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A partition of a group G is a system { A} of subgroups of G such that
every element of (¢ except the unit element is contained in one and only
one of the groups H,. A, are called components of this partition. A par-
tion of G is called complete, when all of its components are cyclic. A
tigroup with a complete paitition is called completely decomposable (c. d.).

Of course not every group has a cofnplete partition. In this paper we
shall deal with finite groups with a complete partition, and determine the
structure of such groups, when they aie non-simple. Our main theorem is
the following :

Lot G be a non-simple, non-solvadle c.d. group. Then G is isomorphic
to the full lincar fractional group of one variable over a finite field whose

characteristic -is greater than 2.
The author has, however, not yet been able to determine the structure

of c.d. simple groups. Well-known simple groups LF(2,p") aie clearly c.d.,
and it is conjectured that no other c.d. simple group exists. Every known
simple group contains one of LZF(2,p*) as its subgroup, so LF(2, p") may
be regarded as the *“least’” simple group. It is suggested by this fact, as
it seems to the author, that the problem to find the structure of c.d. simple
gioups would be an interesting and impo:tant one.

" Finite groups with complete partitions have been considered by Konto-
rovitch [1]" and [2] His results will be sharpened to theorems 1, 2 and
-3 of this paper and will play fundamental role in our study. This paper is
written, so as to be read without reference to Kontorovitch, so that the
results of §1 of this paper are essencially the same with his. In §2 we
shall deteimine the structure of c.d. solvable groups, and give the complete
classification of such graups. In § 3 we shall give some remarks on the
structure of c.d. groups "and shall prove in § 4 the main theorem stated
above. Our proof of this theorem is based on a characterization of linear

O

(1) The numbers in brackets refer to the bibliography at the end of the paper,
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groups as permutation groups, due to Zassenhaus [3] In fact we show that
non-solvable, non-simple c.d. groups are representable as triply transitive
permutation groups, and then apply the theorem of Zassenhaus cited above.

Finally, the author wishes to express his hearty thanks to Mr. N. Ité¢,
who gave him many useful remarks. Due to his suggestions and advices,:
the proofs of theorems 1 and 5 were made considerably shorter than the
author’s original one, and the author owes to him the lemma 6 of this
paper. Moreover the author expresses here his sincere thanks to Prof. S.
Iyanaga and K. Iwasawa for their kind encouragement throughout this work.

§ 1. Preliminarics

Lemma 1. A4 group is cd., if and only if two arbitrary maximil cyclic
subgroups are identical or have no element in common excep! the unit elem:nt.

FProof. Suppose a group G to be c.d., and let {/,;} be its complete
partition. Take two arbitrary maximal cyclic subgroups Z; and Z, of G
such that Z, N 7, < ¢, and put Z,={a} and Z,={4}. Because of the def-
inition of {#;} a is contained in one of its components, say A,. Similarly
6 is in H, We have then {a2}=72,C A, and {4}=2,C H,. Since
ZiNZ,=<¢, we conclude that Z,=H ,=H,=7,.

Conversely suppose that every pair of distinct maximal cyclic subgroups
of a group G has no element in common except the unit element. Consider
a system {A;} of subgroups of G, consisting of all its maximal cyclic sub-
groups. This system {/;} gives then clearly a complete partition of G.
q.e.d.

The following lemma is an easy cousequence of lemma 1 and is often
used in the course of this study.

Lemma 2. Any subgroup of a c.d. group is itself c.d.

Now we obtain

Lemma 3. Lot G be a nilpotent c.d. group. Then G is either cchic or of
prime power order.

, Proof. lLet {H;} be a complete partition of ¢. It is sufficient to prove
that G is cyclic when it is not of prime power order. Take an element a
of prime power order, say of order p”. Then @ is contained in one of the
components, say H,. Let & be another element of order ¢”, where ¢ is
also a prime,>p. The subgroup {a, &6}, generated by @ and &4, is cyclic
and hence by the definition of the system {H;}, {a, 6} is contained in /.
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Since & is any element of order ¢ this implies that /A, contains the g¢-
Sylow subgroup of G. Hence we must have ;=G and G is cyclic.

Remark. The proof of lemma 3 shows the validity of the following
general proposition which includes our lemma 3 as a special case.

If a nilpotent group has a proper partition (that is, consisting of more
than one component in the reduced form), then it is of prime power order.

Some of our results hold also good under weaker conditions than stated
in this paper, on which we shall not enter here.?

In the following we shall call a p-group a p-group of type p, when all
of its elements other than the identity are of order p. Such a group is
clearly c.d. Now we have ’

Theorem 1. A p-group is cd., if and only if it is one of the following
types: (1) a cyclic group, (2) a p-group of type p, or (3) a dikedral group.

Proof. Let G be a c.d. p-group which contains an element a of order
7°- By lemma 2 the subgroup {a} generated by & contains all elements
of order p which commute with @a. Hence {a} is only one cyclic subgroup
of G whose order is p° and so it is clearly self-conjugate in G. If {a}is
contained in the center of &, G has only one subgioup of order p. Hence
G is either cyclic or a generalized quaternion group®, and the latter is clearly
not c.d. Hence G must be cyclic. If {a{ is not contained in the center
of G, the centralizer A of {a} is a proper subgroup of G and self-conjugate
in G. Since G/H is isomorphic to some subgroup of the group of all
automorpbisms of {a}, the index (G:H) is p. H is c.d. by lemma 2 and
{a} is contained in the center of /Z. Hence /A is a cyclic subgroup of
index p. The structure of such a group as G is known” and it shows that
G is a dihedral group.

The converse statement is almost obvious. q.e.d.

We shall call a group G to be of type D, or strictly of type D,, when
G is directly decomposable and satisfies the following conditions: G=

(2) For instance, our main theorem, theorem 9 of this paper, holds good when G is a non-
simple, non-solvable, adeliarz decomposable group, which has a partition consisting of abelian
components, We owe this generalization to N. It6., Cf. the forthcoming paper of N. It6, In
addition we can determine the structure of groups, which are not c. d., but whose proper
subgroups are all c¢. d. Such groups are proved to be solvable and have very simple structures.

(8) Zassenhaus [5], p. 112.
(4) See for instance Zassenhaus [5], p. 114.
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G, % G,, where G, is a cyclic group of order p (p is a prime number), and
G,={a, b}, a*"=6"=1, bab™'=a", (n, p(r—1))=1 and =1 (mod 7).

We can easily see that a group of type D is solvable and c.d. Now
we shall prove

Theorem 2. /f a c.d. group is dirvectly decomposable, then it is one of
the following types: (1) a cyclic group, (2) a p-group of type p, or (3) a
group of type D

Proof. l.et G be a directly decomposable c.d. group: G=G,x G,. If
G is a p-group, then G is of type p by theotem 1. We may, therefore,
assume that G is not a p-group. If both G, and G, are cyclic, then by
lemma 3 G is either cyclic or of prime power order. Then we may as-
sume moreover one of its direct components, say G,, is not cyclic. If G,
were of prime power order, say of order »* (» is a prime), G, should not
be of order ™. Take then a p-Sylow subgroup 7 of G,, where p is a prime,
7. 71UG, should pe c.d. and nilgotent so G, should be cyclic by lemma
3. This is not the case. Hence G, is not of prime power order.

Take any p-Sylow subgroup 7, of G; and any ¢-Sylow subgioup S
of G,, where p and ¢ are two distinct primes. Since 7,U S,=7}, x S,, both 7,
and S, are cyclic by lemma 3. If S, were not self-conjugate in G,, S, should
be conjugate to another ¢-Sylow subgioup S’, of G,. Since again 7,U S/,
=7,x5, 7,uUS, should be cyclic. Hence 7,u,S, and 7,US’, should be
two cyclic subgroups, containing 7, in common. By lemma 1 there should
exist a maximal cyclic subgroup of 73,x G, containing both 7,US, and
7,uS’,. But S, and S, are two distinct ¢-Sylow subgioups of 7,x G,,
and theie is no cyclic subgroup of G, containing both S, and S’,. This
contradiction shows that S, is a cyclic normal subgroup of G,” Since ¢
is any piime other than p, the ¢-Sylow subgroup of G, is self-conjugate
whenever ¢ = p. This implies that G; must coincide with 7, and the order
of G, is divisible by p, as we assumed that G, is not cyclic. At the same
time we see that the Sylow p-complement® of G,, which we shall denote
by A, is a cyclic normal subgioup of G,.

Take any p-Sylow subgroup S, of G,, then G;x S, is a p-Sylow sub-

-

(5) This method, which shows us the normality of Sylow subgroups, is often used in the
course of this study.

[6] A Sylow p-complement of a group of order g=s%g¢’, (p, £g/)=1, is a subgroup of G
of order g’/. Such a subgroup does not always exist. Cf. papers of P. Hall; Proc. London
Math, Soc. 3 (1928), 12 (1937) etc.
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group of G and c.d. Hence G,x S, is of type p. This ifnplies that G, is
a cyclic group of ovder p. To conclude our proof of this theorem we
have only to prove that S, is also cyclic and that the centralizer of S, in
G, coincides with S,. Take any subgroup A of V with prime power order,
and consider a subgroup K=G,x (S,UH). If the centralizer H* of H
in S,U/ were not equal to A, /A* should be directly decomposable and
so nilpotent. So G, x A* should be also nilpotent, but its -Sylow subgroup
is not cyclic. This is a contradiction. Hence we have ZZ/*=7Z/. Therefore
Sp=(S,UH)/H is isomorphic to some subgroup of the group of all auto-
morphisms of /A, and it shows that S, is cyclic. Hence S, is of order p.
This comf)letes our proof. ‘

Theorem 3. A group G is c.d. and its center contains at least two
elements, if and only if G is one of the following types: (1) a cyclic group,
2) a p-group of type p, (3) a dikedral group whose ordcr is divisible by 4,
or (4) a group of type D.

Proof. lLet G be a c.d. group and Z be its center. By our assump-
tion we have Z e¢. Denote by Z, the p-Sylow subgroup of Z and by S,
the ¢-Sylow subgroup of G. If pxg, Z,US,=7,%x S, and so by lemma
3 Z,US, is cyclic. By the same method as in the proof of the: theorem
2, S, is a normal subgroup of . Hence if 2 is not of prime power order,
G is cyclic. We may, therefore, assume that 2 is of prime power oider,
say of order p". Let S, be one of p-Sylow subgroups of G. Then S,
contains Z. If S,=G, theorem 1 shows that G is one of the types (1),
(2) and (3) of this theorem. We may, therefore, assume that S,#G. If
we take a prime factor ¢ of the order of G other than p, S, is a cyclic
normal subgroup of (7, so the Sylow p-complement /V of G exists and is
a cyclic normal subgroup of G. If S, were self-conjugate, G should be
nilpotent. This is not the case. Hence S, is not seif-conjugate. Since
any conjugate subgroup of .S, contains Z, S, is not cyclic. Then S, is
by theorem 1 either a p-group of type p or a dihedral group.

a) Suppose that S, is a p-group of type p. Take a subgroup ~F=1S5,
S, of G, generated by S, and the ¢-Sylow subgroup S, of G (# = ¢). Then
the centralizer U of S, in /A is self-conjugate in /A and A/U is cyclic, as
it is isomorphic to some subgroup of the group of all automorphisms of .S,.
On the other hand, / is a direct product of S,N{ and S, Hence S,nU
is cyclic by lemma 3, so that S, is of order p°. Hence G is directly de-
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composable and is of type D by theorem 2.

b) Suppose next S, to be of dihedral type. As above we consider
again a subgroup A =S, S, of G. If we take the centralizer U of S, in
H, both 7’=UnNS, and S,/7~S,/UNS,~H/U are cyclic. Hence T is
a cyclic normal subgroup of S, with index 2. Since 7 is self-conjugate in
H=S,S, and ¢ is any prime factor of the order of G other than p, 7 is
self-conjugate in G. If the normalizer N, of S, in G were not equal to
S,» /V, should be directly decomposable against theorem 2. So we have
S,=4,. The factor group G=G/7 contains a normal subgroup N=NT/T
and (G:NV)=2. The element of $=35,/7 induces then an automorphism
o of oider 2 in /V and ¢ fixes only one element of V. Hence G must
be of dihedral type.” Since 77U/ N=7x/V and siuce S, is a dihedral group,
G itself is a dihedral group. The coaverse statement is obvious.

Essentially the same theorems as the above three theorems are also
obtained by Kontorovitch [1] and [2]

§ 2  The structure of c.d. solvable groups

In this paragraph we determine the structure of c.d. solvable groups.
We shall call in general the maximal solvable normal subgroup of a group
its radical, and consider c.d. groups whose radicals are distinct from ¢. C.d.
solvable groups are of course such groups, but it will turn out at the end
of this paragraph that, conversely, all these groups are solvable. We shall
first prove the following lemmas.

Lemma 4. Jf a cd. grozzp G contains an elementary abelian p-group
N as its normal subgroup, then for a prime q,<p, the g-Sylow subgroup of
G is one of the following types: (1) a cyclic group, (2) a dilwdral group or
3) an abelian group of type (1, 1). If moreover one of g-Sylow subgroup of
G is cither of type (2) or (3), then the ovder of N is p. :

Proof. Let ¢ be any prime factor ot the order of G other than p, and
S, be one of ¢-Sylow subgroups of G. We shall show that if S, is not
cyclic but a g-group of type ¢, thea S, is of order ¢. Take a subgroup
A=S5,V. By a lemma of Zassenhaus®” A contains an element @ of order
29. Put then I'={a?}. Vis élearly a subgroup of A, and is countained in
the center of {/V, a}. Hence by theorem 3 {/, a} must be cyclic. This

(7) Cf. Zassenhaus [3], Satz 1.
{8) Zassenhaus [4], Satz 3.



On the finite group with a complete partition. 171

implies that (V:e¢)=p. Let U be the centralizer of V in A. Then U is
a direct product of V and U'n S, which implies by lemma 3 that UnS,
is cyclic. Clearly U is also self-conjugate in 4 and H/U is cyclic. This
implies that S, is of order 4% The second assertion of this lemma is already
proved in this case when .S, is of type g¢.

Now assume S, to be a dihedral group. S, contains an abelian group
7T of order 4 and of type (1,1). Then the same consideration as above
(for a subgroup K=NT7") shows that (V:e)=p. This completes the proof.

Lemma 5. 7f a cd. group G contains a normal subgroup N of order
P (p is a prime), tern G is a _f-group.”

Proof. Let Z be the centralizer of V in G. If Z=G, our lemma is
an easy consequence of theorem 3. We may assume that Z#G. 2 is
clearly a normal subgioup of G and G/Z is cyclic, as it is isomorphic to
some subgroup of the group of all automorphisms of V. Put d=(G : 2),
then we have &| p—1. The structure of £ is known by theorem 3. The
groups of the types (1), (3) and (4) in theorem 3 have a normal series,
consisting of characteristic subgroups, all of whose factor gioups are of
prime order, then if Z is of such types, G has also a principal series, all
of whose factor groups are of piime order, that is, G is a J-group. If Z
is a p-group of type p, we consider a central series

ZZZrQZr_]Q.....- ..D_ZO_—'E

of Z, where Z;/Z;_, is the center of Z/Z, _(i=12,...... 7). When we regard
each Z;/Z, ; as a G/Z- module, Z,/Z,_, is decomposable into simple G/Z-
modules, and since d=(G : Z) divides p—1, each simple G/Z-module is
one dimensional. This implies that & has a principal series, all of whose
factor groups are of prime order, that is, G is again a /-group.
Theorem 4. Let G be a c.d. group, containing a norvmal subgroup of
order p (p is a prime). Then G is one of the following types :
(1)...... (4) as in theorem 3, or
%) G=\{a, 0}, r=0m=1, bab ' =a’, (1, m(r—1)) =1,
r"==1 (mod #) and if »™'==1 (mod #') (w!|m, u'|\n) then

(9) A J-group is a group possesirg a principal series, all of whose factor groups are of
prime order. This group is also characterized by the property that it is a group with a lattice
of subgroups which satisfies the Jordan-Dedekind chain condition, Cf. K. Iwasawa, Jour. of Sci.
Univ. of Tokyo (1941).
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we lave m' =m, or
(6) G=S,H, where S, is a normal subgroup of G and a p-group of type
Py H is a cyclic subgroup of order & and d |p—1.

Proof. We shall prove that if a c.d. group G contains a normal sub-
group of order p and if its center coincides with ¢, G is either of type (5)
or (6) in this theorem. Let G be a c.d. group whose center coincides
with ¢, and /N be its normal subgroup of order p. By lemma 5, G
is a J-group and heace we may assume that p is the greatest prime
factor of the order of G'. We shall denote by Z the centralizer of
NV in G. By our assumption we have ZxG, and Z is a normal sub-
group of . The factor group G/Z is then cyclic and its order & divides
2—1. Since Z is a c.d. group and its ceater contains N, Z is a cyclic
group, a p-group of type p, a dihedral group or a group of type 2 as in
theorem 3. By our assumption p is the greatest prime factor of the order
of G, so that Z is neither a dihedral group nor a group of type D. Hence
Z is either cyclic or a p-group of type p.

a) Suppose first Z to be cyclic. Then Z is clearly a maximal cyclic sub-
group. Put Z={a} and take an element 4 of G which generates G mod
Z. Since G is c.d., it holds clearly {a}n{é}=e¢. Let » and = be the
orders of a and & respectively. We shall show that » and 2 are
relatively prime. If 2 and 72 had a common prime factor ¢, there
should exist two subgroups ¢ and I of order ¢ such that U C{a} and
’C{é}. Then deaote by K the centralizer of I in G. A should
contain clearly U and A=1{é}. Hence KA should be non-cyclic. If
K were a group of type D, U should not be self-conjugate in K. This
is not the case. Hence X should be either a g-group of type ¢ or a dihed-
ral group. But since U is self-conjugate in A, X should be a ¢g-group of type
g. Hence we should have A= ["and this implies that {/ should be contained
in the center of G against our assumption. Hence we have (7, m)=1,
and every Sylow subgroup of G is cyclic. Moreover since G is c.d., every
conjugate subgroup of /A coincides with A or has no element in common
except the unit element with AZ. Hence G is a group of type (5) in this
theorem.

b) Suppose next that Z is a p-group of type p. Then Z is a p-Sylow
subgroup of G' and we have a group of type (6).

(10) Cf. Iwasawa loc cit. (9)
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Remark. Gyroups of types (1)...... (5) in this theorem are clearly c.d.,
but groups of type (6) are not always c.d. The condition on a group of
type (6) to be c.d. will be given later (see theorem 6).

Lemma 6. Lot G be a cd. group having a normal subgroup N. If
N is an abelian group of ovder p* and of type (1,1,...... 1) with n>2 and
P>2, then p-Sylow subgroup of G is self-corjugate in G.

Proof. Take a prime factor ¢ of the order of G other than p, then
lemma 4 shows that ¢-Sylow stbgroups of G are cyclic. First we shall
prové that G has no element of order pg. Assume to the contrary that
G had an element a of order pg. ILet / be the centralizer of the element
a’. Since /N meets the center of S,, we should have A NN7#e By our
assumptions /A should be a gioup of type D (by theorem 3), and ANNV
should be self-conjugate in A, so A NN should coincide with {a?}. -On
the other hand, since WV should contain {a?}, A should contain /V too. This
is a contradiction. Hence G has no element of order pg. :

We shall now prove this lemma by induction on the order of G. Take '

the least prime factor ¢ of the order of G other than p and one of ¢-Sylow
subgroups S,. If the order of the normalizer &V, of S, in G is not divisible
by 2, S, is clearly contained in the center of /V,, Hence by a theorem of
Burnside™ G has a self-conjugate Sylow g-complement #,. By hygothesis
of induction S, is self-conjugate in A, and so in G.
"~ Assume that p divided the order of &, We shall take a p-Sylow
subgroup P of /V, and a subgioup Q of S,, whose order is ¢. Then P
should not be self-conjugate in /V,. In the subgioup K'=/N.F.-Q, NP should
be a p-Sylow subgroup and maximal. Recause of p>2, VP should be a
p-group of type p, and so a regular p-group in the sence of P. Hall'.
Since P should not be self-conjugate in AV,, VP also should be non-normal
in K. Hence by a theorem of Wielandt" @ should be self-conjugate in
K. This leads us to the contradiction that NQ=/Nx Q and G should have
an element of order pg. Hence we have our lemma 6.

Theorem 5. Let G b a c.d. group having a solvable normal Suég‘roup

[(A1) This lemma is due to N 116, who simplified the proof of the next theorem using
this lemma

[02Z) Zassenhaus [5], p. 133.
Cf. P. Hall, Proc. London Math. Soc. 2-36 (1932).

Cf. H. Wielandt, Crelle 182 (1940).
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other than e. Then G is one of the following types:

(1)...... (6) as in theorem 4, or

(6)* similar to (8) in theorem 4 but without the condition d\p—1, or
(7) the symmetric group of four letters. :

Proof. By assumption of this theorem G has a solvable normal sub-
group other than ¢, so we can take an elemenfary abelian normal subgroup
NV of order p*. We have only to prove that G is either of the type (6)*
or (7) when » is greater than one: n>2, ‘

If p>2, the p-Sylow subgroup S, of G is self-conjugate by lemma 6.
Then in virtue of a theorem of Schur™ there is a Sylow p-complement A.
By lemma 4 every Sylow subgroup of /A is cyclic. This implies that A
is solvable™ and has a normal subgroup of prime order. Hence by theorem
4 H is either cyclic or a group of type (5) in theorem 4. On the other
hand, G has no element of order pg, so that every subgroup of #, whose

order is the product of two primes, is cyclic by a lemma of Zassenhaus™.
- Hence A must be cyclic and we have a group of type (6)*.

Suppose next that p=2. Take one of 2-Sylow subgroups S of G con-
taining V. If S is a 2-group of type 2, it is abelian and so is the cen-
tralizer of V. Hence S is seclf-conjugate in ¢. We can show taat G is
a group of type (6)* in the similar way as above. If S is a dihedral
group, /V is of order 4 and S is of order 8. The centralizer of /N must
clearly coincide with V. Hence we have (G : V)<6, as G//V is isomor-
phic to a subgroup of the group of all automorphisms of /. On the other
hand, (G : V) is divisible by 2 and also by at least one other prime num--
ber. Hence we have (G : N)=6 and so (G : ¢) =24. This implies that G
is isomorphic to the symmetric group of four letteis.”

Corollary. A c.d. group whose radical differs from e is solvable.

This theorem shows clearly the structure of c.d. solvable groups. The
Agroups of types (1)...... (5) and (7) are c.d., as easily shown, but the
groups of types (6) and (6)* are not always c.d. We shall now give a
condition on groups of types (6) or (6)* to be c.d.

Let G be a group of type (6) or (6)* in theorem 5, ie. G=SH,

Zassenhaus [5], p. 125.
(16) Zassenhaus [4], Satz 4.

a7y Cf. (8).
Zassenhaus [5], p. 111.
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where S is a p-Sylow subgroup of G and. self-conjugate, and / is a cyclic
subgroup. Then A is regarded as an operator domain of .S. We shall call
a subgroup U of S an H-subgroup when it holds AU/ACU for any ele-
ment /~ of /A, and a series of subgioups of S :

S=U,2U,;>...... DU,=¢

an H-composition series when ¢/, is a maximal self-conjugate A-subgroup of
Ui (1=12,...... »). Then each factor group U, /U, is an abelian group
of order p* and of the type (1,1,...... ,1), and is a simple /7-module when
we regard / as its operator domain.

Take now in general a simple /A-module . Then V7 is a represen-
tation module of /. When this representation of /A is isomorphic, we shall
call I an irreducible H-module. Since A is an operator domain of 7, we
can construct the extension of I”by A. A simple //-module }"is irreducible
if and only if this extension of J” by A has no element of order p g(¢>1).
Now we shall prove

Theorem 6. Lot G be a group of type (6) or (6)* in theorem 5. G
is c.d. if and only if eack factor group of an H-composition servies of S is an
irreductble H-module.

Proof. Suppose G to be cd. G has then no element of order pg(g>
1) as in the proof of lemma 6. Hence each factor group of an A-composi-
tion series of S is irreducible. Suppose couversely that each factor group
of an /H-composition series of S is irreducible. Then G has no element
of order pg (¢>1). Take two distinct conjugate subgroups /; and A, of
H. U H,nH,=K#e, the centralizer Z of K should contain both A, and
H, Since H,7#H,, it should hold ZNS2(H,UH,) NS=T%e¢. We
should have 7'UA=7x K and G should have an element of oider p ¢(g>
1). This is a contradiction. Hence two distinct conjugate subgroup; of A
have no element in common except the unit element. ILet {#;} be a com-
plete partition of S. Then the system {7, H,H,H,,...... {, consisting of {F{
and of all distinct conjugate subgroups /, H,...... of A gives a complete

partition of G.

§3. Two remarks on c.d. groups

Theorems 5 and 6 in the last paragraph shows that the factor group
of a c.d. solvable group is itself c.d. This proposition holds, however, good

for general c.d. groups.
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Theorem 7. Any factor group of a c.d. group is itself c.d.

Proof. We shall prove this theorem by induction on the length of a
principal series. Let G be a c.d. group and NV be its normal subgroup.
Using induction we have only to prove our theorem in the case when N
is a minimal normal subgroup. If A is solvable, by theorem 5 G is also
solvable and our theorem follows from theorems 5 and 6. If &V is not
solvable, we take a p-Sylow subgroup S, of N. Denote by A, the
normalizer of S, in G, then we have NV,N=(, and /V, is solvable. Since
G/ NN,/ N,NN, G/N is c.d. too.

Remark. Theorem 7 does not hold for infinite groups. For example,
the free group with » generaters (7#>2) is c.d.,” but its factor groups
are not always c.d.

Theorem 8. Lot G be a c.d. nou-solvable, non-simple group, and N be
its muinimal novmal sudgroup. Then we have (G : N)=2.

Proof. We shall prove our theorem by induction on the order f G.
By theorem 2 N is a simple group. Take a Sylow subgroup S of A and
its normalizer A in G. Then we have NH=G and G/N~H/HNN is
solvable. Suppose that G//NV were not simple. Take a maximal subgroup
M of G containing A, then we should have (A : V) =2 by the hypothesis
of induction, so (G : V) should be equal to 4. Since /V is simple, its 2-
Sylow subgroup 7" is not cyclic if 7#¢. Take a 2-Sylow subgroup U of
G containing 7. If U were a dihedral group, 7" should be cyclic. Hence
U should be a 2-group of type 2 and so abelian. Take now the normalizer
IV of U in G, then by a theorem of Burnside IV#U. I should be a
group of type (6) or (6)*. We should, however, have /0NN~
C/UNNYyx (VNnN/UNN) against the theorem 6. Hence- (G : N)=g¢g
is a prime. .

We shall now prove that g=2. We shall denote by S a ¢-Sylow
subgroup of . Assume first that ¢ did not divide the order of AN. Take
the centralizer 7" of S in G, then we should have 7=Sx 2, where ZC V.
Z should, therefore, be cyclic, and 7" should be a maximal cyclic subgroup
of G. Hence the normalizer of Z in /V should coincide with 2, if Zse.
This is however a contradiction, as the normalizer of a p-Sylow subgroup
of Z, which is clearly a Sylow subgioup of G, should be equal to Z and
so /V should not be simple by a theorem of Burnside. Hence 2 should be
equal to ¢. Take any prime factor p of the order of AV, and one of its

Cf. M. Takahasi, Osaka Math. Jour. 1 (1948).
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2-Sylow subgroups S,. Let AV, be the normalizer of S, in G. Then we
have NV,N=G, so that the order of /V, is divisible by ¢g. As SN«N=¢, G
should have no element of order g» (»>1). Hence /, should not be of
types (1),(2),(3),(4) and (7) in theorem 5. If V, were of type (6) or
(6)*, the normalizer of S, in A should coincide with S,. Since S, is a
p-group of type p and so regular in the sence of P. Hall, &V should- be
non-simple by a theorem of Wielandt.® If AV, were of type (b), the
normalizer of S, in /V should be cyclic and so /V should not be simple again
by a theorem of Burnside. Hence ¢ must divide the order of V.

. Take then the normalizer V, of S in G. V, is solvable by theorem 5.
]Vq is clearly neither of types (4) and (7) in theorem 95, nor of types (6)
and (6)* by theorem 6. If /V, were of types (1) or (5) in theorem 3,
S should be cyclic and be contained in the center of &V, so that /V should
be non-simple by a theorem of Burnside. If /V, were a g-group of type g,
the g-factor-commutator group of G should be isomorphic to that of S by
a theorem of Wielandt. This leads us to a contradiction. Hence 2V, is
a dihedral group which implies that g=2. g.e.d.

§ 4. The structure of non-solvable, non-simple c.d. groups

In this paragraph we shall determine the structure of non-solvable, non-
simple c.d. groups. Let G be such a group, and /V be its minimal-normal
subgroup. These notations will be fixed throughout this paragraph.

By theorem 8 we have :

(1) (G: NV)=2.

Let S be one of the 2-Sylow subgioups of G. Then the proof of
theorem 8 shows that S is a dihedral group. By a theorem of Grin™ we
have. G/N~=S/(N(S)'nS)/.;(SnS"), where N(S) is the normalizer
of S in &, S*is the conjugate subgroup 2S¢ (£ € G) of S and the accent
means the commutator subgroup. We shall hereafter use the notation such
as S’ in the sence of 2S7~', and NV(S) and the accent are used in the sence
of the normalizer in G and the commutator subgroup respectively. Now
~ since NV(S) is c.d., V(S) coincides with S and therefore we have G/N~
S/S" IL:(SnS"). By the structure of S, S’ is a cyclic subzioup
whose index (S : S’) is 4, and hence .S’ is the intersection of all the maxi-
mal subgroups of S. So the index of I'=1,c(5SNnS") in S is 2, and

(20) Cf. (14).
(21) O, Griin, Crelle 174 (1935), or Zassenhaus [5], p. 134.
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T is not cyclic. Hence the maximal intersections of two distinct 2-Sylow
subgroups are not equal to ¢. Take one of these maximal intersections ),
and its normalizer V(D) in . Then N(D) contains a self-conjugate
group, but its 2-Sylow subgroups are not self-conjugate. By theorem 9
N(D) is either a dihedral group or the symmetric group of four lettes &,.
G is not 2-normal® by a theorem of Griin, so there is at least one
intersection D which is not cyclic by a theorem of Burnside®™. TFor such
non-cyclic a intersection /), we have N(D)~E..

S has one maximal dihedral subgroup 7°* other than 7. Every element
of order 2 in 7 is conjugate to each other in G. On the other hand, if
we take two elements «, 4 order 2 contained in 7* but not in 7, a is
conjugate to & in G but is not conjugate to any element of order 2 in 7.
For otherwise we should have S=7. Let 3 be the center of S, /V, the
centralizer of 3 in G, and /V, the centralizer of @ in G. Then both WV,
and V, are dihedral groups, and they are not conjugate in G. V; (i=1,2)
has a cyclic subgroup Z; of index 2. Let now £ be a maximal cyclic
subgroup of an even order, and { the 2-Sylow subgroup of Z. Then U
is contained in some 2-Sylow subgroup S* and so U is cénjugate to some
subgroup of S in . This implies that Z is conjugate to Z, or Z, in G.

Now we shall prove the following lemma.

Lemma 7. 7wo distinct p-Sylow subgroup S and S* have no element
in comnton cxcept the unit element, when p> 2.

Proof. 'We shall assume that SN S*s¢ and S#S*, and prove that
p=2. Put SNS*=D. We shall assume that D is the maximal intersec-
tion of p-Sylow subgroups. Theorem 5 shows that V(D) is solvable and
is a group of type (3), (4) or (7) in theorem ». If V(D) is a dihedral
group or &,, then we have p=2. We may, therefore, assume that V(D)
is a group of type (4) : V(D) =G, x G,, where G, is ot order p and G,=
PZ (P is of order p and Z is a self-conjugate cyclic sub roup of G,).
Then we have D=G, and DU Z=1V is a maximal cyclic subgroup of G.
Take any prime factor ¢ of the order of Z, and let Z, be the ¢-Sylow
subgroup of Z. Since V is a maximal cyclic subgroup of G, Z, is a ¢-
Sylow subgroup of G. Any element of MV(Z,) fixes Z, (i.e. transforms Z,
into itself), so also V. This implies that any elemet of N(Z,) fixes D
too, and N(Z,) C N (D). Hence we have N (Z,)=N (D). On the other hand

(22) Cf. O. Griin loc. cit. (21), or Zassenraus [5], p. 135
(23) Zassenhaus [5], p. 103.
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we have N(Z)N=G, as Z, is a ¢-Sylow subgroup of G and a foitiori of
N. Hence the index (V(Z): N(%,)'") is divisible by 2. Since (N(Z)
: V(Z,)' )=p", we must have p=2. This proves our lemma 7.

Now we shall return to our NV, N, Z, or Z,, and put

(G: N)=m, and (N,:e)=2n,
(G :N)=m, and (N,:c)=2n,.

Then it holds
(2) (G : ) =g=2n,m,=2n51,.

As G is c.d., the number of elements, other than ¢, which are conjugate to
some element of V; in G, is m;(s;—1). .

Let S, be any p-Sylow subgroup of G (#>2). Suppose first that S,
is not cyclic. Then we shall denote the normalizer of S, by A,, and put

(G:NV)=m,, (N,:S,) %!p and (S, :¢)=n,,

where p runs through prime factors of G such that S, are not cyclic. Then
we have ‘

(3) g=my b

and by lemma 7 the number of elements other than ¢, contained in some
£-Sylow subgroups of G, is z,(n,—1). 1If S, is cyclic, we shall take the
maximal cyclic subgroup Z containing S,. Consider now maximal cyclic
subgroups of odd orders of G each of which contains some Sylow subgroup
of G. Some of them may be conjugate in ¢G. We take now a representa-
tive Z, from each conjugate class of these groups. Let Z,, « € 4, be all
these representatives. For any e« € 4 we shall put

(G : Ny)=my, (N,:Z,)=l, and (2, :¢)=mn,,
where 1V¢#N(Za). Then we have
- (4) G=0ty Ly 724 (au € A),

and the number of elements, other than ¢, which are conjugate to scme
element of Z, is clearly m, (2,—1).

We shall now decompose the set of all prime factors of the order of
G into two classes [l and [I,, where [T, consists of all the odd prime
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factors p such that S,, p-Sylow subgroup of G, is not cyclic and /I, con-
sists of all other prime factors. Then G has no element of order 24,
where g, € II, and 4> 1. For, if G had an element ¢ of order pd, the
maximal intersection of p,-Sylow subgroups should not be equal to ¢, as
the normalizer of {4’} should be a group of type J.

Take any maximal cyclic subgroup Z of G. If Z is of an even order, Z
is conjugate to Z; or Z, in G as proved above. We shall now assume
that Z is an odd order. If Z contains some Sylow subgroup of G, Z is
conjugate to some Z,(« € A). Suppose now Z contains no Sylow subgroup
of G. If we take a prime factor p of the order of Z, p-Sylow subgroups
of G are not cyclic, so p € /1. Hencé Z is of order p and is contained in
some p-Sylow subgroup of G. Hence we have

(%) g=14m(n;—1) 4+ mt, (n,—1) + > (n,—1),

where 7 runs through the domain I'=A4+1I,. By (2) of this paragraph,
(5) is written in the form '

(6) ‘ my A+ my—1=73"1 m (n,—1).

G has clearly e, +m, elements of order 2. We shall now count the
number of pairs of two elements of order 2. This number is clearly 4 (7
+m,) (m,+m,—1). On the other hand, such a pair of elements generates
a dihedral subgroup of &G. Hence we shall be able to count this number
in another way, i.e. by the enumeration of dihedral subgroups of G.

We shall first prove the following lemma. '

Lemma 8. [ the same notations as above, any dikedral subgroup D of
G is containcd tn some conjugate subgroup H of N,, N,y Ny or N, If the
order of D is greater than 4, this conjugate subgroup H is uniquely determined
oy D.

Progf. Let D be any dihedral subgroup of &G. Then D has a cyclic
subgroup Z of index 2. If Z is contained in a maximal cyclic subgroup
of an even order, Z is conjugate to some subgroup of Z; or Z, in . Hence
D is contained in some conjugate subgroup of N, or N,. If the order of
Z is greater than 2, this conjugate subgroup of /V; containing D is nothing
but the normalizer /(%) and is uniquely determined by J. Let now Z*
be the maximal cyclic subgroup of G containing Z, and let its order be
odd. If Z* contains some Sylow subgroup of G, Z* is conjugate to some
Z,. Hence D is contained in some conjugate subgroup of V,, which"is
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again the noimalizer of Z. If Z* contains no Sylow subgroup ‘of G, Z*
is of order g and is contained in some p-Sylow subgroup. As p belongs
clearly to I1,, D is contained in some conjugate subgioup 7 of &V,. By
lemma 7 A is again uniquely determined by 2. This completes the proof.

Now we shall enumerate the number of pairs of elements of order 2

-

of G in the following manner.
a) Denote by K, the number of pairs of elements, which generate dihedral
subgroups of some conjugate subgroup of NV (7 € I"). Then since N, (r €
") is the normalizer of some Sylow subgroup of G, we have G=/V.NV, (y €
I"). Hence by (1) of this paragraph the oider of N, is even. As the
order of S, or Z, is odd, we have then '

) ;=0 (mod 2) (yel).

Each NV, contains 7, elements of order 2, so the number of pairs, generat-
i ng dikfedral subgicups of NV, is 47 (#;—1). N; has m, conjugate sub-
groups in G and no pair of these sz, conjugate subgroups of AV, has a
dihedral subgroup in common by lemma 8. Hence we sce that

KT=—;~mT 1y (12,—1) Gel).

b) Next denote by A, the number of pairs, generating dihedral subgroups
of /V; and whose orders are greater than 4. N, has 1+, elements of order
2, one of which, say «, is contained in the center of N,. For any & in MV,
the pair (a, ) generates a group of order 4 if a>4. Hence the number
of pairs, generating dihedral subgroups of AV, whose orders are greater than
4, is $#;(s;—2). Since NV, has m, conjugate subgroups, we conclude that

K',_:-;—m]nl(ﬂ] —2).

c) Similarly the number K, of pairs, generating dihedral subgroups which
are conjugate to some subgroup of /V, and whose orders are greater than
4, is $mn, (n,—2).

d) Finally we consider the number A, of pairs which generate abelian
groups of order 4 and of type (1,1). Let S be again one of 2-Sylow sub-
groups of G, and put 7'=/1:,(SNS”). Then 7 is a dihedral sub-
group of index 2. S has anotfler maximal dihedral subgroup, which we
shall denote by 7'*. Take abelian subgroups ¢/ and U* of order 4 and
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of type (1, 1) in 7 and 7* respectively., Then any non-cyclic abelian
subgroup of order 4 of S is conjugate to U/ or U* in S, but U and U*
are not conjugate ewven in G. TFor if U were conjugate to U* in G, T
should be equal to S against (1) of this paragraph®. Since any non-
-cyclic abelian subgroup of order 4 is conjugate to some subgroup of .S, all
such subgroups of G are distributed into two conjugate classes C and C*.
We may assume that &/ € C and U* € C*. We shall now count the number
of subgroups contained in C and C*. Since two arbitrary subgroups- of
order 2 in {/ are conjugate in G, U is contained in at least two distinct
2-Sylow subgroups of G, and so its normalizer is isomorphic to &,: the
symmetric group of four letters. Hence the number of conjugate subgroups
of U is g/24. On the other hand, U* is contained in one 2-Sylow subgroup
of G. So the normalizer of U* is a dihedral group of order 8 and the
number of subgroups in C* is g/8. Hence G contains (g/24+¢/8)=g/6
abelian, non-cyclic subgroups of order 4. Therefore, the number K] 1s clearly
equal to 3xg/6=g/2. -

By lemma 8 A+ A+ K,+ >, K, is clearly the total number of pairs
of elements of order 2 ; that is ‘

®) - (1/2) Grt o) (m o ma—1) = (¢/2) + (1/2Ymyy (1 —2)
+ (1/2) 7”2”2(”2"2)+Ere1‘(1/2)'_mnr”r(”r—l)-
By (2), mpn=myn,=g/2, then (8) gives
(1, + my) (g 112,— 1)y = (g/2) 1ty + 19) — g+ 2 om0, (12— 1),
Dividing both side by g and using (3) and (4), we have

) (772, + 7712)( ity — 1 )..—_- 4! ; 143, ———”T;— 1 .
. & ’ T

On the other hand, we obtain by (6) the following formula.

my+my—1 iy—1
& Nl

Hence we have

(24) Cf. a theorem of Griin, loc. cit. (21).
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(2 AL 2 o
‘ nyly 2 lys
S mi+my,  ,—1 e —1+3, ny—1 ’
7 L 2 le
or
—1 7+ 71
10 ( 772]'*'7”2 _1). / 771‘ — 1 2 ___1‘
(10) 2 7y A 2

By the definition of I, it holds clearly g=wnn, Il;y 7, Putnow g=
1y ngnky, then

1 1
=g n/e,  and M=y T -

So we see

(11) mytmty it o (7’6 D).
724 2

By the structure of /V, we have

(12) me=1 (mod /;) (rel).
Now (10) and give

13 ( mtay _1> 72,—1 — Mt g

( ’) 2y 9 2 9 r

~

Taking into consideration, implies that I’ consists of only one
suffix y and £=1, n2,—1=/.. We shall now write /V, # or / instead of
Ny, g or Zr. Then we have

(14) n=I7+1
and
(15) g=u 7y 7.

Moreover (6) is written in the form

1 1 1
-5 7y ¢z+-2—— 7@2—1:—1 nyptg (2 —1),
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or
(16) 1,71+ Mgt =2 + 2ny11,.

Now G contains an element of order /. Since /=0 (mod 2) by (7),
/ must divide either 7, or #,. In the following we may assume, in choosing
suitable notations, that / divides 7, i.e. we shall put

an - m=ls, (s: integer,>0).
gives then 7,=2 (mod /), or
(18) n,=lt+2, (¢: integer, >0).®
From [(14), [(16), (17) and we obtain
Is(U+1)+ (e+2) (14+1)=2+20Ur+2),

or
Is+lt+2 4 t=2Ist+ 3s.
Hence ‘
Lyl 2 4yl 3
¢ s Ist Is 74
_;1_+__1_ _1_-_-2 +._2_(1_._1__ +J__
b3 s s It s It
Since s=>1, it holds
(19) SR T I
¢ Ky Is

On the other hand, we have /=2 by (7). Hence implies
(20) s=r=1,

Thus we conclude that 7,=/=7n—1 and »n,=/+2=n+1.

G is now representable as a transitive permutation gioup on the cosets
mod /. Since /V is of indek 741, the degree of this permutation group
Gy is n+1. /V contains a subgroup A of order ». (A was written as S,

(25) If #=0, an easy computation shows that the order g of G is 24, so that G is
solvable.
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or Z, in our old notations). Clearly any conjugate subgroup of /V except
/V has no elem=nt, other than ¢, in common with AZ. So Gy is doubly
transitive. Since (/, »)=1, /V contains a cyclic subgroup Z of order /such
that N=FHZ. Z is conjugate to Z; or Z, in the old notations, and so is
contained in two distinct conjugate subgroups of V. Hence Z consists of
elements of G, which fix two letters of the permutation. Since the order’
Z of Zis n—1 and any pair -of conjugate subgroups of Z has no element
in common other than ¢, Gy must be triply transitive and all elements of
Gy except ¢ fix at most two letters. Hence by the method of Zassenhaus™
we can construct the ‘ almost field” (Fastkorper) # corresponding to V.
In our case Z is of order n—1, so every element of /~ other than O has
its inverse, i.e. / is complete (vollstindig), and is surely a fited, since 2
is cyclie. Hence / is a finite field with 7 elements, and G, is isomorphic
to the full linear fractional group of one variable over #. Since 7n—1=0
(mod 2) by (7), the characteristic of F is greater than 2. Thus we have
proved the following theorem. ’

Theorem 9. Lot G be a non-solvable, non-simple c.d. group. Tlhen G is
zsomorpliic to the full lincar fractional group of one variable over a finite field
whose characteristic is greater than 2.

Conversely we can easily prove that the full linear fractional group of
one vaiiable over a finite field / is always c.d., and it is non-solvable when
F has at least four elements. Moreover it is non-simple if the characteristic

of /7 is greater than 2.

Mathematical Institute,
Tokyo University.
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