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Introduction

Recently, Steenrod $[6]^{*}$ has laid the foundation for the construction of
tensor functions by introducing the notion of the so-called characteristic
cocycle, which plays an important r\^ole in the theory of fibre bundles. The
characteristic cocycle was thereby defined for a special type of fibre bundle,
so that the characteristic class obtained is a topological invariant.

The object of the present note is to show that the generalization of
the ideas involved is likewise of some help in studying homotopy proper-
ties of fibre bundles. We shall restrict ourselves largely to the case that
the base space has a simple topological nature. It turns out that the charac-
teristic class is a topological invariant. The method is then applied to homo-
geneous spaces. In particular, we take the spheres as such and are led to
some results concerning group manifolds.

\S 1. Properties of the $\psi$-cocycle
1. Let $R$ be a fibre buudle, with the base space $B$ and with fibres

which are simple in every dimension. $B$ is supposed to be a polyhedron,
and we take a simplicial $decom_{F}ositionK$ of $B$ which is so fine that the
star of each simplex lies in a coordinate neighborhood of $B$. We then
denote by $\pi$ the projection of $R$ onto $B$. Let $K^{r}\downarrow be$ the subcomplex
of $K$, consisting all simplexes of dimension not greater than $r$ .

Suppose it is defined a continuous map $\psi$ of $K$‘ in $R$ such that each
point is mapped into a point belonging to the fibre over it. Such a map
we refer to as slicing mop. Let $T^{r+1}$ be a $sim_{1}\supset 1ex$ of dimension $r+1$ of
$K$ and 1V a coordinate neighborhood containing $T^{r+1}$ . We resolve $\pi^{-1}(N)$

into the topological product of $\Lambda^{7}$ and a fixed fibre $F$ and denote by $\lambda$ the
projection of $\pi^{-1}(\Lambda^{7})$ onto $F$ . Since the map $\lambda\psi$ is defined over the boundary
$T^{r+1}$ , we get a map of a sphere of dimension $r$ into a fibre and hence an
element of the homotopy group of dimension $r$ , which we denote by $ c(\psi$ ,
$T^{r+1})$ . Following Steenrod, we shall define the $\psi$-cocycle, by assigning
$c(\psi, T^{r+1})$ to each simplex $T^{r+1}$ :

$*)$ Numbers in brackets refer to the bibliography.
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$c^{r+1}(\psi)=\Sigma c(\psi,T_{i}^{r+1})T^{r+1}$

which depends on the $dccompos_{1}tion$ used and on the map $\psi$ . In general,
the cohomology group is based on local coefficient groups connected by
local isomorphisms [6], [7].

We assume except for Theorem (1.3) throughout this paper that the
fibre is connected and simpIe in every dimension.

Lemma 1.*) $c^{r+1}(\psi)=0$ is a necessary and sufficient condition $ tha^{f}\psi$

can be extended to a slicing map of $K^{r+1}$

Proof. Suppose $\psi$ is defined on $K^{r+1}$ . Then, we have $c(\psi, T^{r+1})=0$

for every $T^{l+1}$ . Conversely, if $c(\psi, T^{r+1})=0,$ $ J.\psi$ can be extended tq a
map of $T^{r+\iota}$ in $F$. We obtain the extension of $\psi$ , by assignment $x\rightarrow(x$ ,
$J.\psi(x))$ for $x\in T^{r+1}$ .

Lemma 2. $**$) $1fc^{r+1}(\psi)\sim 0$ , there exists $a_{-}$ slicing map $\psi$
‘ of $K^{r+1}$ ,

such tiiat $\psi^{\prime}=1^{J}/$ on $K^{r-1}$ .
Proof. By hypothesis, there exists an r-chain $c^{r}$ with th $e$ coboundary

$\delta c^{r}=\mathcal{E}^{+1}(\psi)$ , namely, we have $c^{r+1}(\psi, T^{r+1})=\sum_{j}c^{r}(T_{j}^{r})$ . For each simplex
$T_{j}^{r}$ , we choose a homothetic $sim_{1}o1ext_{j}^{r}$. Let $\tau_{i}$ map $T_{j}^{r}-t_{j}^{r}$ linearly onto
$T_{j}^{r}-p_{j},$ $p_{j}\in T_{j}^{r}$ . Le $t$ further $\mu_{j}$ be a map of $t_{j}^{r}$ into $F$ carrying $1_{j}^{r}$ into
$\lambda\psi(p_{j})$ , which $represents-c^{r}(T_{j}^{r})$ of $\pi^{r}(F)$ . We define the map $\psi^{\prime}$ of $T_{j}^{r}$

into $T_{j}^{r}\times F$ :
$\psi^{\prime}(x)=(x, \lambda\psi\tau_{j}(x))$ , $x\epsilon T_{j}^{r}-r_{j}$ ,

$=(x, \mu_{j}(x))$ , $x\epsilon t_{j}^{r}$.
$\psi^{\prime}$ coincides with $\psi$ on $\dot{T}^{r}$ . It follows directly from the construction just
given, that the map $\lambda\psi^{\prime}$ of $\dot{T}^{r+1}$ in $F\det e$rmines $0$ of $\pi^{r}(F)$ . Hence we
have $c^{r+1}(\psi^{\prime}, T^{r^{L}1})=0$ . This leads to a map $\psi^{\prime}$ of $K^{r}$ with $f^{+1}(\psi^{\prime})=0$ .
Thus, by Lemma 1, $\psi^{\prime}$ can be extended to a slicing map of $K^{r+1}$ .

With these preparations we can state the following theorem:

Theorem (1. 1) $I\mathscr{J}tH^{r}(B)$ be the r-t/t cohomology group (with local
coefficient group $\pi^{\prime\cdot-1}(F))$ of B. $1fH^{2}(B)=H^{s}(B)=\ldots=H^{\delta}(B),=0$ it is
possible to define a slicing map over $K^{\epsilon}$ .

$Pr\cdot oof$. For a vertex of $K$, we choose a point in the fibre over it.
Since $F$ is connected, we can easily define a slicing map $\psi$ over all sim-
plexes of $K^{1}$ . Suppose Inductively that $\psi$ has been defined over $K^{r-1}$ .

$*)$ This is identical with Theorem 4 (a) in the paper cf Steenrod [61.
$**)$ Cf. [ $ 6\rfloor$ Theorem 4 (c).
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Then $\psi$ is defined on $\dot{Z}^{r}$ . Thus, we have, as before, an r-dimensional $\psi-$.

cocycle $c^{r}(\psi)$ , by putting
$f(\psi)=\sum_{l}c^{r}(\psi, T_{i}^{r})T_{i}^{r}$

,
By assumption, $c^{r}(\emptyset)\sim 0$ , hence by Lemma 2, there can be defined a

slicing map $\psi^{\prime}$ over $K’$ . Repeating this process, we can, finally construct
a slicing map over $K^{s}$.

2. $Le1$ again $R$ be a fibre bundle over a polyhedron $B$. If for any
simplicial decomposition $K$ of $B$, there is no slicing map of $K^{r}$ in $R$ , we
say $B$ has an $r$-dimensional hindrance. If there is no slicing map of $B$, we
simply say, $B$ has a hindrance.

In the following, $B$ is taken to be a sphere $S^{n}$ of dimension $n$ . We
suppose that $K$ is a fixed simplicial $deCom_{F^{osition}}$ of $S^{n}$ . Let further $p$

be a inner $F^{oint}$ of an n-cimensional simplex $T$ of $K$. Since $S^{n}-p$ is con-
tractible, we can easily construct a slicing map $\psi$ over $S^{n}$ with exactly
one singular point $p$ . To the map $\psi$ , we attach $\psi$-cocycle $c^{n}(\psi)$ as before.
It is clear that $c^{n}(\psi)=aT,$ a $\epsilon\pi^{n-1}(F)$ .

Let $\psi_{1}$ be another slicing map over $S^{n}-p$ , and $c^{n}(\psi_{1})=a_{1}T$ be a cor-
responding $\psi$-cocycle. Since $\overline{S^{n}-T}$ is an n-cell, it follows by Feldbau’s
theorem [1] that the part of $R$ over $\overline{S^{n}-T}$ is fibre homeomorphic to the
topological product $\overline{S^{n}-T}\times F$ Hence, the maps $\psi,$ $\psi_{1}$ are given by

$\psi(x)=(x, f_{0}(x))$

$\psi_{1}(x)=(x, f_{1}(x))$

for $x\in\overline{S^{n}-T.}$ Clearly, the maps $f_{0},$ $f_{1}$ of th $e$ boundary $\overline{(S^{n}-T}$) into $F$

are inessential and are therefore homotopic to each other. We denote
such a homotopy by $f_{\ell}(0\leq t\leq 1)$ and put

$\psi_{t}(x)=(x, f_{t}(x))$ , $ x\epsilon(\overline{S^{n}-\circ}\cdot$

Since $\overline{(S^{n}-T}$) $\cdot=\dot{T}$ and $\psi=\psi_{0}$ , it follows that $\psi$ and $\psi_{1}$ are $1^{\backslash }.omotopic$ in
$\pi^{-1}(T^{Q})$ , which means, by definition, that $a=a_{1}$ . Thus we find that the $\psi-$

cocycle $c^{n}(\psi)$ does not depend on the choice of $\psi$ .
It is easily verifi$ed$ that the cohomology class of $\iota^{n}(\psi)$ is independent

of the simplicial $decom_{P\Delta}osit^{;}on$ , which is used to define $\phi$ -cocycle. The
cohomology class of $c^{n}(\psi)$ will be called the characteristic class of $S^{n}$ . We
summarize these results as follows:

Theorem (1.2) The characteristic class of $S^{n}$ is a topological invariant
of $R$ .

This leads us naturally to th $e$ definition of the characteristic nt mber.



222 R. SHIZUMA

The characteristic class of $S^{n}$ is determined by th $e$ homotopy gfoup
$\pi^{n-1}(F)$ . In fact, the cohomology class of $c^{n}(\psi)$ is determined by the sum
of its coefficients, which we call the characteristic $num\delta\zeta r$ . In particular, if $R$

is the fibre bundle of non zero tangent ve.ctors of $S^{n}$ , the characteristic num-
ber is nothing else than the so-called Euler-Poincar\’e characteristic. $Thi_{S^{\backslash }}$

has the value 2, if $n$ is even, and $0$ , if $n$ is odd. The cbaracteristic number
is, a fortiori, a topological invariant.

For the further investigations we shall need the following
Theorem $($ 1.3 $)^{*}$ ) Let $R$ be a fibre bundle over $a$ nor$mal$ space $B$ and

$F$ the fbre. $1f//\iota ere$ exists a slicing map $\psi$ , we have
$\pi^{r}(R)\approx\pi^{r}(R)+\pi^{r}(F)$ , $r>1$ .

Moreover, if $\pi^{1}(F)$ is abelian, the same formula is also valid for $r=1^{**}$ )

Proof. We first consider th $e$ homotopy sequence
$\rightarrow\pi^{r+1}(R, F)\rightarrow\pi^{r}(F)\rightarrow\pi’(R)\rightarrow\pi^{r}(R,F)\rightarrow\ldots$

It follows, from the covering homotopy theorem [8], that the boundary
homomorphisms $\pi^{r+1}(R, F)\rightarrow\pi$‘ $(F)$ are all trivial. Hence we $h\dot{a}ve$

$\pi^{r}(R)-\pi^{r}(F)\approx\pi^{r}(R, F)\approx\pi^{r}(B)$ .
Moreover $\psi$ is a homeomorphism $B\rightarrow B‘=\psi(B)$ .

It is easily seen that the injection map of $B^{\prime}$ in $R$ defines in a natural
way the imbedding of $\pi^{r}(B^{\prime})$ in $\pi^{r}(R)$ . Thus, given a $\epsilon\pi^{r}(R)$ , there
exists $\beta$ and $\gamma$ such that $ a=\beta+\gamma$ , where $\beta\in\pi^{r}(B^{\prime}),$ $\gamma\in\pi^{r}(F)$ . Since
$\pi^{\nu}(B^{\prime})n\pi^{r}(F)=0$ , we have

$\pi^{r}(R)\approx\pi^{r}(B^{\prime})+\pi^{r}(F)\approx\pi^{r}(B)+\pi^{r}(F)$ ,

which is to be proved.

\S 2. Homogeneous spaces

3. In this \S , we consider homogeneous space $W$ with a compact,
transitive, Lie group $G$ of automorphisms; such a space can also be defined
as the space $G/U$ of the cosets determined by a closed subgroup $U$ ; th $e$

cosets may be considered as fibres in $G$ , making $G$ into a fibre bundle,
with the base-space $G/U$. $W$ is a compact, orientable, differentiable mani-
fold. In particular, $W$ can be triangulated. As is well known, $U$ is simple

$*)$ As indicated above, we do not require here that the fibre is simple in every dimension.
$**)$ If $R$ is orientable relative to $\pi^{1}$ $(F)$ in the sense explained by Steenrod, this relation

still bolds for $r=1$ [6].
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$\dim e$nsion. Thus, if $U$ is supposed to be connected, our method can be ap-
plied to fiberings of $G$.

Lemma 3. If there exists a slicing map $\psi$ over $W,$ $U\wedge|\leftrightarrow O$ in $G$ (with.
rational coefficients) and $W$ is a $\Gamma- ma/nfold$ witlt unit. $*$ )

Proof. $U$ and $\psi(W)$ mee $t$ only in one point. Clearly, the index of
intersection of $U$ with $\psi(U)$ is equal to $\pm 1$ . Hence, by Poincar\’e-Veblen’s
duality theorem, $U-|\rightarrow O$ .

Now we shall show that $W$ is a l’-manifold with unit. In fact, the
product in $W$ is induced by group multiplication in $G$ . Let $\pi$ be the pro-
jection, which takes each point of $G$ into the coset of $U$ containg it. We
set $f(p, q)=\pi(\psi(p)\cdot\psi(q))$ . It is easily seen that the so defined multi-
plication is continuous in both $p$ and $q$ . Putting $\pi(e)=\overline{e}$, where $e$ is the ‘

unit in $G$ , we obtain $f(\overline{e}, q)=\pi(\psi\pi(e)\cdot\psi(q))=\pi\psi(q)=q$ for every $q$ in
$W$. Similarly, $f(p, \overline{e})=p$ for every $p$ in $W$. Therefore, we have $c_{r}=c_{l}=1$ .
Thus, $W$ is a $\Gamma$-manifold with unit.

The Euler-Poincar\’e characteristic ofa $\Gamma$-manifold is always $0$ [3].
Hence,

Theorem (2.1) Let $\chi(W)$ denote the Euler-Poincar\’e characteristic of
W. $1f\chi(W)>0$ , $W/ras$ a hindrance.

We may now prove the following
Theorem (2.2) Let $Wbe$ simply connected and acyclic in every dimensions

$\leq s$ . $1fU\sim OlnG$ (with rational coefficients), amongst the groups $\pi^{s}(U)$ ,
$\pi^{n-1}(U)(n=dimn\nearrow)$ , lhere exists at least a non-trivial one.

Proof. We suppose a suitable simplicial decomposition $K$ of $W$. Clearly,
we have a slicing map $\psi$ over the s-dimensional skeleton $I\zeta^{s}$ and hence a
$\psi$-cocycle $c^{s+1}(\psi)$ with the coefficient group $\pi^{s}(U)$ . Suppose $\pi^{R}(U)=0$ ,
then $c^{s+1}(\psi)=0$ , which implies, by Lemma 1, that $\psi$ can be extended to
a map of $K^{s+1}$ . In just the same manner, if $\pi^{\epsilon+1}(U),\ldots,\pi^{n-1}(U)$ are all
trivial, we can define a slicing map of the whole $K$. Since $U\sim 0$ in $G$ , by
Lemma 3, $W$ has a hindrance. The assumption that $\pi^{\epsilon}(U),\ldots,$ $\pi^{n-1}(U)$

are trivial, has now led to a contradiction.
4. As an application, we shall prove the following
Theorem (2.3) Let $Gb_{\vee}^{p}$ a compact, semi-simple, connected Lie group

$*)$ Let $W$ be a closed manifold. Given a continuous map of $W\times fV$ in $W$, for $p$ fixed,
$W\times p$ and $p\times W$ are mapped with degrees $c$, and $ c\iota$ respectively. $W$ is said to be a $\Gamma$-manifold,
if there exists a continuous map of $W\times W$ in $W$ such that $c$. $\neq 0\neq c_{l}$ . In particular, if it is the
$cas\dot{e}$ with $c_{r}=c_{l}=1,$ $W$ is called a $\Gamma$-manifold with unit [3].
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and $T$ be a toral subgroup of G. $T/lenG/T$ can not be $J_{1}omemrphic$ to the
r-dimensional sphere $S^{r}(r\neq 2)$ .

Proof. We suppose $G/\tau=W$ to be sudivided into a suitable simplicial
complex $K$. Since $G$ is arcwise connected, it is always $F^{ossible}$ to construct
a slicing map $\psi$ over $K^{1}$ . If $W=S^{1}$ , by Theorem (1.3), we have $\pi^{1}(G)\approx$

$\pi^{1}(S^{1})+\pi^{1}(T)$ . It is impossible, because $\pi^{1}(G)$ is a finite group [4], while
$\pi^{1}(T)$ is infinite. Hence $W$ can not be homeomorphic to $S^{1}$ .

Since $T$ is a toral group, $\pi^{r}(T)=0(r>1)$ . We denote by $c^{\sim}(\psi)$ a 2-
dimensional $\psi$-cocycle. If $c^{\wedge}(\psi)\sim 0$ , there exists, by Lemma 2, a slicing
$mlp\psi^{\prime}$ over $K^{2}$ . Since $\pi\underline’(T)=0$ , we have $c^{s}(\psi^{\prime})=0$ . Hence we can
define a slicing map over $K^{3}$ . Repeating the same argument with $c^{4}(\psi^{\prime})$

etc., it is easily verified, that we can construct a slicing map over the whole
IV. Again, we obtain $\pi^{1}(G)\approx\pi^{1}(W)+\pi^{1}(T)$ . This is impossible, since
$\pi^{1}(T)$ is infinite. Thus, we hav $ec^{\sim}(\psi)-|\rightarrow 0$ . In other words, $W$ has a 2-
dimensional hindrance.

Suppose $W=S^{r}(r>2)$ . Then there exists a slicing map at least over
$K^{2}$ contrary to the existence of a 2-dimensional hindrance. Thus, the
Theorem is proved.

Remark. Let F- denote the group of all rotations of $S^{2}$ . $R^{1}$ be the
subgroup consisting of those rotations, which leave invariant a fixed point.
Clearly, $R^{1}$ is a toral group and $R\sqrt[o]{}R^{1}=S^{3}$.

In th $e$ rest of this \S , we shall take spheres $S^{n}$ as homogeneous spaces.
In this case, we need only to consider the n-dimensional hindrance. This
in turn is determined by the characteristic number. Hence

Theorem (2.4) The nZcessary and sufficient condition that $t/lereexis^{f}s$

a hindrance in $G/U=S^{n}$ is thai $t/\iota e$ characteristic number is not the unit $0$

of $\pi^{n-1}(U)$ .
By Theorem (2.1), there exists a hindrance for even $n$ . Thus
Theorem (2.5) $1fG/U=S^{2n}$ , $\pi^{2n-1}(U)\neq 0$ .
Let $R^{n}$ be the group of all rotations of $S^{n}$ . We may suppose $R^{m}(m$

$<n)$ to be the subgroup of $R^{n}$. It is easily seen that $R^{n}/R^{n-1}=S^{n}$ . Hence,
as a corollary, we obtain

Corollary. $\pi^{\underline{o}}n-1(R^{2n-1})\neq 0$ .
Finally, Theorem (2.4) combined with Theorem (1.3) and Lemma 3

imply the following
Theorem $($2.6 $)^{*}$) $1f\pi^{n-1}(U)=0,$ $S^{n}$ is a $\Gamma$-manifold with unit, and

$*)$ Cf [9], Theorem 2 and Theorem 3. See, also [2].
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$\pi^{r}(G)\approx\pi^{r}(U)+\pi^{r}(S^{n})$ $(.r\geq 1)$ .
Consider,

$as_{\bullet}an$ example, $R^{3}$ over $R^{3}/R^{2}=S^{3}$ . Since $\pi^{2}(R^{2})=0$ , we
have

$\pi^{r}(R^{3})\approx\pi^{r}(R^{2})+\pi^{r}(S^{\theta})$ $(r\geq 1)$ .

Mathematical Institute
Nagoya University
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