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The object of the present paper is to establish a generalization of
Fubini’s theorem in the theory of integrals and to apply it to the proof
of Green’s formula under considerably general conditions.

The usual form of Fubini’s theoiem is concerned with the transfor-
mation of the integral of a summable function over the Euclidean space
$R_{p+q}$ ( $p$ and $q$ natural numbers) into a repeated integral taken over $R_{p}$

and $R_{q}$ successively, the space $R_{p+q}$ being the cartesian product of the
spaces $R_{p}$ and $R_{q}$. But this last circumstance is not essential for the
validity of the theorem. In fact, we may take, roughly speaking, any
two spaces $\Phi$ and $\Psi$ with measures $\mu$ and $\nu$ respectively, define a mapping

$\varphi$ of $\Phi$ o-lto $\Psi=\varphi(\Phi)$ , and denoting by $\Phi_{y}$ the inverse image $\varphi^{-1}(y)$ of
$ y\in\Psi$ under the mapping $\varphi$ and by $\mu_{y}$ a measure on $\Phi_{y}$ , we have the
formula (see Theorem 4)

$\int_{\ovalbox{\tt\small REJECT} r}f(x)d\mu(x)=\int_{\}},[\int_{\Phi_{y}}f(x)d\mu_{y}(x)]d\nu(y)$

for every $f(x)$ non-negative and measurable on $\Phi$ , provided that certain
conditions involving the three measures $\mu,$

$\nu$ and $\mu_{y}$ are satisfied.
There is a research by P.R.Halmos [7] along similar lines of idea,

but it seems to us that there is little point of contact between his paper
and ours, since Halmos’s interest lies chiefly in other directions.

Utilizi $\dot{\iota}lg$ the generalized Fubini theorem thus established, we shall
be able to prove our main theorem (Theorem 7) on the transformation
of a Stieltjes integral into an ordinary one. In case the function $G(x)$

with respect to which we integrate is monotone, this is a well-known theorem
and in fact is taken by Hobson (see Hobson [8], p. 605) as the very
definition of the Stieltjes integral; but our theorem is concerned with a
general function $G(x)$ of bounded variation and our result seems to be
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new.
We shall give here an account of the various conditIons under which

Green’s formula has been proved by several writers. We $denot\simeq$ dy $C$ a
rectifiable closed Jordan curve in $t1_{1}e$ plane and by $li$ the inner domain
bounded by $C$, and we take the formula under consideration in the $f_{01}m$

$|_{C}M(x, y)dy=\int\int_{j)}\frac{\partial M}{\partial x}dxdy$ , (I)

where the $i$ itegral is taken round $C$ in the positive sense.
W.Gross [2] $P^{loved}$ (1) uncler the co:ldition that $1\psi(x,y)$ is continuous

on $\overline{D}=D+C$ and that $\frac{\partial_{1}\nu I}{\partial x}$ is continuous and summable on $D$ . Then

W. T. Reid [4] proved $t1_{1}e$ validity of (1) under the following three
conditions:

(i) $1\psi_{(x}^{\prime},$ $y$) is continuous on $J\overline{J}$ ;
(ii) $M(x,y_{0})$ is absolutely continuous in $x$ on the intersection $D(y_{0})$

of the domain $D$ and the line $y=y_{0}$ , for almost all values of $y_{0}$ .
(iii) $\frac{\partial\parallel I}{\partial x}$ is summable over $D$.
The result of Reid was still extended by Tsuji [5]. He gave three

conditions for the validity of (1), $i$ . $e$ . (ii) and (iii) of Reid, together
with the condition (iv) : $M(x, \gamma)$ is colltinuous and bounded on $D$ , and
$\lim M(x, y)$ exists almost everywhere on $C$, when the point $(x, y)$ tends
to $C$ nontangentially.

Our result will show that Green’s formula holds under conditions (ii)
and (iii) of Reid, together with a new condition (see Theorem 8) which is
weaker than the condition (iv) of Tsuji, and which is satisfied automatically
if $M(x, y)$ is bounded in $D$ . Our chief concern is, of course, the
definition of the boundary values of $M(x, y)$ , which is secured by the
absolute continuity of $M(x, y)$ in $x$.

Reid [4] has given also a proof of the “ strong $f_{01^{\prime}}m$
‘’ of Cauchy’s

Fundamental Theorem, but our present result adds nothing new to

Cauchy’s theorem since we assume the summability of $\frac{\partial M}{\partial x}$ over $D$ .
Further research is necessary to justify the validity of this theorem under
more general conditions. We shallt treat this problem on another
opportunity.

It may be mentioned in passing that our main lemma (Theorem 8) may
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be $ded\llcorner\iota ced$ in a simpler way from Lusin’s Theorem (see Saks [9], p. 72)
on the approximation of a measurable function by a continuons one. But
we retain our present proof on account of the methodological interest.

Finally the author wishes to express his $h_{ea1}ty$ thanks to Prof.
Tsuji and Prof. Y. Kawada for their valuable helps and criticisms on th $e$

snbject of this paper.
We begin our subject with the following
Definition. Let $\Omega$ be an alstract space. A class $\mathfrak{M}oJsub_{\Delta}\cdot ets$ of $\Omega$ is

called a $pri$mili $\prime t^{f}e$ cfass, if
(i) $\Omega\epsilon \mathfrak{M}$ ;
(ii) $\iota f$ A $\epsilon \mathfrak{M}$ and $B\in \mathfrak{M},$ $t1_{l}en$ AB $\epsilon \mathfrak{M}$ ;
(iii) $\iota f$ A $\epsilon \mathfrak{M}$ , then there is a disjoint sequence of sets $A_{n}\epsilon \mathfrak{M}(;=1$ ,

2, 3, $\ldots\ldots$ ) $suc1\iota t1_{l}at$

$\Omega-A=\sum_{n=1}^{\infty}A_{n}$ .

Remark. Every primitive class $\mathfrak{M}$ contains the $e$mpty set, for taking
$ A=\Omega$, we have $A_{n}=0(n=1,2,3,\ldots\ldots)$ .

Theorem 1. The smallest additive class $\mathfrak{N}$ containg a primilive class
$\mathfrak{M}$ in a space $\Omega$ coincides willt tlte smallest normal class $\mathfrak{N}$ containing $\mathfrak{M}$ .

Proof. The proof is the same as that for the Lemma of Saks [9],
p. 83.

Theorem 2. Let $\Phi$ and $\Psi$ be non-emply abstract spaces, $\mathfrak{X}$ and $\mathfrak{Y}$

$ad\ell litive$ classes of sets in $\Phi$ and $\Psi$ respectively, $\mu$ and $\nu$ measures defined
for sels $(\mathfrak{X})$ and sels $(\mathfrak{Y})$ respectively, $ wit/l\mu(\Phi)<+\infty$ . Let $ furt/ter\varphi$

be a mapping of $\Phi$ on $\Psi,$ $\prime Lvhic/l$ is $t/\iota e$ image of $\Phi$ . For each $ y\in\Psi$ we
denote by $\Phi_{y}t\prime_{l}e$ inverse image of $y$ under $\varphi$ . Let $\mathfrak{X}_{y}$ be an addit.’ve class
of sets in $\Phi_{y}$ for $eac/\iota y\in\Psi$ , and $lei\mu_{y}$ be a measure defined for $t/\iota e$ sets
$(\mathfrak{X}_{y}).l^{1}Ve$ denote by $\mathfrak{M}$ a primitive class $af$ sets in $\Phi$ and by $\mathfrak{N}t/lC$ smallest
additive class in $\Phi$ containing $\mathfrak{M}$ , so tltat $’\iota\ell/e$ have $\mathfrak{N}\subset \mathfrak{X}$ .

Now we suppose $t/zat$ the following ihree conditions holdfor $e^{r}p/ery$ A $\epsilon \mathfrak{M}$ :
(i) $A\Phi_{y}\in \mathfrak{X}$ for any $ y\epsilon\Psi$ .
(ii) $\mu_{y}(A\Phi_{y})$ is, as a function of $2^{\prime}$ , measurable $(\mathfrak{Y})$ on $\Psi$ .
(iii) We $/lave$

$\mu(A)=\int_{\Psi}\mu_{y}$ (A $\Phi_{y}$) $d\nu(y)$ .

$1^{\prime\neg}hent/\iota ese$ tlrree statements liold also for every $set\sim A\in \mathfrak{N}$
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Proof. Since $\mathfrak{N}$ coincides with the smallest normal class $\mathfrak{N}_{0}$ containing
$\mathfrak{M}$ by Theorem 1, it is sufficient to prove that the class $\mathfrak{N}_{1}$ of all sets
(X) satisfying the three conditions of Theorem 2 is normal.

Now let $X.(n=1,2,3,\ldots\ldots)$ be a disjoint sequence of sets $(\mathfrak{N}_{1})$ and

put $X=\sum_{n=1}^{\infty}X_{n}$ . Then.for any $ y\in\Psi$

$X\Phi_{y}=\sum_{n=1}^{\infty}X_{n}\Phi_{y}\epsilon \mathfrak{X}_{y}$ ,

and $\mu_{y}(X\Phi_{y})=\sum_{n=1}^{\infty}\mu_{y}(X_{n}\Phi_{y})$ is measurable $(\mathfrak{Y})$ on $\Psi$ ; and since $\mu_{1}/(X_{n}\Phi_{y})$

$=>0$ for all $n$ , we have

$\mu(X)=\sum_{n=1}^{\infty}\mu(X_{n})=\sum_{n=1}^{\infty}\int_{\Psi}\mu_{y}(X_{n}/p_{y})d\nu(y)$

$=\int_{\Psi}\sum_{n\Leftarrow 1}^{\infty}\mu_{y}(X_{n}\Phi_{y})d\nu(y)=\int_{\Psi}\mu_{y}(X\Phi_{y})d\nu(y)$ .

Thus we find that $X\in \mathfrak{N}_{1}$

Next let $Y_{n}(n=1,2,3,\ldots\ldots)$ be a descending sequence of sets $(\mathfrak{N}_{1})$

and put $X=\prod_{n=1}^{\infty}X_{n}$ . Then for any $ y\in\Psi$

$X\Phi_{y}=\prod_{n=1}^{\infty}X_{n}\Phi_{y}\epsilon \mathfrak{X}_{y}$ ,

and $\mu_{y}(X\Phi_{y})=\lim_{n\rightarrow\infty}\mu_{y}(X_{n}\Phi_{y})$ almost everywhere $(\mathfrak{Y}, \nu)$ on $\Psi$ , since

$\mu_{y}(X_{n}(p_{y})\leqq\mu_{y}(\Phi_{y})=\mu_{y}(\Omega\Phi_{y})(n=1,2,3,\ldots\ldots)$ and

$+\infty>\mu(\Omega)=.\int_{\Psi}\mu_{y}$ (S2 $\Phi_{y}$) $d\nu(y)$ .

Hence $\mu_{y}(X\Phi_{y})$ is, as a function of $y$ , measurable $(\mathfrak{Y})$ on $\Psi$ and we
have further, by Lebesgue’s theorem,

$\mu(X)=_{n-}1i,n_{\infty}\mu(X_{n})=\lim_{n\rightarrow\infty}\int_{\Psi}\mu_{y}(X_{n}\Phi_{y})d\nu(y)$

$=\int_{\Psi}\lim_{n\rightarrow\infty}\mu_{y}(X_{n}\Phi_{y})d\nu(y)=\int_{\Psi}\mu,/(X\emptyset_{y})d\nu(y)$ .

Thus $X$ is found tq be a set $(Vl_{1})$ , completing the proof of our
theorem.
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Theorem 3. Let $ns$ assume, in the hypothesis of Theore$m2$ , that the
class $\mathfrak{X}_{y}$ is complete wilh respecl to the measure $\mu_{y}$ for cvery $ y\in\Psi$ , and tlat

for every $A\epsilon \mathfrak{X}$ there is a set $B\mathfrak{N}$ such that $A\subset B$ and $\mu(B-A)=0$ . Then

for every $A\epsilon X$

(i) $A\Phi_{y}\epsilon X$ almosl $e^{l}\iota;ery_{\mathcal{L}}^{r}vhere(\mathfrak{Y}, \nu)$ on $\Psi$ ;
(ii) $\mu_{y}(A\Phi_{y})$ as function of $y$ is measurable $(\mathfrak{Y})$ on $\Psi lf_{L}^{r}\ell/e$ neglecl

a set of measure $2ero$ $(\backslash \mathfrak{Y} , \nu)$ ;
(iii) $’\iota ueha^{\prime}e$

$\mu(A)=\int_{\Psi}\mu_{y}$ (A $\Phi_{y}$) $d\nu(y)$ .

Proof. First suppose $\mu(A)=0$ . Then $\mu(B)=0$ and

$\int_{\Psi}\mu_{v}(\Phi_{y})d\nu(y)=0$

by Theorem 2, hence $\mu_{y}(\Gamma_{J}\Phi,)=0$ almost everywhere $(\mathfrak{Y}, \nu)$ on $\Psi$ . But
$\mathfrak{X}_{y}$ is complete with respect to $\mu_{y}$ by hypothesis, and so $A\Phi_{y}\epsilon \mathfrak{X}_{y}$ and
$\mu_{y}(A\Phi_{y})=0$ almost everywhere $(\mathfrak{Y}, \nu)$ on $\Psi$ . Hence the result.

In the general case our theorem follows from the identity $A=B-$
$(B-A)$ and Theore$m2$ on account of $\mu(B-A)=0$ .

Theorem 4. Let us assume, in $t/lehypot/ns^{t}\vee s$ of Thcorem 3, thal $f(x)$

is a non-negative funclion measurable $(\mathfrak{X})$ on $\Phi$ . Then
(i) $f(x)$ is measurable $(\mathfrak{X}_{y})$ on $\Phi_{y}$ for almost all $(\mathfrak{Y}, \nu)$ values of

$ y\epsilon\Psi$ .
(ii) $\int_{\Phi}f(x)d\mu_{y}(x)$ is, as a function of $y$ , measuraJle $(\mathfrak{Y})$ on $\Psi$ , if $\tau ve$

neglect a set of mcasure $\sim ero(\mathfrak{Y}, \nu)$ ;

(iii)
$\int_{\Phi}f(x)d\mu(x)=\int_{\Psi}[\int_{\Phi_{y}}f(x)d\mu_{y}(x)]d\nu(y)$ .

Proof. In case $f(x)$ is a finite step-function, ou $r$ theorem is an
immediate consequence of Theorem 3. In the general case $f(x)$ is the
limit of an ascending sequence of finite non-negative step-functions $f_{n}(x)$

$(n=1,2,3,\ldots\ldots)$ measurable $(\mathfrak{X})$ on $\Phi$ , and the result follows from
repeated applications of Lebesgue’s theorem on integration of monotone
sequences of functions.

Examples. Now we shall give some examples of primitive classes
and Theorem 4.
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(I) Let $R$ denote the set of all finite real numbers and let $\mathfrak{M}$ denote
the class of all closed intervals $[a, b]$ , open intervals $(a, b)$ , and half-open
intervals $[a, b$) or $(a, b$] (where in all cases we suppcse $-\infty<a<b<$

$+\infty)$ , together with all one-pointic sets and the empty set. Then $\mathfrak{M}$ is
clearly a primitive class.

(II) Let $S$ and $T$ be abstract spaces and let $\mathfrak{X}$ and $\mathfrak{Y}$ be primitive
classes in $S$ and $T$ respectively. We denote by $\mathfrak{Z}=\mathfrak{X}\mathfrak{Y}$ the class of all
sets of the $f_{01}mx\times Y(X\epsilon \mathfrak{X}, Y\epsilon \mathfrak{Y})$ in the product space $U=S\times T$. Then
the class $\mathfrak{Z}$ is primitive in $U$. For clearly $U\epsilon \mathfrak{Z}$ , and if $A_{n}=X_{n}\times]_{n}\nearrow\epsilon \mathfrak{Z}$

for $n=1$ and 2, then

$A_{1}A_{2}=(X_{1}X_{2})\times(Y_{1}Y_{2})\epsilon \mathfrak{X}\mathfrak{Y}$ ,

since $X_{1}X_{2}\epsilon \mathfrak{X}$ and $Y_{1}Y_{2}\epsilon \mathfrak{Y}$ ; finally if $A=X\times Y\epsilon \mathfrak{Z}$ , then there are two
disjoint sequences $\{X_{n}\}$ and $\{Y_{n}\}$ of sets $(\mathfrak{X})$ and sets $(\mathfrak{Y})$ Iespectively
$(n=1,2,3,\ldots\ldots)$ , such that

$S-X=\sum_{n=1}^{\infty}X_{n}$ , $T=1^{r}/=\sum_{n=1}^{\infty}I_{n}^{\nearrow}$ .

Hencc we have

$U-A=X\times(T-Y)+(S-X)\times T=\sum_{n=1}^{\infty}XY_{n}+\sum_{n=1}^{\infty}X_{n}T$,

and this is a decomposition of $U-A$ into a disjoint sequence of sets $(\mathfrak{Z})$ .
(III) Let $\Phi=[0,1]\times[0,1]$ be the unit square in the plane, IE the

class of all measurable sets in $\Phi,$
$\mu$ the $Lebeg\iota\iota e$ measule for the sets $(\mathfrak{X})$ .

Similarly let $\Psi=[0,1]$ be the unit linear interval, $\mathfrak{Y}$ and $\nu$ the Lebesgue
class and measure in $\Psi$ . Let further $\varphi$ be defined by $\varphi(x, y)=y$ for
every point $(x, y)\epsilon\Phi$ . For every $ y\epsilon\Psi$ we put $\Phi_{y}=\Psi,$ $\mathfrak{X}_{y}=\mathfrak{Y},$ $\mu_{y}=\nu$ . We
denote by $\mathfrak{M}$ the primitive class $\mathfrak{M}_{0}\mathfrak{M}_{0}$ (see Fxample II), where $\mathfrak{M}_{0}$ is the
class of all intervals, closed, open and half-open, together with- all one-
pointic sets and the empty set, in the unit linear interval. Then the
smallest additive class $\mathfrak{N}$ in $\Phi$ containing $\mathfrak{M}$ is clearly the class of all
Borel sets in $\Phi$ .

Now let $f(x)$ be a non-negative function measurable $(\mathfrak{X})$ on $\Phi$ .
Then all the requirements of Theorem 4 are easily seen to be satisfied,
and we derive the following form of Fubini’s theorem:

A non-negative measurable funclion $f(x, y)$ on the $uni_{l}s^{-}quare$ is, as a
fnnclion of $x$ , measurable on $[0,1]$ for $ever/yy\epsilon[0,1]$ cxcept at most a
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linear set of measure $\approx ero$ , and $\prime Lve$ hcve

$\int_{0}^{1}\int_{0}^{1}f(x, y)dx^{J}cly=\int_{0}^{1}[\int_{0}^{1}f(x, y)d\iota^{\prime}]dy$ .

(IV) We can also deduce from our theory the following known
theorem: $\iota\iota$ function $f$ ( $x$ , y) measurable $(\mathfrak{V})$ on the rrnit square is
rneasurable $(\mathfrak{V})$ in.v for every $y\epsilon[0,1]$ . This is an immediate consequence
of a theorem analogous to Theorem 4, to the following effect:

Let us assnm” in $t/le/lypot/l:^{f}sis$ of Tlieorem 2, $t/latf(x)$ is a non-
$negati^{l}\iota\prime e$ function measurable $(\mathfrak{N})$ on $\Phi$ . $1^{\prime\backslash }/\iota en$

(i) $f(x)$ is $measm^{\prime}abll$ (III,) on $\Phi_{y}$ for every $ y\epsilon\Psi$ ;

(ii) $\int_{\Phi_{y}}f(x)cJ\mu_{y}(x)$ is, as a $ flr,;c\iota$ion of $y$ , measurable $(\mathfrak{Y})$ on $\Psi$ ;

(iii) $’\angle veha_{L^{f}}^{\prime}e$

$\int_{\Phi}f(x)cf\mu(\iota)=\int_{\Psi}[\int_{\Phi_{y}}f(x)d\mu,(x)]d\nu(y)$ .

Theorem 5. $L$et $F$ be a $collli;\iota uous$ function on $tl$ interval $1_{\cup}=[a,$ $ b\rfloor$

a$nd$ let $s(y)$ denote for each $y$ the nnmber (fnite or infinile) of $thc$ points
of $1_{0}$ at $’\angle v/\dot{u}c/lF$ assumes the ualue $y$ . $The/lt/lefmlClio/s(y)$ is measurable
(V) and we have

$\int_{-\infty}^{+\infty}s(y)dy=W(F;1_{0})$ ,

$W(F;1_{0})$ denoting the total variation of $F$ on $1_{0}$ .
$f^{)}roof$. This theorem, due to S. Banach, is proved on p. 280 of

Saks [9].
Theorem 6. $Give$/ a finite function $F$ of a real $’\iota$ ariable, $t/le$ set of $t/le$

points at wluch the fnnclion $F$ assumes a slrict $maximn^{\phi}n$ or $mf/i\iota mnm$ is
at most countable.

Proof. This is proved on p. 261 of Saks [9].
Theorem 7. Let $F$ be a continuous fvnction of bounded $\prime L^{\prime ariation}$ on

an interval $I_{0}=[a, b]$ , and let $G$ be a function integrable in the Lebesgue-

Stieltfes sense $w\iota t/l$ respect to F. We construct a $new$ function $\tilde{G}(y)$ for all
finite values of $y$ by $t/le$ follozving rule: if the function $F$ assumes the value
$y$ an infinity of times on the open $int/r_{L^{\prime}}^{r}al(a, b)$ or if there is a point $x$ of
$(a, b)$ at $’\iota vhichFassnm^{\underline{\rho}}s$ a strict exlremum, we put $G(y)=0$ . Otherzvise
the set of the points of $(a, b)$ at $whic1_{l}F$ assumes the value $y$ is a fimte set
$M,$ $\ell l/\iota d$ at eaeh point $x$ of $M$ the $fn/lctionF$ is strictly $i\prime jcre$asing or
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decreasing. $1Vow\iota ve$ define a futiction $\lambda(x)$ equal to 1 or $-1$ according as
$F$ is strictly increasing or decreasing at $x\epsilon M$ respecliv$ely$ , and using this
$\lambda(x)\tau ve$ clefine $\tilde{G}(y)$ by

$\tilde{G}(y)=\sum_{x\epsilon M}\lambda(x)G(x)$ .
$T1_{l}en\tilde{G}(y)$ is summabte and we have

$\int_{a}^{b}G(x)dF(x)=\int;_{\infty}^{\infty}\tilde{G}(y)dy$ .

Proof. Clearly we may assume $G(x)$ non-negative. Let us denote
by $F_{1}(x)$ and $F_{2}(x)$ the positive and negative variations of $F(x\cdot)$ on $[a, x]$

for $a\leqq x\leqq b$ respectively. We construct two functions $G_{1}(y)$ and $G_{2}(y)$

as follows: they are the functions constructed from $G(x)$ in a similar
way as $\tilde{G}(y)$ was constructed from $G(x)$ , with the modifications that now
we take instead of $\lambda(x)$ the positive part $\lambda_{1}(x)$ of $\lambda(x)$ in the case of
$G_{1}(y)$ and the negative part $\lambda_{2}(x)$ of $\lambda(x)$ in the case of $G_{2}(y)$ . Then
it is sufficient to prove

$\int_{a}^{b}G(x)dF_{m}(x)=\int;_{\infty}^{\infty}G_{m}(y)dy$ $(m=1,2)$ .

Since the proofs are the same for both cases, we carry out the proof for
$m=1$ only, and this is done by application of Theorem 4.

Let us put, in the notations of Theorem 4,

$\Phi=(a, b)$ , $\Psi=F(I_{0})$ , $\varphi=F$,

$\mathfrak{X}$ and $\mu$ the Lebesgue-Stieltjes additive class and measure with respect to
$F_{1}$ , and $\mathfrak{Y}$ and $\nu$ the Lebesgue additive class and measure. $F_{U1}$ ther let
$\mathfrak{X}_{y}$ be the class of all subsets of $\Phi_{y}$ for each $ y\epsilon\Psi$ , and let us define the
measure $\mu_{y}$ by

$\mu_{y}(X)=\sum_{x\epsilon X}\lambda_{1}(x)$
$(X\subset\Phi_{y})$ ,

if $\Phi_{y}$ is finite and if $F(x)$ is strictly increasing or decreasing at every
point of $\Phi_{y}$ ; otherwise we put $\mu_{y}(X)=0$ identically.

Now let $\mathfrak{M}$ be the class of all closed, open, or half-open intervals
in $\Phi$ , together with the empty set and one-pointic sets $\ln\Phi$ . Then
clearly $\mathfrak{M}$ is primitive, and the class $\mathfrak{N}$ coincides with the class of all
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Borel sets in $\Phi$ .
This being so, we shall show that the three conditions of $Theolem$

$2$ are also satisfied. Let us take, as a representative case, that of a closed
interval $A=[u, v]$ in $\Phi$ . Denoting by $|/1^{\prime}(x)$ the total variation of $F$ on
$[a, x]$ , we have, almost everywhere on $\Psi$ , on account of Theorems 5 and
6,

$\mu(A)=F_{1}(’\iota/)-F_{1}(ll)=\frac{1}{2}[T|^{\prime}’(v)-W(?l)+F(\prime r)-F(ll)]$

$=\int_{2^{-[\sum_{x\epsilon A}\lambda(x)]d_{J^{\prime}}}}^{\infty}-\infty^{-}1\sum_{F(x),\iota\epsilon A^{=y}}|\lambda(x)|+_{F(x)=y}$

$=\int_{-\infty}^{\infty}\sum_{x\epsilon A}\lambda_{1}(x)dy=\int_{\Psi}\mu_{y}(A\Phi_{y})d\nu(y)$ .

Further the class $\mathfrak{X}_{y}$ is $co$mplete with respect to the measure $\mu_{y}$ for every
$y$ , and it is well known that for every set $A$ measurable in the Lebesgue-
Stieltjes sense in $(a, b)$ there is a Borel set $B\supset A$ with $\mu(B-A)=0$ .
$Th_{\dot{L}}\iota s$ we can apply Theorem 4 and find immediately

$\int_{b}^{b}G(x)dF_{1}(x)=\int_{-\infty}^{\infty}G_{1}(y)dy$ .

Theorem 8. Let $C$ be a rectifiable closedJordan $cur^{r}\iota^{\prime}e$ in the $(x_{2^{\prime}})-$

plane and let $D$ denote the inner domain of C. Furlher let $M(x, y)$ be a
continuous function in $D’\iota vit/\iota t1\iota efoll\ovalbox{\tt\small REJECT} d/ing$ properties:

(i) $M(x,y)$ is absolutely continuous in $x$ on tli $i/ltCJ^{\prime}scction$ of $D$ a $7^{\prime d}$ the
line $y=y_{0}$ for almost all values of $y_{0}$

(ii) $\frac{\partial M}{\partial x}$ is summaljle $0_{t}^{\prime}/erD$ .
(iii) $M(x. y)$ is $integ\cdot rable$ in the Lebesgue-Stieltjes se$nsewit/hresp_{\vee}\prime ct$

to $y=y(s)$ ( $s$ is the arc length measured in the positive $se’ nse$ along $C$ )
around $C$, if $’\iota c’ e$ define $M(x, y)$ on $C$ as follorvs: if $t/le$ interseclion $D(y_{0})$

of $D$ and the line $y=y_{0}$ consists of a finite number of linear $open$ intervals,
evry two of zuhich have a positive distance, and $lfthtfoi’\iota t(x_{0}, \iota\nu_{0})$ is an
end-point of one of these intervals, then we define $M(x_{0},y_{0})$ to be $t/le$ limit of
$M(x, y)$ as $(x, y)$ approaches $(x_{0},y_{0})$ throu.gh $D(y_{0}),$ $lf$ such a limit exists
and is fiiiite; in all $ot/ler$ cases (that is to say, $lf$ we cannot define the $valu\mathcal{E}$

of $M(x_{0}, y_{0})$ in th.s way) $w^{\rho}$ put simply $M(x_{0}, y_{0})=0$ for $(x_{0}, j_{0}^{\prime})\epsilon C$

$T/len’\iota veha_{t}^{\prime}/e$
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$\int_{C}M(x, 2^{\prime})dy=\int\int_{D}\frac{\partial M}{\partial x}dxd_{J^{\prime}}$ ,

the Stielljes integral being taken in $t\nearrow_{l}e$ positive sense around $C$

Remark. (I) The measurablity of $M(x, y)$ in the Lebesgue-Stieltjes
sense with respect to $y(s)$ on $C$ is an easy consequence of the continuity
and proyerty (i) of the function $M$ and so we leave its verification to
the reader.

(II) The derivative $\frac{\partial M}{\partial x}$ exists almost everywhere in $D$ and is a

measurable function. On this cf. Tsuji [5].
Proof Applying Theorem 7 to $M(x, y)$ we have

$\int_{c}M(x, y)dy=\int_{-\infty}^{\infty}\tilde{M}(y)dy$ .

where $\tilde{M}(y)$ is constructed from $M(s^{\backslash })=M(x(s), y(s))$ with respect to
$y=y(s)$ in the way indicated in the proof of that theorem. But we find
easily

$\tilde{M}(y)=\int_{D(y)}\frac{\partial M}{\partial x}dx$
,

for almost all values of $y$ , hence

$\int_{-\infty}^{\infty}\tilde{M}(y)dy=\int_{-\infty}^{\infty}dy\int_{D(y)}\frac{\partial M}{\partial x}dx=\int_{D}\frac{\partial M}{\partial x}d_{j}xdy$ ,

the last step being effected by the usual Fubini’s theorem.
Corollary. Let $M(x,y)$ be a lonnded continuous function in $D$ such that
(i) $M(x, y)$ is absolutely continuous in $x$ on the inlersection $D(y_{0})$

of $D$ and the line $y=y_{0}$ for $al_{7}nost$ all $y_{0}$ ;

(ii) $\frac{\partial M}{\partial x}$ is summable over $D$ .
$T/\iota en$ Green’s formula holds, if $’\iota ve$ definc $t\nearrow\iota e$ value of $M$ on $C$ as in

Theorem 8.
Proof. Since $M(x, y)$ is bounded, the condition (iii) of Theorem 8

is automatically satisfied.



124 K. ISEKI.

Bibliography.

[1] H. E. Bray, “Green’s Lemma.” Annals of Mathematics, vol. 26 (1924-5), pp. 278-286.
[2] W. Gross, “ Das isoperimetsische Problem bei Doppelintegralen,” Monatshefte f\"ur Mathe-

matik und Physik, vol. 27 (1916), pp. 70-120.
[3] S. Pollard, “ On the conditions for Cauchy’s Theorem,” Proceedings of the London

Mathematical Society, vol. 21 (1923), pp. 456-482.
[4] W. T. Reid, “Green’s lemma and related results,” American Journal of Mathematics,

vol. 63 (1941), pp. 563-574.
[5] M. Tsuji, “ On Green’s Lemma,” Proceedings of the Imperial Academy of Tokyo, vol.

18 (1942), pp. 176-178.
[6] E. B. Van Vleck, “ An extension of Green’s lemma to the case of a rectifiable bounda-

ry,” Annals af Mathematics, vol. 22 (1920-21), pp. 226-237.
[7] P. R. Halmos, “ The decomposition of n easures, Duke AlathematicalJournal, vol. 8

(1941), pp. 386-392.
[8] E. W. Hobson, “ The theory of functions of a real variable and the theory of

Fourier’s series,” vol. 1, 3rd edition (Cambridge 1927), p. 605.
[9] S. Saks, “ Theory of the integral, ” Warszawa-Lwow 1937.


	On a Generalization of ...
	Theorem 8. ...
	Bibliography.


