Journal of the Mathematical Society of Japan

Vol. 2,' Nos. 3-4, March, 1951.

On Conformal Representation of Multiply Connected Polygonal Domain.

Akira Mori.

(Received Oct. 1, 1949)

It is known, that a function w(z) is schlicht and star-shaped with respect to w(0) = 0 in |z| < 1, when, and only when, it can be expressed in the form

$$w(z) = \text{const.} \cdot z \cdot \exp \left(2 \int_{|\zeta|=1}^{\zeta} \log \frac{\zeta}{\zeta-z} d\mu(\zeta) \right),$$

where μ denotes a positive distribution of total mass 1 on the unit circle. This formula can also be written in the form

$$w(z) = \text{const. exp.} \int \log \frac{z}{\left(1 - \frac{z}{\zeta}\right)^2} d\mu(\zeta),$$

and here comes out *Koebe's extremal function*. The argument of this function is equal to a constant on |z|=1 except the point ζ , and jumps by $+2\pi$ when z passes ζ in positive direction on |z|=1. Then, the above formula shows: The star-shaped function w(z), whose argument is nondecreasing for z moving on |z|=1 in positive direction, can be constructed from such elements as a sort of geometrical mean.

We shall prove in this paper an analogue of this fact for n-ply connected domain, and, as an application thereof, treat the conformal representation of n-ply connected polygonal domain.

In order to simplify the wording, we call a half straight-line Arg \mathcal{Q} =const., $|\mathcal{Q}| \ge \text{const.} > 0$ an "*infinite radial slit*", and a segment Arg \mathcal{Q} =const., const. $\ge |\mathcal{Q}| \ge \text{const.} > 0$ a "*radial slit*", respectively.

§ 1.

Let D be a domain on z-plane bounded by n analytic closed curves $\Gamma_1, \dots, \Gamma_n$, whose sum we denote by Γ , and let z_0 be a fixed point in D.

For any point ζ on Γ , we denote by $\mathcal{Q}(z, \zeta)$ the function which satisfies the conditions $\mathcal{Q}(z_0, \zeta)=0$, $\mathcal{Q}'(z_0, \zeta)=1$ and maps D conformally on the whole \mathcal{Q} -plane cut along an infinite radial slit and (n-1) radial slits, so that the boundary-point ζ of D corresponds to the bodunary point A. Mori.

 $\mathcal{Q} = \infty$. The existence, uniqueness and the continuity in ζ of such functions are to be proved afterwards in Lemmas 1. and 3.

We will now formulate the theorem to be proved as follows:

Theorem 1. Let w(z) be a function which satisfies the following three conditions :

1. w(z) is regular and does not vanish in D except at z_0 , where it has an expansion of the form

$$w(z) = (z - z_0)^{\alpha} \left\{ 1 + c_1(z - z_0) + \cdots \right\} \qquad (\alpha \ge 0).$$

2. |v(z)| is one-valued in D.

3. Any branch of Arg w(z) is bounded in the neighbourhood of Γ , and the limiting value

$$\lim_{z\to\zeta^*} \operatorname{Arg} w(z) = \theta(\zeta^*)$$

exists for each ζ^* on Γ except at most an enumerable infinity of points and is of bounded variation, as function of ζ^* on Γ , on the set where it exists.

A necessary and sufficient condition for this, is that w(z) can be expressed in the form

(1)
$$w(z) = \exp \int_{\Gamma} \log \mathcal{Q}(z, \zeta) \, d\sigma(\zeta),$$

where σ is a distribution of bounded variation of total mass α on Γ , determined by the function of bounded variation $\frac{1}{2\pi}\theta(\zeta^*)$.

We shall make some preparations and prove some lemmas.

Definition of the Riemann surface Φ . Let \tilde{D} be another sheet of D. We put D on D and identify the corresponding boundary points of D and \tilde{D} . This closed surface can be regarded as a closed Riemann surface Φ of genus n-1, since we can define a local parameter t(p) for each point pon Φ : for a point of \tilde{D} by taking conjugate complex, and for a point on Γ by reflection in Γ .

By interchanging the two sheets D and D, we obtain a transformation $p \rightarrow \tilde{p}$ which transforms Ψ into itself conformally with inversion of angles.

Besides, we denote by $\omega_{q_1,q_2}(p)$ the elementary integral of third kind on \emptyset , which has the singularities $\log t(q_1)$ at q_1 and $-\log t(q_2)$ at q_2 , and whose real part is one-valued on \emptyset . And by $\omega'_{q_1,q_2}(p)$ we denote the elementary integral of third kind, which has the singularities $-i \log t(q_1)$ at

 q_1 and $i \log t(q_2)$ at q_2 , and whose real part is one-valued on \mathcal{O} cut along a curve connecting q_1 with $q_2^{(1)}$.

Lemma 1. For each ζ on Γ , there exists one and only one function $\mathcal{Q}(z, \zeta)$ with the mentioned properties.

Proof. We put

$$\omega_{z_0,\zeta}(p) + \omega_{\widetilde{z_0},\zeta}(p) = u(p) + iv(p),$$

and

(2)
$$\mathcal{Q}(z, \zeta) = \text{const. exp. } \left\{ u(z) + iv(z) \right\}.$$

Since the one-valued potential function u(p) has on Ψ the same singularities as u(p), and takes on Γ the same value as u(p), we have

$$u(p)\equiv u(\tilde{p}),$$

i.e. u(p) takes the same value at \tilde{p} as at p. Hence we have at each point on Γ except ζ ,

$$\frac{\partial u}{\partial v} = 0$$
 consequently $\frac{\partial v}{\partial \tau} = 0$,

where ν and τ denote the normal and tangent to Γ . Therefore, v takes a constant value on each Γ_k . It follows from this, that $\mathcal{Q}(z, \zeta)$ is one-valued in D.

On the other hand, u is finite at each point of Γ except ζ , where u is positively infinite. Hence, the image of Γ by $\mathcal{Q}(z, \zeta)$ consists of an infinite radial slit and n-1 radial slits.

Let \mathcal{Q}_0 be a point of \mathcal{Q} -plane, which does not belong to these *n* slits. Since

$$\operatorname{Arg}\left\{\frac{1}{\mathcal{Q}(z, \zeta)} - \frac{1}{\mathcal{Q}_{0}}\right\}$$

remains unchanged when z moves on Γ once around and returns to the original value, and since $1/\mathcal{Q}(z, \zeta)$ has one and only one pole in D, $\mathcal{Q}(z, \zeta)$ takes each value \mathcal{Q}_0 once and only once in D. Therefore, $\mathcal{Q}(z, \zeta)$ provides the required mapping, when the constant factor in (2) is determined by the condition $\mathcal{Q}'(z_0, \zeta)=1$.

The uniqueness of the mapping function can be proved as follows. Let $\mathcal{Q}_1(z, \zeta)$ be another mapping function with the mentioned properties. When

A. Mori

we continue $\Omega_1(z, \zeta)$ analytically across I' on \mathcal{O} by the principle of reflection, we obtain a one-valued potential function $\log |\Omega_1(p, \zeta)|$ on \mathcal{O} , since $|\Omega_1|$ remains unchanged by reflection in a radial slit. Moreover $\log |\Omega_1(p, \zeta)|$ has the same singularities as u(p). Therefore, by the normalisation $\Omega'_1(z_0, \zeta) = 1$, $\Omega_1(z, \zeta)$ must be identical with $\Omega(z, \zeta)$.

Remark. By the same idea as in the above proof, we can construct the function $\mathcal{Q}(z, z^*)$ for $z^* \in D$, which maps D conformally on the whole \mathcal{Q} -plane cut along n radial slits and satisfies $\mathcal{Q}(z_0, z^*) = 0$, $\mathcal{Q}'(z_0, z^*) = 1$, $\mathcal{Q}(z^*, z^*) = \infty$. For this purpose, we have only to put

(3)
$$\mathcal{Q}(z, z^*) = \text{const. exp. } \left\{ \omega_{z_0 z^*}(z) + \omega_{\widetilde{z_0}, \widetilde{z^*}}(z) \right\}.$$

We cut the domain D by n curves, each of which connects z_0 respectively with an arbitrarily fixed point ζ_k on Γ_k , and which do not cross each others. We denote by D_0 the resulting simply connected domain, in which Arg $\mathcal{Q}(z, \zeta)$ is one-valued. We can assume that D_0 contains wholly in it a line element dx at z_0 with direction of positive real axis. We take the branch of Arg $\mathcal{Q}(z, \zeta)$ which vanishes at $z_0 + dx$ and put

$$\theta(z, \zeta) = \operatorname{Arg} \, \mathcal{Q}(z, \zeta)$$

for $z \in D_0$.

As function of z with fixed ζ , $\theta(z, \zeta)$ has the following properties. Lemma 2. $\theta(z, \zeta)$ is bounded in D_0 , and the limiting value

$$\lim_{z\to\zeta^*} \theta(z, \zeta) = \theta(\zeta^*, \zeta)$$

exists for each ζ^* on Γ except ζ . $\theta(\zeta^*, \zeta)$ is equal to a constant on each arc of Γ which contains neither ζ nor ζ_1, \dots, ζ_n , and jumps by $+2\pi$ at ζ when ζ^* moves on Γ in pocitive direction.

Proof. This is obvious from the shape of the image of D by $\mathcal{Q}(z, \zeta)$.

As function of ζ with fixed z, log $\mathcal{Q}(z, \zeta)$ and $\theta(z, \zeta)$ have the following properties.

Lemma 3. log $\Omega(z, \zeta)$ is one-valued and continuous, and its imaginary part $\theta(z, \zeta)$ is uniformly bounded for the parameter z in D_0 .

Proof. The constant factor in (2), which is to be determined by the condition $\mathcal{Q}'(z_0, \zeta) = 1$, depends naturally on ζ . When we write (2) in the form

$$\log \mathcal{Q}(z, \zeta) = \int_{z_0*}^z d\omega_{z_0, \zeta} + \int_{z_0*}^z d\omega_{\widetilde{z_0}, \zeta} + c(\zeta),$$

where z_0^* denotes an arbitrarily fixed point in D, the condition $\mathcal{Q}'(z_0, \zeta) = 1$

is given by

$$c(\zeta) = \lim_{z_1 \to z_0} \left\{ - \int_{z_0^*}^{z_1} d\omega_{z_0, \zeta} - \int_{z_0^*}^{z_1} d\omega_{z_0, \zeta} + \log(z_1 - z_0), \right\},$$

and we obtain the following definite form of log $\mathcal{Q}(z, \zeta)$,

$$\log \mathcal{Q}(z, \zeta) = \lim_{z_1 \to z_0} \left\{ \int_{z_1}^z d\omega_{z_0, \zeta} + \int_{z_1}^z d\omega_{z_0, \zeta} + \log (z_1 - z_0) \right\}.$$

We assume that ζ lies on Γ_k , and consider the difference

$$\log \mathcal{Q}(z, \zeta) - \log \mathcal{Q}(z, \zeta_k)$$

$$= \lim_{z_1 \to z_0} \left\{ \int_{z_1}^z d\omega_{z_0, \zeta} - \int_{z_1}^z d\omega_{z_0, \zeta_k} + \int_{z_1}^z d\omega_{z_0, \zeta} - \int_{z_1}^z d\omega_{z_0, \zeta_k} \right\}$$

$$= \lim_{z_1 \to z_0} 2 \int_{z_1}^z d\omega_{\zeta_k, \zeta} = 2 \int_{z_0}^z d\omega_{\zeta_k, \zeta}.$$

By the *theorem of interchange of argument and parameter*,²⁾ we can write this in the form

$$\log \mathcal{Q}(z, \zeta) - \log \mathcal{Q}(z, \zeta_k) = 2 \left\{ \Re \int_{\zeta_k}^{\zeta} d\omega_{z_0, z} + i \Re \int_{\zeta_k}^{\zeta} d\omega'_{z_0, z} \right\}.$$

This proves the mentioned property of log $\mathcal{Q}(z, \zeta)$.

While taking the imaginary part of this formula, we have

$$\theta(z, \zeta) - \theta(z, \zeta_k) = 2 \Re \int_{\zeta_k}^{\zeta} d\omega'_{z_0, z}.$$

Since the right-hand side is certainly uniformly bounded for z in D_0 , and since $\theta(z, \zeta_k)$ is, by Lemma 2, bounded in D_0 , $\theta(z, \zeta)$ is uniformly bounded for z in D_0 .

Lemma 4. Let f(z) be a function one-valued and regular in D, whose imaginary part is bounded. If the limiting value

$$\lim_{z \to z} \Im f(z)$$

exists for each ζ on Γ except at most an enumerable infinity of points, and if this limiting value is equal respectively to a constant on each Γ_k , then f(z)is identically equal to a constant.

Proof. In the first place, since $\Im f(z)$ is bounded, there exist in fact no exceptional points. Then, we can continue f(z) analytically on \mathcal{P} across each Γ_k , by the principle of reflection. Since $\Re f(z)$ remains unchanged by

reflection in a straight-line parallel to the real axis, we obtain, by this continuation, a one-valued potential function $\Re f(p)$ everywhere regular on φ , which must be identically a constant.

Q. E. D.

Now we will prove Theorem 1.

Proof of Theorem 1.

Sufficiency. Since log $\mathcal{Q}(z, \zeta)$ is continuous as function of ζ by Lemma 3,

$$w(z) = \exp \int_{\Gamma} \mathcal{Q}(z, \zeta) d\sigma(\zeta)$$

represents an analytic function of z, which obviously satisfies the conditions 1 and 2 The property 3 can be proved as follows.

For a branch of Arg w(z) one-valued in D_0 , we have

Arg
$$\operatorname{vv}(z) = \int_{\Gamma} \theta(z, \zeta) d\sigma(\zeta)$$

By Lemma 3, this function of z is bounded in D_0 . When z approaches to a point ζ^* on Γ , which is a point of continuity of the distribution σ , we have, by Lemmas 2, 3 and by Lebesgue's theorem,

$$\theta(\zeta^*) = \lim_{z \to \zeta^*} \operatorname{Arg} w(z) = \lim_{z \to \zeta^*} \int_{\Gamma} \theta(z, \zeta) d\sigma(\zeta) = \int_{\Gamma} \theta(\zeta^*, \zeta) d\sigma(\zeta).$$

Therefore, the limiting value $\theta(\zeta^*)$ certainly exists for a point of continuity of σ .

Let C be an arc of positive direction on I_k^* , which does not contain the point ζ_k , and whose starting and ending points ζ_1^* , ζ_2^* are both points of continuity of σ .

Then, we have

$$\theta(\zeta_2^*) - \theta(\zeta_1^*) = \int_{\Gamma} \left\{ \theta(\zeta_2^*, \zeta) - \theta(\zeta_1^*, \zeta) \right\} d\sigma(\zeta).$$

On the other hand, we have by Lemma 2,

$$\theta(\zeta_2^*, \zeta) - \theta(\zeta_1^*, \zeta) = \begin{cases} 2\pi & \zeta \in C, \\ 0 & \zeta \notin C. \end{cases}$$

Therefore we obtain

$$\theta(\zeta_2^*) - \theta(\zeta_1^*) = 2\pi\sigma(C).$$

This proves the last part of 3 and the mentioned relation between θ and σ .

Necessity. Let w(z) be a function which satisfies the conditions 1, 2 and 3. We define by $\frac{1}{2\pi}\theta(\zeta^*)$ a distribution σ of bounded variation on Γ . Obviously σ has the total mass α . We put

$$w_{1}(z) = \exp \int_{\Gamma} \log \mathcal{Q}(z, \zeta) \, d\sigma(\zeta),$$

$$\theta_{1}(\zeta^{*}) = \lim_{z \to \zeta^{*}} \operatorname{Arg} w_{1}(z)$$

$$f(z) = \log \frac{w(z)}{w_{1}(z)}.$$

and

f(z) is one-valued and regular in D.

Let C be such an arc of Γ_k , as mentioned in the first part of this proof. Then we have

$$\lim_{z \to \zeta_{2^{*}}} \Im f(z) - \lim_{z \to \zeta_{1^{*}}} \Im f(z)$$
$$= \left\{ \theta(\zeta_{2^{*}}) - \theta_{1}(\zeta_{2^{*}}) \right\} - \left\{ \theta(\zeta_{1^{*}}) - \theta_{1}(\zeta_{1^{*}}) \right\}$$
$$= \left\{ \theta(\zeta_{2^{*}}) - \theta(\zeta_{1^{*}}) \right\} - \left\{ \theta_{1}(\zeta_{2^{*}}) - \theta_{1}(\zeta_{1^{*}}) \right\}$$
$$= 2\pi\sigma(\mathcal{C}) - 2\pi\sigma(\mathcal{C}) = 0.$$

Therefore, $\Im f(z)$ has a constant limiting value on each Γ_k respectively. Further, $\Im f(z)$ is bounded in D, since Arg w(z) and Arg $w_1(z)$ are both bounded in D_0 . Consequently by Lemma 4 we obtain

$$f(z) \equiv \text{const.},$$

and the normalisation in condition 1 gives

$$w(z) \equiv w_1(z).$$

Q. E. D.

Remark 2 Making use of conformal representation, Theorem 1 finds itself valid, in the form as it stands, for any n-ply connected Jordan domain.

§ 2.

If D is the interior of a circle or a circular ring-shaped domain, we can write down the explicit forms of $\mathcal{Q}(z, \zeta)$ and $\mathcal{Q}(z, z^*)$.³⁾

A. Mori.

The case where D is the interior of the unit circle |z| < 1 and z_0 is the origin z=0.

By reflection in |z|=1, the Riemann surface Φ represents itself conformally on the whole z-plane. And the elementary integral w_{z_0,z_1} is given by

$$w_{z_0,z_1}(z) = \log \frac{z}{z-z_1} + \text{const.}.$$

While giving suitable values to z_1 and combining them, we obtain by (2) and (3)

$$\mathcal{Q}(z, \zeta) = \frac{z}{(1 - \frac{z}{\zeta})^2}$$

and

$$\mathcal{Q}(z, z^*) = \frac{z}{\left(1 - \frac{z}{z^*}\right)\left(1 - \overline{z}^* z\right)}$$

under consideration of the normalisation $\mathcal{Q}'(0) = 1$.

The case where D is the ring-shaped domain q < |z| < 1 and z_0 is real and positive.

By repeated reflections in the boundary curves, and by the transformation

$$u=u(z)=-i\,\log\frac{z}{z_0}$$

the universal covering surface of $\boldsymbol{\varphi}$ is mapped conformally on the whole finite *u*-plane. Then, putting $u_1 = u(z_1)$, ω_{z_0,z_1} is given by

$$\omega_{z_0,z_1} = \log \frac{\sigma(u)}{\sigma(u-u_1)} - \left(\frac{\eta_1}{\omega_1} \Re u_1 + i \frac{\eta_3}{\omega_3} \Im u_1\right) u + \text{const.},$$

where σ denotes the Weierstrass' σ -function with primitive periods $2\omega_1=2\pi, \ 2\omega_3=-2i \log q$

and η_1 and η_3 have the ordinary significations.

While giving suitable values to z_1 and combining them, we obtain by (3), after simple calculations,

$$\mathcal{Q}(z, z^*) = -iz_0 \frac{\sigma\left(i \log \frac{z_0}{z^*}\right) \sigma(i \log \bar{z}^* z_0)}{\sigma(2i \log z_0)} \cdot \frac{\sigma\left(i \log \frac{z}{z_0}\right) \sigma(i \log z_0 z_0)}{\sigma\left(i \log \frac{z}{z^*}\right) \sigma(i \log \bar{z}^* z_0)} \cdot \left(\frac{z}{z_0}\right)^{2i \frac{\gamma_1}{\pi}} \operatorname{Arg} z^*$$

under consideration of the normalisation $\mathcal{Q}'(z_0) = 1$.

When we replace z^* by ζ in the above formula, we obtain the expression for $\mathcal{Q}(z, \zeta)$. But it can be a little simplified by separating the two cases $|\zeta|=1$ and $|\zeta|=q$. In fact, we have

 $Q(z, e^{i\varphi}) =$

$$\cdot \frac{iz_0}{\sigma(2i \log z_0)} \cdot \frac{\sigma(i \log z_0 + \varphi)^2}{\sigma(i \log z + \varphi)^2} \cdot \sigma\left(i \log \frac{z}{z_0}\right) \sigma(i \log z_0 z) \cdot \left(\frac{z}{z_0}\right)^{2i - \frac{\gamma_1}{\pi}\varphi}$$

and

$$Q(z, qe^{i\varphi})$$
:

$$-\frac{iz_0}{\sigma(2i \log z_0)} \cdot \frac{\sigma_3(i \log z_0 + \varphi)^2}{\sigma_3(i \log z + \varphi)^2} \cdot \sigma\left(i \log \frac{z}{z_0}\right) \sigma(i \log z_0 z) \cdot \left(\frac{z}{z_0}\right)^2 i\frac{2i\pi}{\pi} \varphi$$

Remark. If D is the domain |z| < 1, or if D is q < |z| < 1 and a=0, while differentiating the logarithm of (1) and multiplying it by z, we obtain by the above expressions for $\mathcal{Q}(z, \zeta)$ the Poisson-Stieltjes' or the Villat-Stieltjes' expression for zw'/w. Further, it is easy to prove from Theorem 1 these two formulae in their perfect forms.

§ 3.

As an application of Theorem 1, we shall give an expression for the mapping function of *n*-ply connected polygonal domain, an analogue of Schwarz-Christoffel's formula. Here, by the word "*n-ply connected polygonal domain*", we mean an *n-ply connected Riemann surface* P of planar character (schlichtartig), whose boundary consists of a finite number of segments or half straight-lines. P may contain in it a finite number of points of ramification, and may cover the point at infinity a finite number of times.

We assume that *n* is greater than 1. Let *D* be a concentric circular ring $R_1 < |z| < R_2$ with n-2 concentric circular slits, whose 2(n-2) end points we denote by s_k $(k=1,\dots)$. And we fix a point z_0 in *D* arbitrarily.

Let f(z) be the function which maps D conformally on P. We denote by ζ_k the boundary point of D, which corresponds by this function to a vertex of P with the interior angle $a_k\pi$. If the vertex lies on the point at infinity, we agree to give a_k negative sign.

In the first place, we assume that P^{*} contains in it neither points of ramification nor points lying at infinity.

Then, zf'(z) is regular and does not vanish in D, and when z moves

on the boundary of D in positive direction, the variations of its argument are as follows:

$$d\operatorname{Arg} zf'(z) = d\operatorname{Arg} \frac{df(z)}{d\log z} = d\operatorname{Arg} df(z) - d\operatorname{Arg} d\log z,$$

 $d\operatorname{Arg} df(z) = (1-a_k)\pi$ at ζ_k and =0 elsewhere, $d\operatorname{Arg} d\log z = -\pi$ at s_k and =0 elsewhere.

Therefore, while defining the distribution σ by

 $\sigma(\zeta_k) = \frac{1-\alpha_k}{2}, \quad \sigma(s_k) = \frac{1}{2} \text{ and } \sigma \equiv 0 \text{ elsewhere,}$

we obtain by theorem 1.

$$zf'(z) = z_0 f'(z_0) \prod_k Q(z, \zeta_k)^{\frac{1-a_k}{2}} \prod_k Q(z, s_k)^{\frac{1}{2}}$$

Thus, we have the following expression for the mapping function.

$$f(z) = z_0 f'(z_0) \int_{z_0 k}^{z} \prod \mathcal{Q}(z, \zeta_k) \frac{1-\alpha_k}{2} \prod \mathcal{Q}(z, s_k)^{\frac{1}{2}} \frac{dz}{z} + f(z_0).$$

In the general case, we denote by z_k the point of D which corresponds to a point of ramification of m_k -th order $(m_k > 0)$ on P lying in the finite part of the plane, and by z_k' the point which corresponds to a point of ramification of m_k' -th order $(m_k' \ge 0)$ lying at infinity.

Then, zf'(z) has a zero of m_k -th order at z_k and a pole of $(m_k'+2)$ -th order at z_k' . We can apply Theorem 1 to the function

$$z \cdot f'(z) \cdot \frac{\prod \mathcal{Q}(z, z_k)^{m_k}}{\prod \mathcal{Q}(z, z_k')^{m'_k + 2}}$$

and, since we have

$$d \operatorname{Arg} \mathcal{Q}(z, z^*) \equiv 0$$

on the boundary of D, the distribution σ can be so determined as before. Therefore, we have

$$zf'(z) = C_1 \prod_k \mathcal{Q}(z, \zeta_k)^{\frac{1-\alpha_k}{2}} \cdot \frac{\prod \mathcal{Q}(z, z_k')^{m_k'+2}}{\prod_k \mathcal{Q}(z, z_k)^{m_k}} \cdot \prod_k \mathcal{Q}(z, s_k)^{\frac{1}{2}} ,$$

 C_1 being a suitable constant.

Thus, we obtain the following

Theorem 2. The function which maps D conformally on P is given by

$$f(z) = C_1 \int_{-k}^{z} \prod_{k} \mathcal{Q}(z, \zeta_k) \frac{1-\alpha_k}{2} \cdot \frac{\prod_{k} \mathcal{Q}(z, z_k')^{m_k'+2}}{\prod_{k} \mathcal{Q}(z, z_k)^{m_k}} \cdot \prod_{k} \mathcal{Q}(z, s_k)^{\frac{1}{2}} \cdot \frac{dz}{z} + C_2,$$

where C_1 and C_2 are constants depending on position and magnitude of P and on the lower bound of the integration.

Remark 1. If one of the points z_k or z'_k coincides with z_0 , we have to understand $\mathcal{Q}(z, z_0)$ to be $\equiv 1$ in the above formula.

Remark 2. Though we have deduced Theorem 2 under the assumption $n \ge 2$, it is also valid for n=1, as can be seen easily, if D is the domain |z| < R and z_0 is the origin z=0.

By the expressions for $\mathcal{Q}(z, \zeta)$ given in §2., we can easily see that, in case *P* is schlicht, the formula of Theorem 2 coincides for n=1 with the ordinary Schwarz-Christoffel's formula, and for n=2 with the formula given by Mr. Y. Komatu⁵⁾.

Mathematical Institute, Tokyo University.

References.

1) H. Weyl: Die Idee der Riemannschen Fläche, § 16. (1913).

2) H. Weyl: 1. c.

3) As for the expression of Q in the general case in terms of Bergman's kernel function, cf. M. Ozawa: Some canonical conformal maps and representations, Ködai Mathematical Seminar Reports No. 3 June 1950.

4) Y. Komatu: Darstellungen der in einem Kreisringe analytischen Funktionen nebst den Anwendungen auf konforme Abbildung über Polygonalringgebiete. Japanese Journ. of Math. Vol. 19, No. 2 (1945).

5) Y. Komatu: l. c.