On Conformal Representation of Multiply Connected Polygonal Domain.

Akira Mori.
(Received Oct. 1, 1949)
It is known, that a function $z v(z)$ is schlicht and star-shaped with respect to $w(0)=0$ in $|z|<1$, when, and only when, it can be expressed in the form

$$
w(z)=\text { const. } \cdot z \cdot \exp .2 \int_{|\zeta|=1} \log \frac{\zeta}{\zeta-z} d \mu(\zeta)
$$

where μ denotes a positive distribution of total mass 1 on the unit circle. This formula can also be written in the form

$$
w(z)=\text { const. } \exp \cdot \int_{|\zeta|=1} \log \frac{z}{\left(1-\frac{z}{\zeta}\right)^{2}} d \mu(\zeta),
$$

and here comes out Koebe's extremal function. The argument of this function is equal to a constant on $|z|=1$ except the point ζ, and jumps by $+2 \pi$ when z passes ζ in positive direction on $|z|=1$. Then, the above formula shows: The star-shaped function $w(z)$, whose argument is nondecreasing for z moving on $|z|=1$ in positive direction, can be constructed from such clements as a sort of geometrical mean.

We shall prove in this paper an analogue of this fact for n-ply connected domain, and, as an application thereof, treat the conformal representation of n-ply connected polygonal domain.

In order to simplify the wording, we call a half straight-line Arg $\Omega=$ const., $|\Omega| \geqq$ const. >0 an "infinite radial slit", and a segment $\operatorname{Arg} \Omega=$ const., const. $\geqq|\Omega| \geqq$ const. >0 a "radial slit", respectively.

§ 1.

Let D be a domain on z-plane bounded by n analytic closed curves $\Gamma_{1}, \cdots \cdots, \Gamma_{n}$, whose sum we denote by Γ, and let z_{0} be a fixed point in D.

For any point ζ on Γ, we denote by $\Omega(z, \zeta)$ the function which satisfies the conditions $\Omega\left(z_{0}, \zeta\right)=0, \Omega \Omega^{\prime}\left(z_{0}, \zeta\right)=1$ and maps D conformally on the whole Ω-plane cut along an infinite radial slit and ($n-1$) radial slits, so that the boundary point ζ of D corresponds to the bodunary point
$\Omega=\infty$. The existence, uniqueness and the continuity in ζ of such functions are to be proved afterwards in Lemmas 1 . and 3.

We will now formulate the theorem to be proved as follows:
Theorem 1. Let $w(z)$ be a function which satisfies the following three conditions:

1. $w(s)$ is regular and does not vanish in D except at z_{0}, where it has an expansion of the form

$$
v(z)=\left(z-z_{0}\right)^{\alpha}\left\{1+c_{1}\left(z-z_{0}\right)+\cdots \cdots\right\} \quad(\mu \geqq 0) .
$$

2. $|w(z)|$ is one-valued in 11 .
3. Any branch of $\operatorname{Arg} w(z)$ is bounded in the neighbourhood of Γ, and the limiting value

$$
\lim _{z \rightarrow \zeta^{*}} \operatorname{Arg} w(z)=\theta\left(\zeta^{*}\right)
$$

exists for each ζ^{*} on Γ except at most an enumerable infinity of points and is of bounded variation, as function of ζ^{*} on Γ, on the set where it exists.

A necessary and sufficient condition for this, is that $w(z)$ can be expressed in the form

$$
\begin{equation*}
w(z)=\exp \cdot \int_{\Gamma} \log \Omega(z, \zeta) d \sigma(\zeta), \tag{1}
\end{equation*}
$$

where σ is a distribution of bounded variation of total mass α on Γ, determined by the function of bounded variation $\frac{1}{2 \pi} \theta\left(\zeta^{*}\right)$.

We shall make some preparations and prove some lemmas.
Definition of the Riemann surface Φ. Let \tilde{D} be another sheet of D. We put D^{\prime} on D and identify the corresponding boundary points of D and \tilde{D}. This closed surface can be regarded as a closed Riemann surface Φ of genus $n-1$, since we can define a local parameter $t(p)$ for each point p on Φ : for a point of \tilde{D} by taking conjugate complex, and for a point on Γ by reflection in Γ.

By interchanging the two sheets D and \tilde{D}, we obtain a transformation $p \rightarrow \tilde{p}$ which transforms Φ into itself conformally with inversion of angles.

Besides, we denote by $\omega_{q_{1}, q_{2}}(p)$ the elementary integral of third kind on Φ, which has the singularities $\log t\left(q_{1}\right)$ at q_{1} and $-\log t\left(q_{2}\right)$ at q_{2}, and whose real part is one-valued on Φ. And by $\omega_{g_{1}, q_{2}}^{\prime}(p)$ we denote the elementary integral of third kind, which has the singularities $-i \log t\left(q_{1}\right)$ at

On conformal representation of multiply connected polygonal domain. 189 q_{1} and $i \log t\left(q_{2}\right)$ at q_{2}, and whose real part is one-valued on Φ cut along a curve connecting q_{1} with $q_{2}{ }^{1)}$.

Lemma 1. For each ζ on Γ, there exists one and only one function $\Omega(z, \zeta)$ with the mentioned properties.

Proof. We put

$$
\omega_{z_{0}, \zeta}(p)+\omega_{\tilde{z_{0}}, \zeta}(p)=u(p)+i v(p),
$$

and

$$
\begin{equation*}
\Omega(z, \zeta)=\text { const. } \exp .\{u(z)+i v(z)\} . \tag{2}
\end{equation*}
$$

Since the one-valued potential function $u(\tilde{p})$ has on Φ the same singularities as $u(p)$, and takes on Γ the same value as $u(p)$, we have

$$
u(p) \equiv u(\tilde{p}),
$$

i.e. $u(p)$ takes the same value at \tilde{p} as at p. Hence we have at each point on Γ except ζ,

$$
\frac{\partial u}{\partial \nu}=0 \quad \text { consequently } \frac{\partial v}{\partial \tau}=0,
$$

where ν and τ denote the normal and tangent to Γ. Therefore, v takes a constant value on each Γ_{k}. It follows from this, that $\Omega(z, \zeta)$ is onevalued in D.

On the other hand, u is finite at each point of Γ except ζ, where u is positively infinite. Hence, the image of Γ ' by $\Omega(z, \zeta)$ consists of an infinite radial slit and $n-1$ radial slits.

Let Ω_{0} be a point of Ω-plane, which does not belong to these n slits. Since

$$
\operatorname{Arg}\left\{\frac{1}{\Omega(z, \zeta)}-\frac{1}{\Omega_{0}}\right\}
$$

remains unchanged when z moves on Γ once around and returns to the original value, and since $1 / \Omega(z, \zeta)$ has one and only one pole in D, $\Omega(z, \zeta)$ takes each value Ω_{0} once and only once in D. Therefore, $\Omega(z, \zeta)$ provides the required mapping, when the constant factor in (2) is determined by the condition $\Omega^{\prime}\left(z_{0}, \zeta\right)=1$.

The uniqueness of the mapping function can be proved as follows. Let $\Omega_{1}(z, \zeta)$ be another mapping function with the mentioned properties. When
we continue $\Omega_{1}(z, \zeta)$ analytically across I^{\prime} on Φ by the principle of reflection, we obtain a one-valued potential function $\log \left|\Omega_{1}(p, \zeta)\right|$ on Φ, since $\left|\Omega_{1}\right|$ remains unchanged by reflection in a radial slit. Moreover $\log \left|\Omega_{1}(p, \zeta)\right|$ has the same singularities as $u(p)$. Therefore, by the normalisation $\Omega_{1}^{\prime}\left(z_{0}, \zeta\right)=1, \Omega_{1}(z, \zeta)$ must be identical with $\Omega(z, \zeta)$.

Remark. By the same idea as in the above proof, we can construct the function $\Omega\left(z, z^{*}\right)$ for $z^{*} \in D$, which maps D conformally on the whole Ω-plane cut along n radial slits and satisfies $\Omega\left(z_{0}, z^{*}\right)=0, \Omega^{\prime}\left(z_{0}, z^{*}\right)=1$, $\Omega\left(z^{*}, z^{*}\right)=\infty$. For this purpose, we have only to put

$$
\begin{equation*}
\Omega\left(z, z^{*}\right)=\text { const. } \exp .\left\{\omega_{z_{0} * *}(z)+\omega_{z_{0}, z^{*}}(z)\right\} . \tag{3}
\end{equation*}
$$

We cut the domain D by n curves, each of which connects z_{0} respectively with an arbitrarily fixed point ζ_{k} on Γ_{k}, and which do not cross each others. We denote by D_{0} the resulting simply connected domain, in which $\operatorname{Arg} \Omega(z, \zeta)$ is one-valued. We can assume that D_{0} contains wholly in it a line element $d x$ at z_{0} with direction of positive real axis. We take the branch of $\operatorname{Arg} \Omega(z, \zeta)$ which vanishes at $z_{0}+d x$ and put

$$
\theta(z, \zeta)=\operatorname{Arg} \Omega(z, \zeta)
$$

for $z \in D_{0}$.
As function of z with fixed $\zeta, \theta(z, \zeta)$ has the following properties.
Lemma 2. $\boldsymbol{\theta}(z, \zeta)$ is bounded in D_{0}, and the limiting value

$$
\lim _{z \rightarrow \zeta^{*}} \theta(z, \zeta)=\theta\left(\zeta^{*}, \zeta\right)
$$

exists for each ζ^{*} on Γ except $\zeta . \theta\left(\zeta^{*}, \zeta\right)$ is equal to a constant on each arc of Γ which contains neither ζ nor $\zeta_{1}, \cdots \cdots \cdot \zeta_{n}$, and jumps by $+2 \pi$ at ζ when ζ^{*} moves on I ' in pocitive direction.

Proof. This is obvious from the shape of the image of D by $\Omega(z, \zeta)$.
As function of ζ with fixed $z, \log \Omega(z, \zeta)$ and $\theta(z, \zeta)$ have the following properties.

Lemma 3. $\log \Omega(z, \zeta)$ is one-valued and continuous, and its imaginary part $\theta(z, \zeta)$ is uniformly bounded for the parameter z in D_{0}.

Proof. The constant factor in (2), which is to be determined by the condition $\Omega^{\prime}\left(z_{0}, \zeta\right)=1$, depends naturally on ζ. When we write (2) in the form

$$
\log \Omega(z, \zeta)=\int_{z_{0} *}^{z} d \omega_{z_{0}, \zeta}+\int_{z_{0} *}^{z} d\left(\omega_{z_{0}, \zeta}+c(\zeta),\right.
$$

where $z_{0}{ }^{*}$ denotes an arbitrarily fixed point in D, the condition $Q^{\prime}\left(z_{0}, \zeta\right)=1$

On conformal representation of multiply connected polygonal domain. 191 is given by

$$
c(\zeta)=\lim _{z_{1} \rightarrow z_{0}}\left\{-\int_{z_{0}^{*}}^{z_{1}} d \omega_{Z_{0}, \zeta}-\int_{z_{0}^{*}}^{z_{1}} d \omega_{z_{0}, \zeta}+\log \left(z_{1}-z_{0}\right),\right\}
$$

and we obtain the following definite form of $\log \Omega(z, \zeta)$,

$$
\log \Omega(z, \zeta)=\lim _{z_{1} \rightarrow z_{0}}\left\{\int_{z_{1}}^{z} d \omega_{z_{0}, \zeta}+\int_{z_{1}}^{z} d \omega_{z_{0}, \zeta}+\log \left(z_{1}-z_{0}\right)\right\} .
$$

We assume that ζ lies on Γ_{k}, and consider the difference

$$
\begin{aligned}
& \log \Omega(z, \zeta)-\log \Omega\left(z, \zeta_{k}\right) \\
& =\lim _{z_{1} \rightarrow z_{0}}\left\{\int_{z 1}^{z} d \omega_{z_{0}, 5}-\int_{z_{1}}^{z} d \omega_{Z_{0}, \zeta_{k}}+\int_{z_{1}}^{z} d \omega_{z_{0}, \zeta}-\int_{z_{1}}^{z} d \omega_{z_{0}, \zeta_{k}}\right\} \\
& =\lim _{z_{1} \rightarrow z_{0}} 2 \int_{z_{1}}^{z} d \omega_{\zeta_{k}, \zeta}=2 \int_{z_{0}}^{z} d \omega_{\zeta_{\xi_{1}}, \zeta} .
\end{aligned}
$$

By the theorem of interchange of argument and parameter, ${ }^{2}$, we can write this in the form

$$
\log \Omega(z, \zeta)-\log \Omega\left(z, \zeta_{k}\right)=2\left\{\Re \int_{\zeta_{k}}^{\zeta} d \omega_{z_{0}, z}+i \Re \int_{\zeta_{k}}^{\zeta} d \omega_{z_{0}, z}^{\prime}\right\}
$$

This proves the mentioned property of $\log \Omega(z, \zeta)$.
While taking the imaginary part of this formula, we have

$$
\theta(z, \zeta)-\theta\left(z, \zeta_{k}\right)=2 \Re \int_{\zeta_{k}}^{\zeta} d \omega_{z 0, z}^{\prime}
$$

Since the right-hand side is certainly uniformly bounded for z in D_{0}, and since $\theta\left(z, \zeta_{k}\right)$ is, by Lemma 2 , bounded in $D_{0}, \theta(z, \zeta)$ is uniformly bounded for z in D_{0}.

Lemma 4. Let $f(z)$ be a function one-valued and regular in D, whose imaginary part is bounded. If the limiting value

$$
\lim _{z \rightarrow \zeta} \Im f(z)
$$

exists for each ζ on Γ except at most an enumerable infinity of points, and if this limiting value is equal respectively to a constant on each Γ_{k}, then $f(z)$ is identically equal to a constant.

Proof. In the first place, since $\mathfrak{F} f(z)$ is bounded, there exist in fact no exceptional points. Then, we can continue $f(z)$ analytically on Φ across each Γ_{k}, by the principle of reflection. Since $\Re f(z)$ remains unchanged by
reflection in a straight-line parallel to the real axis, we obtain, by this continuation, a one-valued potential function $\mathfrak{R} f(p)$ everywhere regular on Φ, which must be identically a constant.
Q. E. D.

Now we will prove Theorem 1.

Proof of Theorem 1.

Sufficiency. Since $\log \Omega(z, \zeta)$ is continuous as function of ζ by Lemma 3 ,

$$
w(z)=\exp \cdot \int_{\Gamma} \Omega(z, \zeta) d \sigma(\zeta)
$$

represents an analytic function of z, which obviously satisfies the conditions 1 and 2 The property 3 can be proved as follows.

For a branch of $\operatorname{Arg} w(z)$ one-valued in D_{0}, we have

$$
\operatorname{Arg} v(z)=\int_{\Gamma} \theta(z, \zeta) d \sigma(\zeta)
$$

By Lemma 3, this function of z is bounded in D_{0}. When z approaches to a point ζ^{*} on Γ, which is a point of continuity of the distribution σ, we have, by Lemmas 2, 3 and by Lebesgue's theorem,

$$
\theta\left(\zeta^{*}\right)=\lim _{z \rightarrow \zeta^{*}} \operatorname{Arg} w(z)=\lim _{z \rightarrow \zeta^{*}} \int_{\Gamma} \theta(z, \zeta) d \sigma(\zeta)=\int_{\Gamma} \theta\left(\zeta^{*}, \zeta\right) d \sigma(\zeta) .
$$

Therefore, the limiting value $\theta\left(\zeta^{*}\right)$ certainly exists for a point of continuity of σ.

Let C be an arc of positive direction on Γ_{k}^{\prime}, which does not contain the point ζ_{i}, and whose starting and ending points $\zeta_{1}{ }^{*}, \zeta_{2}{ }^{*}$ are both points of continuity of σ.

Then, we have

$$
\theta\left(\zeta_{2}^{*}\right)-\theta\left(\zeta_{1}^{*}\right)=\int_{\Gamma}\left\{\theta\left(\zeta_{2}^{*}, \zeta\right)-\theta\left(\zeta_{1}^{*}, \zeta\right)\right\} d \sigma(\zeta)
$$

On the other hand, we have by Lemma 2,

$$
\theta\left(\zeta_{2}^{*}, \zeta\right)-\theta\left(\zeta_{1}^{*}, \zeta\right)= \begin{cases}2 \pi & \zeta \in C, \\ 0 & \zeta \& C .\end{cases}
$$

Therefore we obtain

$$
\theta\left(\zeta_{2}^{*}\right)-\theta\left(\zeta_{1}^{*}\right)=2 \pi \sigma(C) .
$$

On conformal representation of multiply connected polygonal domain. 193
This proves the last part of 3 and the mentioned relation between θ and σ.

Necessity. Let $w(z)$ be a function which satisfies the conditions 1, 2 and 3. We define by $\frac{1}{2 \pi} \theta\left(\zeta^{*}\right)$ a distribution σ of bounded variation on Γ. Obviously σ has the total mass α. We put
and

$$
\begin{aligned}
w_{1}(z) & =\exp \cdot \int_{\Gamma} \log \Omega(z, \zeta) d \sigma(\zeta), \\
\theta_{1}\left(\zeta^{*}\right) & =\lim _{z \rightarrow \zeta^{*}} \operatorname{Arg} w_{1}(z) \\
f(z) & =\log _{z w_{1}(z)}^{w(z)}
\end{aligned}
$$

$f(z)$ is one-valued and regular in D.
Let C be such an arc of Γ_{k}, as mentioned in the first part of this proof. Then we have

$$
\begin{aligned}
& \lim _{z \rightarrow \zeta_{2} 2^{*}} \Im f(z)-\lim _{z \rightarrow \zeta_{1^{*}}} \Im f(z) \\
& =\left\{\theta\left(\zeta_{2}^{*}\right)-\theta_{1}\left(\zeta_{2}^{*}\right)\right\}-\left\{\theta\left(\zeta_{1}^{*}\right)-\theta_{1}\left(\zeta_{1}^{*}\right)\right\} \\
& =\left\{A\left(\zeta_{2}^{*}\right)-\theta\left(\zeta_{1}^{*}\right)\right\}-\left\{\theta_{1}\left(\zeta_{2}^{*}\right)-\theta_{1}\left(\zeta_{1}^{*}\right)\right\} \\
& =2 \pi \sigma(C)-2 \pi \sigma(C)=0 .
\end{aligned}
$$

 Further, $\mathfrak{F} f(z)$ is bounded in D, since $\operatorname{Arg} w(z)$ and $\operatorname{Arg} w v_{1}(z)$ are both bounded in D_{0}. Consequently by Lemma 4 we obtain

$$
f(z) \equiv \text { const. }
$$

and the normalisation in condition 1 gives

$$
w(z) \equiv w_{1}(z)
$$

> Q. E. D.

Remark 2 Making use of conformal representation, Theorem 1 finds itself valid, in the form as it stands, for any n-ply connected Jordan domain.

§ 2.

If D is the interior of a circle or a circular ring-shaped domain, we can write down the explicit forms of $\Omega(z, \zeta)$ and $\Omega\left(z, z^{*}\right) .^{3)}$

The case where D is the interior of the unit circle $|z|<1$ and z_{0} is the origin $z=0$.

By reflection in $|z|=1$, the Riemann surface Φ represents itself conformally on the whole z-plane. And the elementary integral $\tau v_{z_{0,}, \varepsilon_{1}}$ is given by

$$
w_{z_{0}, z_{1}}(z)=\log \frac{z}{z-z_{1}}+\text { const.. }
$$

Winile giving suitable values to z_{1} and combining them, we obtain by (2) and (3)
and

$$
\Omega(z, \zeta)=\frac{z}{\left(1-\frac{z}{\zeta}\right)^{2}}
$$

$$
\Omega\left(z, z^{*}\right)=\frac{z}{\left(1-\frac{z}{z^{*}}\right)\left(1-\bar{z}^{*} z\right)}
$$

under consideration of the normalisation $\Omega^{\prime}(0)=1$.
The case where D is the ring-shaped domain $q<|z|<1$ and z_{0} is real and positive.

By repeated reflections in the boundary curves, and by the transformation

$$
u=u(z)=-i \log \frac{z}{z_{0}}
$$

the universal covering surface of Φ is mapped conformally on the whole finite u-plane. Then, putting $u_{1}=u\left(z_{1}\right), \omega_{z_{0}, \varepsilon_{1}}$ is given by

$$
\omega_{z_{0}, z_{1}}=\log \frac{\sigma(u)}{\sigma\left(u-u_{1}\right)}-\left(\frac{\eta_{1}}{\omega_{1}} \Re u_{1}+i \frac{\eta_{3}}{\omega_{3}} \Im u_{1}\right) u+\text { const. }
$$

where σ denotes the Weierstrass' σ-function with primitive periods

$$
2 \omega_{1}=2 \pi, \quad 2 \omega_{3}=-2 i \log q
$$

and η_{1} and $\dot{\eta}_{3}$ have the ordinary significations.
While giving suitable values to z_{1} and combiniag them, we obtain by (3), after simple calculations,

$$
\begin{aligned}
& \Omega\left(z, z^{*}\right)= \\
& -i z_{0} \frac{\dot{\sigma}\left(i \log \frac{z_{0}}{z^{*}}\right) \sigma\left(i \log \bar{z}^{*} z_{0}\right)}{\sigma\left(2 i \log z_{0}\right)} \cdot \frac{\sigma\left(i \log \frac{z}{z_{0}}\right) \sigma\left(i \log z_{0} z\right)}{\sigma\left(i \log \frac{z}{z^{*}}\right) \sigma\left(i \log \bar{z}^{*} z\right)} \cdot\left(\frac{z}{z_{0}}\right)^{2 i \frac{\eta_{1}}{\pi} \operatorname{Arg} z^{*}}
\end{aligned}
$$

On conformal representation of multiply connected polygonal domain. 195
under consideration of the normalisation $\Omega^{\prime}\left(z_{0}\right)=1$.
When we replace z^{*} by ζ in the above formula, we obtain the expression for $\Omega(z, \zeta)$. But it can be a little simplified by separating the two cases $|\zeta|=1$ and $|\zeta|=q$. In fact, we have

$$
\begin{aligned}
& \Omega\left(z, e^{i \varphi}\right)= \\
& \quad-\frac{i z_{0}}{\sigma\left(2 i \log z_{0}\right)} \cdot \frac{\sigma\left(i \log z_{0}+\varphi\right)^{2}}{\sigma(i \log z+\varphi)^{2}} \cdot \sigma\left(i \log \frac{z}{z_{0}}\right) \sigma\left(i \log z_{0} z\right) \cdot\left(\frac{z}{z_{0}}\right)^{2 i \frac{\eta_{1}}{\pi} \varphi}
\end{aligned}
$$

and

$$
\begin{aligned}
& \Omega\left(z, q e^{t \varphi}\right)= \\
& \quad-\frac{i z_{0}}{\sigma\left(2 i \log z_{0}\right)} \cdot \frac{\sigma_{3}\left(i \log z_{0}+\varphi\right)^{2}}{\sigma_{3}(i \log z+\varphi)^{2}} \cdot \sigma\left(i \log \frac{z}{z_{0}}\right) \sigma\left(i \log z_{0} z\right) \cdot\left(\frac{z}{z_{0}}\right)^{2 i \frac{\eta_{1}}{\pi} \varphi}
\end{aligned}
$$

Remart. If D is the domain $|z|<1$, or if D is $q<|z|<1$ and $\alpha=0$, while differentiating the logarithm of (1) and multiplying it by z, we obtain by the above expressions for $\Omega(z, \zeta)$ the Poisson-Stieltjes' or the Villat-Stieltjes ${ }^{\text {4) }}$ expression for $z w^{\prime} / w$. Further, it is easy to prove fiom Theorem 1 these two formulae in their perfect forms.

§ 3.

As an application of Theorem 1, we shall give an expression for the mapping function of n-ply connected polygonal domain, an analogue of Schwarz-Christoffel's formula. Here, by the word " n-ply connected polygonal domain", we mean an n-ply connected Riemann surface P of planar character (schlichtartig), zehose boundary consists of a finite number of segments or half straight-lines. P may contain in it a finite number of points of ramification, and may cover the point at infinity a finite number of times.

We assume that n is greater than 1 . Let D be a concentric circular ring $R_{1}<|z|<R_{2}$ with $n-2$ concentric circular slits, whose $2(n-2)$ end points we denote by $s_{k}(k=1, \cdots \cdots)$. And we fix a point z_{0} in D arbitrarily.

Let $f(z)$ be the function which maps D conformally on P. We denote by ζ_{k} the boundary point of D, which corresponds by this function to a vertex of P with the interior angle $\alpha_{k} \pi$. If the vertex lies on the point at infinity, we agree to give α_{k} negative sign.

In the first place, we assume that P° contains in it neither points of ramification nor points lying at infinity.

Then, $z f^{\prime}(z)$ is regular and does not vanish in D, and when z moves
on the boundary of D in positive direction, the variations of its argument are as follows:

$$
\begin{aligned}
& d \operatorname{Arg} z f^{\prime}(z)=d \operatorname{Arg} \frac{d f(z)}{d \log z}=d \operatorname{Arg} d f(z)-d \operatorname{Arg} d \log z \\
& d \operatorname{Arg} d f(z)=\left(1-\alpha_{k}\right) \pi \\
& \text { at } \zeta_{k} \text { and } \quad=0 \quad \text { elsewhere, } \\
& d \operatorname{Arg} d \log z=-\pi \quad \text { at } s_{k} \text { and } \quad=0 \text { elsewhere. }
\end{aligned}
$$

Therefore, while defining the distribution σ by

$$
\sigma\left(\zeta_{k}\right)=\frac{1-\alpha_{k}}{2}, \quad \sigma\left(s_{k}\right)=\frac{1}{2} \text { and } \sigma \equiv 0 \text { elsewhere, }
$$

we obtain by theorem 1 .

$$
z f^{\prime}(z)=z_{0} f^{\prime}\left(z_{0}\right) \prod_{k} \Omega\left(z, \zeta_{k}\right)^{\frac{1-a_{k}}{2}} \prod_{k} \Omega\left(z, s_{k}\right)^{\frac{1}{2}}
$$

Thus, we have the following expression for the mapping function.

$$
f(z)=z_{0} f^{\prime}\left(z_{0}\right) \int_{z_{0} k}^{z} \Pi \Omega\left(z, \zeta_{k}\right) \frac{1-\alpha_{k}}{2} \Pi_{k} \Omega\left(z, s_{k}\right)^{\frac{1}{2}} \frac{d z}{z}+f\left(z_{0}\right) .
$$

In the general case, we denote by z_{k} the point of D which corresponds to a point of ramification of m_{k}-th order $\left(m_{k}>0\right)$ on P lying in the finite part of the plane, and by z_{k}^{\prime} the point which corresponds to a point of ramification of m_{k}^{\prime}-th order ($m_{k}^{\prime} \geqq 0$) lying at infinity.

Then, $z^{\prime}(z)$ has a zero of m_{k}-th order at z_{k} and a pole of $\left(m_{k}^{\prime}+2\right)$-th order at $z_{k}{ }^{\prime}$. We can apply Theorem 1 to the function

$$
z \cdot f^{\prime}(z) \cdot \frac{\prod_{k} \Omega\left(z, z_{k}\right)^{m_{k}}}{\prod_{k} \Omega\left(z, z_{k}^{\prime}\right)^{m I_{k}+2}}
$$

and, since we have

$$
d \operatorname{Arg} \Omega\left(z, z^{*}\right) \equiv 0
$$

on the boundary of D, the distribution σ can be so determined as before. Therefore, we have

$$
z f^{\prime}(z)=C_{1} \Pi_{k} \Omega\left(z, \zeta_{k}\right)^{\frac{1-\alpha_{k}}{2}} \cdot \frac{\prod_{k} \Omega\left(z, z_{k}^{\prime}\right)^{m_{k} \prime+2}}{\prod_{k} Q\left(z, z_{k}\right)^{m_{k}}} \cdot \prod_{k} \Omega\left(z, s_{k}\right)^{\frac{1}{2}}
$$

C_{1} being a suitable constant.
Thus, we obtain the following

On conformal representation of multiply connected polygonal domain. 197

Theorem 2. The function which maps D conformally on P is given by

$$
f(z)=C_{1} \int_{k}^{z} \Pi_{k} \Omega\left(z, \zeta_{k}\right) \frac{1-\alpha_{k}}{2} \cdot \frac{\Pi_{k} \Omega\left(z, z_{k}^{\prime}\right)^{m_{k} \prime+2}}{\prod_{k} \Omega\left(z, z_{k}\right)^{m_{k}}} \cdot \Pi_{k} \Omega\left(z, s_{k}\right)^{\frac{1}{2}} \cdot \frac{d z}{z}+C_{2}
$$

where C_{1} and C_{2} are constants depending on position and magnitude of P and on the lower bound of the integration.

Remark 1. If one of the points z_{k} or z_{k}^{\prime} coincides with z_{0}, we have to understand $\Omega\left(z, z_{0}\right)$ to be $\equiv 1$ in the above formula.

Remark 2. Though we have deduced Theorem 2 under the assumption $n \geqq 2$, it is also valid for $n=1$, as can be seen easily, if D is the domain $|z|<R$ and z_{0} is the origin $z=0$.

By the expressions for $\Omega(z, \zeta)$ given in $\S 2$., we can easily see that, in case P is schlicht, the formula of Theorem 2 coincides for $n=1$ with the ordinary Schwarz-Christoffel's formula, and for $n=2$ with the formula given by Mr. Y. Komatu ${ }^{5)}$.

Mathematical Institute,
Tokyo University.

References.

1) H. Weyl: Die Idee der Riemannschen Fläche, § 16. (1913).
2) H. Weyl: 1. c.
3) As for the expression of Ω in the general case in terms of Bergman's kernel function, cf. M. Ozawa : Some canonical conformal maps and representations, Kōdai Mathematical Seminar Reports No. 3 June 1950.
4) Y. Komatu : Darstellungen der in einem Kreisringe analytischen Funktionen nebst den Anwendungen auf konforme Abbildung uber Polygonalringgebiete. Japanese Journ. of Math. Vol. 19, No. 2 (1945).
5) Y. Komatu : 1. c.
