On the mapping functions of Riemann surfaces.

Tokunosuke Yosida.

(Received Apr. 21, 1949)
Let W be a simply connected infinitely many sheeted open Riemann surface, whose singularities are all logarithmic and lie only on a finite number of base-points $x_{1}, x_{2}, \ldots, x_{n}(n \geq 3)$, and W^{∞} be its universal covering surface.

Let $x=m(z)$ be the function which maps $W^{\text {so }}$ one-to one andiconformally on the unit-circle $|z|<1$. The properties of the function $m(z)$ are well known. Let $x=\varphi(w)$ be the function which maps W one-to-one and conformally on the finite plane $w \approx \infty$ or the unit-circle $|v|<1$ according as W is parabolic or hyperbolic and $\varphi^{-1}(x)$ be its inverse function. We shall obtain some properties of the function $\varphi^{-1}(m(z))$, which is regular in $|z|<\mathbf{1}$.

Let

$$
\begin{equation*}
w=f(z)=\varphi^{-1}(m(z)) \tag{1}
\end{equation*}
$$

and R be the Riemann surface on which the unit-circle $|z|<1$ is mapped one-to-one and conformally by $z=f(z)$. If W is of parabolic type, then R is a Riemann surface spread over the w-plane. If W is of hyperbolic type, then R is a Riemann surface spread over the unit-ci cle $|w|<1$. Let B be the boundary of the domain of $\varphi(w)$. The set B consits of only the point at infinity or the all points on the circumference $|w|=1$ according as the Riemann sufface W^{*} is parabolic or hyperbolic.

Lemma 1. The set M of points on the w-plane, which are the projections of the branch points of R is enumerable and the set M^{\prime} of the limiting points of M is contained in the set B.

Proof. Since the branch points of the universal covering surface W^{∞} lie only on the base-points $x_{1}, x_{2}, \ldots, x_{n}$ and $f^{-1}(w)=m^{-1}(\varphi(w))$ by the relation (1), we have a regular functional element of $f^{-1}(w)$ at the point w, if $\varphi(w) \neq x_{i}(i=1,2, \ldots, n)$. Hence the projections of the branch points of R on the w-plane are the zero-points of $\varphi(w)-x_{i}(i=1,2, \ldots, n)$. As the zero-points of an analytic function is enumerable, the set M is enumerable.

Since the limiting point of the zero-points of an analytic function lies on the boundary of the domain of definition, the set M^{\prime} is contained in the set B .

Lemma 2. If there exists the limit

$$
\begin{equation*}
f\left(e^{i \theta}\right)=\lim _{r \rightarrow 1} f\left(r e^{i \theta}\right), \tag{2}
\end{equation*}
$$

then the point $w=f\left(e^{i \theta}\right)$ belollgs to the set $M+B$.
Proof. As the set M^{\prime} is contained in the set B by the lemma $1, M$ $+B$ is a closed set. Let πv_{1} be a point in the domain of $\varphi(w)$ not belonging to the set M. Then there exists a small circle $\left|z v-\tau v_{1}\right|<\rho$ such that the Riemann suiface R has no branch points on this circle and the domains in the unit-circle $|z|<1$ which correspond to the circle $\left|v-w_{1}\right|<\rho$ are bounded by a simple closed curve in $|z|<1$. Hence w_{1} is not an asymptotic value of $f(z)$ at any point on the circumference $|z|=1$. Therefore w_{1} is not equal to any of the limit (2). Hence the point $\tau=f\left(e^{i \theta}\right)$ belongs to the set $M+B$.

Theorem 1. If the Riemann surface W is of parabolic type, then wee have

$$
\begin{equation*}
T(r)=0\left(\log \frac{1}{1-r}\right) \Longrightarrow 0(1) \tag{3}
\end{equation*}
$$

where $T(r)$ is the characteristic function of $f(s)$.
Proof. Since W is of parabolic type, R is a Riemann surface spread over the finite plane $w=\infty$ and the set $M+B$ is enumerable and closed by the lemma 1.

If we assume that the function $f(z)$ is 'beschränktartig', then there exists the limit (2) for almost every θ by a theorem of Fatou ${ }^{(1)}$. These limits belong to the set $M+B$ by the lemma 2 . Being enumerable and closed, the set $M+B$ is of capacity zero. Hence the set of the limits (2) is of capacity zero. Therefore $f(z)$ is equal to a constant by a theorem of Tsuji ${ }^{(2)}$. Hence the function $f(z)$ is not 'beschränktartig'.

Let $w_{i \nu}(\nu=1,2, \ldots)$ be the zero-points of $\varphi(w)-x_{i}(i=1,2, \ldots, n)$. Since the Riemann surface W is of parabolic type and $n \geqq 3$, there exists infinitely many such a point $v_{i \nu}$ by a theorem of Picard-Borel. As the function $f(z)$ does not take the infinitely many values $w_{i v}$, we have (3) by the second fundamental theorem of Nevanlinna for meromorphic functions.

Theorem 2. If the Riemann surface W is of hyperobolic type, then the function $f(z)$ is equal to a Blaschke's product, that is

$$
\begin{equation*}
f(z)=e^{t a} \pi(z), \quad \dot{\pi}(z)=\prod_{k=1}^{\infty} \frac{\left|z_{k}\right|}{z_{k}} \frac{z_{k}-z}{1-\bar{z}_{k} z} \tag{4}
\end{equation*}
$$

where α is a real constant and z_{k} are the zero-points of $f(z)$.
Proof. Since W is of hyperbolic type, R is a Riemann surface spread over the unit-circle $|w|<1$ and the set B is the circumference $|w|=1$.

As $|f(z)|<1$ in $|z|<1$, we have by a theorem of Nevanlinna ${ }^{(3)}$

$$
f(z)=\psi(z) \pi(z),
$$

where the function $\psi(z)$ is regular, bounded and has no zeros in $|z|<1$, and there exists the limit (2) for almost every θ by the theorem of Fatou.

The limit (2) belongs to the set $M+B$ by the lemma 2 . The set M is enumerable by the lemma 1 . The set of θ for which the limit (2) is equal to a constant is of measure zero by a theorem of Riesz ${ }^{(4)}$. The sum of an enumerable number of sets of measure zero is a set of measure zero. Therefore the limit (2) belongs to the set B for almost every θ, that is, the absolute value of the limit (2) is equal to 1 for almost every θ.

We know by Nevanlinna that a Blaschke's product has the radial limits of absolute value 1 for almost every points on the circumference $|z|=1^{5}$. Hence the function $\psi(z)$ has the radial limits of absolute value 1 for almost every points on $|z|=1$. As $\psi(z)$ is bounded in $|z|<1, \psi(z)$ is equal to a constant, which is of absolute value 1. Hence we have (4).

Theorem 3. The function $f(z)$ is automorphic with respect to a group G of linear transformations which make the unit-circle invariant and G can be produced by parabolic transformations only.

Proof. Without loss of generality we may assume that the number of base-points is three. Let x_{1}, x_{2}, x_{3} be the base-points and $1_{1}, 1_{2}, 1_{3}$ be the arcs $\overparen{x}_{1} x_{2}, \overparen{x_{2} x_{3}}, \overparen{x_{3} x_{1}}$ of the circle which pass through x_{1}, x_{2}, x_{3}. If W has a inner point on $x_{i}(i=1,2,3)$, then we cut $l V$ from this point along 1_{i}. After cutting in this way we obtain a simply connected surface W_{0}. We take infinitely many same samples $V_{i}(i=1,2, \ldots)$ as W_{0} and connect them along the opposite shores of the cuts in the well known way and obtain a universal covering Riemann suiface W^{∞}.

Since the function $\varphi^{-1}(x)$ is one-valued on W. The function $f(z)$ is automorphic with respect to a group of linear transformations $U: z^{\prime}=U(z)$ which make $|z|<1$ invariant, where z, z^{\prime} correspond to the same point of W.

Let x, x^{\prime} be two points on W^{∞} which correspond to z, z^{\prime} respectively. If x and x^{\prime} lie on W_{i} and W_{j} respectively, and W_{i} and W_{j} are connected to each other by the arc which lies on 1_{k}, then W^{∞} has only one invariant point on its boundary lying on x_{k} by the transformation of W^{∞} in itself. which corresponds to U. Hence U has only one invariant point on $|z|=$ 1, U is parabolic. It is well known that G can be produced by such a transformation.

The inner points of W which lie on the points x_{i} correspond to the zero-points of $\varphi(w)-x_{i}$ and the function $f(z)$ does not take the values of the set M which consists of all the zero-points of $\varphi(z v)-x_{i}(i=1,2,3)$. Hence R is the universal convring Ricmann surface of the domain which is bounded by the set $M+B$.

Finally, I express my hearty thanks to Dr. S. Ozaki in Tokyo Bunrika Daigaku for his kind guidance and to Mr. S. Hanai in Kyoto Technical College for his constant encouragemeut throughout this work.

- Kyoto Technical College.

Reference.

(1) P. Fatou: Séries trigonométrique et séries de Taylor. Acta Math. 30 (1906); R. Nevanlinna: Eindeutige analytische Funktionen. Berlin, (1936). 190-197.
[2] M. Tsuji : Theory of meromorphic functions in a neighbourhood of a set of capacity zero. Jap. Jour. of Math. 19 (1944).
[3] R. Nevanlinna: loc. cit. 174-178.
[4] R. Nevanlinna: loc. cit. 197-198.
[5] R. Nevanlinna: loc. cit. 196-197.

