdot nt$ of $\Omega$ . $T//pn$ ,
$’\angle v=f(\approx)$ ’akcs $e_{\iota^{\prime_{t^{\prime}}}}^{\prime}’ ry$ fnite $7;alne,$ $’\iota vithoni$ possiblt’ exccption, bclon.$\rho\backslash ir/g$ to $\Omega_{n}$

$infnitply$ oftrn in any $n?i_{6^{(}},hbourhoodof\approx_{0}$ .
As an immediate consequence, we see that under $t_{J1}^{1}e$ same condi-

tion as in Theorem 2, for $ally$ connected $com_{1}oonertJ2_{n}$ which does not
contain $\prime \mathcal{L}v=\infty,$ $’\angle 0=f(z)$ $t\backslash kes$ every value, with one possible exception,
belonging to $S2_{n}it^{\gamma}finitely$ often near $\swarrow\sim_{0}$ Thus we obtain th $e$ following

$T1\urcorner eo\ovalbox{\tt\small REJECT}^{-}em3$ . Suppose lhat $D$ is simply $co\prime_{\hat{l}}nected$, ,Sl? $=S_{\wedge}^{t_{O}L^{\backslash })}-S_{zo}^{\backslash \cdot\langle C)}i\sigma$ nor
empty, $a;_{\iota}’ d$ furfhcr that $f(’./)$ is rcgz. $lar$ $a’\prime d$ bounded in $t/lC$ common part of
$D$ and a $c$ ( rtain $ncig^{\gamma_{l}}bour/loodU(\sim_{0})$ (or that $S_{O}^{(D)}$ does $\prime lOj$ coincide $’\iota t/i_{\ell^{l}}/\iota$

the whole $’\iota v- pIane$). Let $l2_{n}$ be $a/\iota ycormecfed$ componenl of $\Omega$ . $T/len’\iota 1=f(\sim\prime\prime)$

takcs $e_{\iota}^{\prime}/eryz/a_{\ell}^{\prime}u^{2},$ $’(vlt/^{\prime}lo/le_{l)}ossiIle’ er^{\prime}ccption,$ $be/onging$ to $S2_{n}i;fnitd_{J^{\prime}}$ oftrn
in any $neighbonr/loodof\approx 0$ .

As another immediate consequence of Theorem 2, we get, by using a
linear tra $t^{1}sformation$ ,

Theor$em4$ . Under the same $conditio/l$ as in $T1_{l}eorem1$ , if llere are $t_{L}^{\prime}vo$

exceptional values $\prime pC!_{0},$
$l\ell_{1}(\prime\prime\iota V_{0}\neq Po_{1})$ belonging to $t/l^{J^{\prime}}$ same compont $nt\Omega_{n},$ $w=$

$f(\sim)$ takes every $’\angle t!- val/Jeol/\iota ert1\iota an\ovalbox{\tt\small REJECT} 7\iota\nu_{0}$ and $?v_{1}i/lfi\prime litely$ cflen in any ncig-
$/lbonrhcod$ of $2_{0}$ and so $S_{xo}^{(JJ)}$ coiilcides with $tlt\ell who_{\vee}^{\prime}e$ w-plane.

Mathematical Institute,

Nagoya University.
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