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On the mapping functions of Riemann surfaces.
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Let $W$ be a simply connected infinitely many sheeted open Riemann
sulface, whose singularities are all logarithmic and lie only on a finite
number of base-points $x_{1},x_{2},\ldots,x_{n}(n\geqq 3)$ , and $W^{\infty}$ be its universal covering
surface.

Let $x=m(\sim r)$ be the function which maps Pt” one-to one andtconformally
on the unit-circle $|z|<1$ . The properties of the function $m(z)$ are well
known. Let $x=\varphi(w)$ be the function which maps $W$ one-to-one and con-
formally on the finite plane $ w\grave{\tau}\infty$ or the unit-circle $|\ovalbox{\tt\small REJECT} zv|<1$ according as
$W$ is parabolic or hyperbolic and $\varphi^{-1}(x)$ be its inverse function. We shall
obtain some properties of the function $\varphi^{-1}(m(z))$ , which is regular in $|2|<1$ .

Let
$w=f(z)=\varphi^{-1}(r;\iota(\sim\leftrightarrow))$ (1)

and $R$ be the Riemann $s_{U1}face$ on which the unit-circle $|z|<1$ is mapped
one-to-one and conformally by $\prime LU=f(\sim\sigma)$ . If $W$ is of parabolic type, then
$R$ is a Riemann sulface spread over the w-plane. If $W$ is of hyperbolic
type, then $R$ is a Riemann sulface spread over the unit-circle $|w|<1$ .
Let $B$ be the boundary of the domain of $\varphi(w)$ . The set $B$ consits of
only the point at infinity or the all points on the circumference $|w|=1$

according as the Riemann srnface $W$ is parabolic or hyperbolic.
Lemma 1. $ Th\ell$ set $M$ of points on the w-plan $e,$

$ whic\nearrow\iota$ are tlie projections
of tlie branclz points of $R$ is enumerable and $tI\iota e$ set $M^{\prime}$ of $tI_{l}e$ limiting points
of if is contained in the set $B$ .

Proof. Since the branch points of the universal coveling surface $W^{\infty}$

lie only on the base-points $x_{1},x_{2},\ldots,x_{n}$ and $f^{-1}(w)=m^{-1}(\varphi(w))$ by the
relation (1), we have a regular functional element of $f^{-1}(w)$ at the point
$w$ , if $\varphi(w)\neq x_{i}(i=1,2,\ldots,n)$ . Hence the projections of the branch points of
$R$ on the w-plane are the zero-points of $\varphi(w)-x_{i}(i=1,2,\ldots,n)$ . As the
zero-points of an analytic function is enumerable, the set $M$ is enumerable.

Since the limiting point of the zero-points of an analytic function lies
on the boundary of the $domait^{\prime}1$ of definition, the set 1M’ is contained in
the set B.
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Lemma 2. $1ft/lere$ exists the limit

$f(e^{i\theta})=\lim_{r\rightarrow 1}f(re^{i\theta})$ , (2)

$t1_{l}en$ the point $’\angle v=f(e^{i\theta})belo//gs$ to $tf_{l}e$ set $M+B$ .
Proof. As the set $M^{\prime}$ is contained in the set $B$ by the lemma 1, $M$

$+B$ is a closed set. Let $\prime v_{1}$ be a point in the domain of $\varphi(w)$ not belong-
ing to the set $M$. Then there exists a small circle $|w-\mathcal{L}\prime v_{1}|<\rho$ such that
the Riemann sulface $R$ has no branch points on this circle and the domains
in the unit-circle $|2|<1$ )$vhich$ correspond to the circle $|’\iota v-w_{1}|<\rho$ are
bounded by a simple closed curve in $|z|<1$ . Hence $’\iota v_{1}$ is not an asymptotic
value of $f(z)$ at any point on the circumference $|\approx|=1$ . Therefore $’\iota V_{1}$ is
not equal to any of the limit (2). Hence the point $zv=f(e^{i\theta})$ belongs to
the set $M+B$ .

Theorem 1. $1f$ the Riemann surface $W$ is of parabolic typc, then $’\iota ve$

lave

$T(r)=0(\log\frac{1}{1-r}),\neg-0(1)$ , (3)

where $T(r)$ is tlie claracleristic function of $f(\alpha)$ .
Proof. Since $iV$ is of parabolic type, $R$ is a Riemann surface spread

over the finite plane $ w\backslash \frac{\leftarrow}{\backslash }\infty$ and the set $M+B$ is enumerable and closed
by the lemma 1.

If we assume that the $f_{L}\iota nctionf(\approx)$ is ‘beschr\"anktartig’, then $t^{here}$

exists the limit (2) for almost every $\theta$ by a theorem of Fatou. These
limits belong to the set $1V+B$ by the lemma 2. Being enumerable and
closed, the set $1lI+B$ is of capacity zero. Hence the set of the limits (2)
is of capacity zero. Therefore $f(\sim\leftrightarrow)$ is equal to a constant by a theorem
of Tsuji(2) Hence the function $f(z)$ is not ’ beschr\"anktartig ‘.

Let $w_{lt}(\nu=1,2,\ldots)$ be the zero-points of $\varphi(w)-x_{i}(i=1,2,\ldots,n)$ . Since
the Riemann sulface $W$ is of parabolic type and $\prime l\geqq 3$ , there exists infini-
tely many such a point $\prime pv_{i\nu}$ by a theorem of Picard-Borel. As the function
$f(z)$ does not take the infinitely many values $w_{i\nu}$ , we have (3) by the
second fundamental theorem of Nevanlinna for meromorphic functions.

Theorem 2. $1f$ the Riemann surface $W$ is of lyperoolic type, then the
function $f(\approx)$ is equal to a Blasclike’s prodttct, $t/\ell at$ is
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$f(\sim\sigma)=e^{ta}\pi(z)$ , $\pi(2)=\prod_{k=1}^{\infty}\underline{|z_{k^{k}}|}\approx\frac{\sim r_{k}-\approx}{1-\overline{\vee}r_{k}r\sim}$ (4)

$\sim_{cv^{lp}ere}$ $a$ is a real $consta/\ell t$ and $2_{k}$ are the $2ero$-points of $f(2)$ .
Proof. Since $W$ is of hyperbolic type, $R$ is a Riemann surface $spAead$

over the unit-circle $|w|<1$ and the set $B$ is the circumference $|w|=1$ .
As $|f(2)|<1$ in $|\sim r|<1$ , we have by a theorem of Nevanlinna(3)

$ f(z)=\psi(z)\pi$ (-\sim ),

where the function $\psi(\sim\alpha)$ is $re$gular, bounded and has no zeros in $|z|<1$ ,
and there exists the limit (2) for almost every $\theta$ by the theorem of Fatou.

The limit (2) belongs to the set $M+B$ by the lemma 2. The set $M$

is $enum^{a}rable$ by the lemma 1. The set of $\theta$ for which the limit (2) is
equal to a constant is of measure zero by a theorem of Riesz. The sum
.of an enumerable number of sets of measure zero is a set of measure zero.
Therefore the limit (2) belongs to the set $B$ for almost every $\theta$ , that is,
the absolute value of the limit (2) is equal to 1 for almost every $\theta$ .

We know by Nevanlinna that a Blaschke’s product has the radial limits
.of absolute value $t$ for almost every points on the circumference $|z|=1^{5)}$ .
Hence the function $\psi(z)$ has the radial limits of absolute value 1 for almost
every points on $|z|=1$ . As $\psi(\sim)$ is bounded in $|z|<1,$ $\psi(\sim\alpha)$ is equal to
a constant, which is of absolute value 1. Hence $\cdot$ we have (4).

Theorem 3. $T/u$ function $f(r)$ is $antomorp/licwit\gamma_{l}$ respect to a gronp
$G$ of linear transfarmations zvhick make the unit-circle invariant and $G$ can
le produced by parabolic transformations only.

Proof. Without loss of generality we may assume that the number of
$base-P_{\wedge}^{oints}\wedge isthree\wedge\cdot$ Let $x_{1},$ $x_{2},$ $x_{3}$ be the base-points and $1_{1},1_{2},1_{3}$ be the

arcs $x_{1}x_{2},$ $x_{2}x_{3}$ , $\chi_{3}\chi_{1}$ of the circle which pass through $x_{1},x_{2},x_{3}$ . If $W$ has
a inner point on $x_{i}(i=1,2,3)$ , then we cut IV from this point along $1_{i}$ .
After cutting in this way we obtain a simply connected surface $W_{0}$ . We
take infinitely many same samples $lV_{i}(i=1,2,\ldots)$ as $W_{0}$ and connect them
along the opposite shores of the cuts in the well known way and obtain
a universal covering Riemann sulface $W^{\infty}$ .

Since the function $\varphi^{-1}(x)$ is one-valued on $W$. The function $f(z)$ is
automorphic with respect to a group of lInear transformations $U:z^{\prime}=U(2)$

which make $|z|<1$ invariant, where $z,$
$2^{t}$ correspond to the same point

of $W$.
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Let $x,$
$x^{\prime}$ be two points on $W^{\infty}$ which correspond to ” $d$ respectively.

If $x$ and $x^{\prime}$ lie on $W_{i}$ and $|/V_{j}$ respectively, and $W_{i}$ and $W_{j}$ are connected
to each other by the arc which lies on $1_{k}$ , then $W^{\infty}$ has only one invariant
point on its boundary lying on $\chi_{k}$ by the transformation of $W^{\infty}$ in itself.
which corresponds to $U$. Hence $U$ has only one invariant point on $|\sim’|=$

$1,$ $U$ is parabolic. It is well known that $G$ can be produced by such a
transformation.

The inner points of $W$ which lie on the points $x_{i}$ correspond to the
zero-points of $\varphi(w)-x_{i}$ and the function $f(2)$ does not take the values of
the set $11^{\prime}I$ which $consi^{q}ts$ of all the zero-points of $\varphi(’\iota v)-x(i=1,2,3)$ .
Hence $R$ is $t\gamma_{le}lli_{L^{\prime}}^{r}ersalco_{L^{\prime}}^{r}cringRi\ell mn/m$ surface of the domain $’\iota vhich$ is
bounded by $t\nearrow te$ set $M+B$ .

Finally, I express my hearty thanks to Dr. S. Ozaki in Tokyo
Bunrika Daigaku for his kind guidance and to Mr. S. Hanai in Kyoto
Technical College for his constant encouragemeut throughout this $w_{01}k$ .

Kyoto Technical College.
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