Journal of the Mathematical Society of Japan

Vol. 2, Nos. 3-4, March, 1951.

On the Differential Forms of the First Kind on Algebraic Varieties II.

Shoji Koizumi.

(Received Oct. 30, 1950)

We shall give some supplementary remarks to my previous paper on the same subject¹⁾. As in Weil's definition, we shall call differential forms to be of the first kind on a Variety U, when they are finite at every simple Point on every Variety birationally equivalent to U. This definition is equivalent to my previous one in [K], if U has a birationally equivalent model which is a complete Variety without singularities.

1. We shall prove the following theorem as an extension of the theorem 2 in [K].

THEOREM 1. Let ω be a differential form of the first kind of degreer on a Product-Variety $\mathbf{U} \times \mathbf{V}$, then we have the following expression

 $\omega = \sum \sigma_i \tau_i$

where σ_i , τ_i are, respectively, differential forms of the first kind on U, V, of degree d_i , $r-d_i$. Moreover, if ω , U and V have a common field k of definition which is perfect, σ_i , τ_i are defined over k.

PROOF. Without loss of generality we may suppose that ω , U and V are defined over a perfect field k. Let P and Q be independent generic Points over k, of U and V, respectively. If (t) and (u) are respectively, sets of uniformizing parameters at P and Q, on U and V, then

$$\omega = \sum_{(i,j)} z_{i_1,\dots,i_s}; j_1,\dots,i_{r-s} dt_{i_1} \cdots dt_{i_s} du_{j_1} \cdots du_{j_{r-s}}$$
$$= \sum_j \left(\sum_i z_{(i,j)} dt_{i_1} \cdots dt_{i_s} \right) du_{j_1} \cdots du_{j_{r-s}}$$

where $z_{i_1}, ..., i_s$; $j_1, ..., j_{r-s}$ are contained in $k(\mathbf{P}, \mathbf{Q})$ and (i, j) means $i_1, ..., i_s$; $j_1, ..., j_{r-s}$. If we consider $\sum_i z_{(i,j)} dt_{i_1} \cdots dt_{i_s}$ as defined on U over the field $k(\mathbf{Q})$, they are of the first kind.

¹⁾ Journal of the Mathematical Society of Japan Vol. 1, No. 3, 1949. This note will be denoted by [K], and we shall use the same terminologies and notations as in [K].

S. KOIZUMI.

**2

Therefore from the theorem 4 in $[K]^2$, we obtain

$$\sum_{i} z_{(i,j)} dt_{i_1} \cdots dt_{i_s} = \sum u_{(j)k} \sigma_k$$

where $u_{(j)k}$ are contained in k(Q), and σ_k are the differential forms of the first kind on U defined over k. So it follows

$$\omega = \sum \sigma_i \tau_i$$

where σ_i are as above and τ_i are the differential forms on V over k. We shall denote $dt_{i_1} \cdots dt_{i_s}$ by T_{α} ($\alpha = 1, \dots, N$), and may take the following base $\{\sigma_{i,j}\}$ of the vector space over k spanned by $\{\sigma_i\}$

where $(u_{i,1}^i, u_{i,2}^i, \dots, u_{i,a_i}^i)$ are contained in $k(\mathbf{P})$ and are linearly independent over k. Then ω has the following expression

$$\omega = \sigma_0 \tau_0 + \sigma_{1,1} \tau_{1,1} + \dots + \sigma_{1,a_1} \tau_{1,a_1} + \dots + \sigma_{i,1} \tau_{i,1} + \dots + \sigma_{i,a_i} \tau_{i,a_i} + \dots$$

= $u_0 \tau_0 \pm (u_{1,1}^1 \tau_{1,1} + \dots + u_{1,a_1}^1 \tau_{1,a_1}) T_1 \pm \dots$
 $\pm (u_{1,1}^i \tau_{1,1} + \dots + u_{i,1}^i \tau_{i,1} + \dots + u_{i,a_i}^i \tau_{i,a_i}) T_i + \dots$

Since the differential forms $u_{i,1}^i \tau_{1,1} + \cdots + u_{i,1}^i \tau_{i,1} + \cdots + u_{i,a_i}^i \tau_{i,a_i}$ on V are of the first kind, by the proposition 10 in [K], we may show by the mathematical induction that $\tau_{i,j}$ are of the first kind. q. e. d.

268

²⁾ It is not necessary for this theorem for U to have a complete model without singularities, which is birationally equivalent to U over k. From the theory of normal variaties we may easily deduce that the theorem holds true if k in perfect.

2. Next, we consider an extension of the theorem 2 in [K]. We begin with the following definition.

DEFINITION 1. Let ω be a differential form on a Variety U. ω and U are defined over a field k and P is a generic Point of U over k. We say that ω has the property (F) at a point P' on U, if ω has the following expression

$$\omega = \sum u_i dv_i,$$

where u_i and v_i are contained in the specialization ring of P' in k(P)

It is evident that the property (F) at P' is equivalent to the finiteness at P', when P' is a simple Point on U.

PROPOSITION 1. Let ω be a differential form on a complete Variety U. If ω has the property (F) everywhere on U, ω is of the first kind.

PROOF. Let V^n be a birationally equivalent variety over k to U, and P be a simple (n-1)-dimensional point over k on V. If Q on U is a birationally corresponding Point to P, the specialization ring of P includes that of Q. Therefore if ω has the property (F) at Q on U, it has the same property at P on V. This proves the proposition.

PROPOSITION 2. Let V be a simple Subvariety of U and P be a point on V. If a differential form ω on U is finite on V, it induces a differential form ω' on V. Moreover,, if ω has the property (F) at P on U, ω' has also the same property at P on V.

PROOF. The first assertion follows from the proposition 6 in [K]. Let k be a common field of definition for U, V and ω , and \overline{P} , \overline{Q} be, respectively, the generic Points of U, V over k. Every element in the specialization ring of P in $k(\overline{P})$ has a uniquely determined specialization over $\overline{P} \rightarrow \overline{Q}$ with respect to k, and that specialization is contained in the specialization ring of P in $k(\overline{Q})$. This proves the proposition.

From these two propositions we can obtain at once the following theorem.

THEOREM 2. Let U be a complete Variety without singularities, and V be a simple Subvariety of U. If a differential form ω on U is of the first kind, it induces a differential form ω' on V of the first kind.

Mathematical Institute, Nagoya University.

269