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On Conformal Representation of Multiply Connected
Polygonal Domain.
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It is known, that a function $\ovalbox{\tt\small REJECT} zv(z)$ is schlicht and star-shaped with
respect to $w(O)=0$ in 2 $|<1$ , when, and only when, it can be expressed
in the form

$w(2)=const.\cdot 2\cdot exp$ .
$2\int_{\zeta}1_{1}o_{=}g_{1}\frac{\zeta}{\zeta-2}d\mu(\zeta)$

,

where $\mu$ denotes a positive distribution of total mass 1 on the unit circle.
This formula can also be written in the form

$w(z)=Const$ .
$\exp|!_{1\approx}^{1o_{l}g\frac{z}{(1-\frac{z}{\zeta})^{3}}d\mu(\zeta)}$

,

and here comes out Koebe’s extremal function. The argument of this func-
tion is equal to a constant on $|z|=1$ except the point $\zeta$ , and jumps by
$+2\pi$ when 2 passes $\zeta$ in positive direction on $|\sim r|=1$ . Then, the above for-
mula shows: The star-shaped function $w(z)$ , whose argument is non-
decreasing for $\sim r$ moving on $|2|=1$ in positive direction, can be constructed

from such clements as a sort of geometrical mean.
We shall prove in this paper an analogue of this fact for n-ply connected

domain, and, as an application thereof, treat the conformal representation
of n-ply connected polygonal domain.

In order to simplify the wording, we call a half straight-line
$Arg\Omega=const.,$ $|\Omega|\geqq const>0$ an “

$\inf^{\iota\prime}/ite$ radial slit”, and a segment
$Arg\Omega=const.$ , const. $\geqq|\Omega|\geqq const.>0$ a “ radial slit”, respectively.

\S 1.

Let $D$ be a domain on $\sim r$-plane bounded by $n$ analytic closed curves
$I_{1}^{7},\cdots\cdots,\Gamma_{n}$, whose sum we denote by $\Gamma$, and let $\approx_{0}$ be a fixed point in $D$ .

For any point $\zeta$ on $\Gamma$, we denote by $\Omega(\sim r, \zeta)$ the function which satis-
fies the conditions $\Omega(\approx 0’\zeta)=0,$ $Jl^{\prime}(z_{0}, \zeta)=1$ and maps $D$ conformally on
the whole $\Omega$-plane cut along an infinite radial slit and $(n-1)$ radial slits,
so that the boundary $\cdot$ point $\zeta$ of $Dcorre_{\backslash }sponds$ to the bodunary point
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$\Omega=\infty$ . The existence, uniqueness and the continuity in $\zeta$ of such functions are
to be proved afterwards in Lemmas 1. and 3.

We will now formulate the theorem to be prov$ed$ as follows:
Theorem 1. $L$et $w(\sim\leftrightarrow)$ be a function $whic/l$ satisfies the follozvin. $\cdot\circ>$

. three
$conditior\iota s=$

1. $w(\approx)$ is regular and does not vanislt in $D$ except at $2_{0},$ $w/\iota ere$ it has
an expansion of the form

$’\iota v(\sim\sim)=(\sigma^{r_{0}}-\sim^{\prime)^{\alpha}\{}1+c_{1}(z-\sim\sim_{0})+\cdots\cdots\}$ $(a^{\geq}=0)$ .

2. $|^{r}n(\sim\sim)|$ is one-valued in 1).

3. Any branclt of $Argw(2)\iota s$ bounded in the neigthbourhood of $\Gamma$, and
$t/\iota e$ limiting value

$\lim_{z\rightarrow\zeta^{*}}Arg’\iota v(\approx)=\theta(\zeta^{*})$

exists for $eacl_{l}\zeta^{*}$ on $\Gamma$ except at most an enum.rable infinity ofpoints and is
of bonmkd variation, as function of $\zeta^{*}$ on $\Gamma$, on $t/le$ set wkere it exists.

A necessary and sufficient condition for this, is that $w(2)$ can be
expressed in the form

(1) $w(z)=exp.\int_{\Gamma}\log\Omega(2, \zeta)d\sigma(\zeta)$ ,

where $\sigma$ is a distribution of bounded variation oftotal mass $a$ on $\Gamma$, determined

by the ftrnclion of bounded variation $\frac{1}{2\pi}\theta(\zeta^{*})$ .

We shall make some preparations and prove some lemmas.
Defnition of the Riemann surface $\Phi$ . Let $\tilde{D}$ be another sheet of $D$ .

We put $D^{\iota}$ on $D$ and identify the corresponding boundary points of $D$ and $D^{\sim}$

This closed surface can be regarded as a closed Riemann surface $\Phi$ of
genus $n-1$ , since we can define a local parameter $t(p)$ for each point $p$

on $\Phi$ : for a point of $\tilde{D}$ by taking conjugate complex, and for a point on
I‘ by reflection in $\Gamma$.

By interchanging the two sheets $D$ and $\tilde{D}$ , we obtain a transformation
$p\rightarrow\tilde{p}$ which transforms $\Phi$ into itself conformilly with inversion of angles.

Besides, we denote by $\omega_{q_{1}’ q_{2}}(p)$ the elementary integral of third kind
on $\Phi$ , which has the singularities $\log t(q_{I})$ at $q_{1}$ and $-\log t(q_{2})$ at $q_{2}$ , and
whose real part is one-valued on $\Phi$ . And by $\omega_{q_{1}’ q_{2}}^{\prime}(p)$ we denote the ele-
mentary integral of third kind, which has the singularities $-i\log t(q_{1})$ at
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$q_{1}$ and $i\log t(q_{2})$ at $q_{2}$ , and whose $re$al part is one-valued on $\Phi$ cut along
a curve connecting $q_{1}$ with $q_{2^{1)}}$ .

Lemma 1. For each $\zeta$ on $\Gamma$, there exists one and only one function
$\Omega(z, \zeta)$ with the mention$ed$ properties.

Proof. We put
$\omega_{z_{0}\zeta}(p)+\omega_{z_{0}\zeta}^{\sim}(p)=u(p)+iv(p)$ ,

and

(2) $\Omega(2, \zeta)=const$ . $exp$ . $\{u(z)+iv(z)\}$ .

Since the one-valued potential function $ u(p)\sim$ has on $\Phi$ the same sin-
gularities as $u(p)$ , and takes on $\Gamma$ the same value as $u(p)$ , we have

$u(p)\equiv u(\tilde{p})$ ,

i.e. $u(p)$ takes the same value at $\tilde{p}$ as at $p$ . Hence we have at each
point on $\Gamma$ except $\zeta$ ,

$\frac{\partial u}{\partial\nu}=0$ consequently $\frac{\partial v}{\partial^{-}}=0$ ,

where $\nu$ and $\tau$ denote the normal and tangent to $\Gamma$. Therefore, $v$ takes a
constant value on each $\Gamma_{k}$ . It follows from this, that $\Omega(z, \zeta)$ is one-
valued in $D$ .

On the other hand, $u$ is finite at each point of $\Gamma$ except $\zeta$ , where $u$

is positively infinite. Hence, th $e$ image of $\Gamma$ by $\Omega(z, \zeta)$ consists of an
infinite radial slit and $n-1$ radial slits.

Let $\Omega_{0}$ be a point of $\Omega$-plane, which does not belong to these $n$ slits.
Since

$Arg\{\frac{11}{\Omega(z,\zeta)\Omega_{0}}\}$

remains unchanged when $z$ moves on $\Gamma$ once around and returns to the
original value, and since $1/\Omega(z, \zeta)$ has one and only one pole in $D$ ,
$\Omega(z, \zeta)$ takes each value $\Omega_{0}$ once and only once in $D$ . Therefore, $\Omega(z, \zeta)$

provides the required mapping, when the constant factor in (2) is deter-
mined by the condition $\Omega^{\prime}(2_{0}, \zeta)=1$ .

The uniqueness of the mapping function can be proved as follows. Let
$\Omega_{l}1(\sim r, \zeta)$ be another mapping function with the mentioned properties. When
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we continue $\Omega_{1}(z, \zeta)$ analytically across $\Gamma$
’ on $\Phi$ by the principle of reflec-

tion, we obtain a one-valued potential function $\log$ $|\Omega_{1}(p, \zeta)|$ on $\Phi$ ,
since $|\Omega_{1}|$ remains unchanged by reflection in a radial slit. Moreover
$\log|\Omega_{1}(p, \zeta)|$ has the same singulalities as $u(p)$ . Therefore, by the
normalisation $\Omega_{J}^{\prime}(2_{0}, \zeta)=1,$ $\Omega_{1}(2, \zeta)$ must be identical with $\Omega(\sim\sigma\zeta)$ .

$Re$mark. By the same idea as in the above proof, we can construct
the function $\Omega(2, z^{*})$ for $z^{*}\epsilon D$ , which maps $D$ conformally on the whoIe
$\Omega$-plane cut along $n$ radial slits and satisfies $\Omega(z_{0}, z^{*})=0,$ $\Omega^{\prime}(2_{0}, Z^{*})=1$ ,
$\Omega(z^{*}, 2^{*})=\infty$ . For this purpose, we have only to put

(3) $\Omega(z, z^{*})=const$ . $exp$ . $\{pu_{x_{0}z*}(2)+\omega_{0}^{\sim},\tilde{\mathscr{J}}(z)\}$ .

We cut the domain $D$ by $n$ curves, each of which connects $z_{0}$ respec-
tively with an arbitrarily fixed point $C_{k}$ on $\Gamma_{k}$ , and which do not cross each
others. We denote by $D_{0}$ the resulting simply connected domain, in which
$Arg\Omega(z, \zeta)$ is one-valued. We can assume that $D_{0}$ contains wholly in it
a line element $dx$ at $2_{0}$ with direction of positive real axis. We take th $e$

branch of $Arg\Omega(2, \zeta)$ which vanishes at $2_{0}+dx$ and put
$\theta(z, \zeta)=Arg\Omega(2, \zeta)$

for $z\epsilon D_{0}$ .
As function of 2 with fixed $\zeta,$ $\theta(2, \zeta)$ has the following properties.
Lemma 2. $\theta(2, \zeta)$ is bounded in $D_{0},$ $aud$ the limiting value

$\lim_{z\rightarrow e*}\theta(2, \zeta)=\theta(\zeta^{*}, \zeta)$

exists for each $\zeta^{*}$ on $I^{7}$ excepl $\zeta$ . $\theta(\zeta^{*}, \zeta)$ is equal to a constant on each arc
of $\Gamma$ which contains neither $\zeta$ nor $\zeta_{1},\cdots\cdots\zeta_{n}$ , andjumps $ by+2\pi$ at $\zeta$ when $\zeta^{*}$

moves on $I^{7}$ in pocitive direction.
Proof. This is obvious from the shape of the image of $D$ by $9(2, \zeta)$ .
As function of $\zeta$ with fixed $z,$ $\log\Omega(z, \zeta)$ and $\theta(2, \zeta)$ have the following

properties.
Lemma 3. $\log\Omega(z, \zeta)$ is one-valued and conlinuous, and its imaginary

part $\theta(z, \zeta)$ is uniformly bounded for the parameter 2 in $D_{0}$ .
Proof. The constant factor in (2), which is to be determined by the

condition $\Omega^{\prime}(z_{0}, \zeta)=1$ , depends naturally on $\zeta$ . When we write (2) in
the form

$\log\Omega(2, \zeta)=\int_{z*}^{\epsilon_{o}}dcu_{z_{0}’ t}+\int_{z_{0^{*}}}^{z_{du_{z_{0}\zeta}^{\sim}+c(\zeta)}}.,$ ,

where $z_{0}^{*}$ denotes an arbitrarily fixed point in $D$, the condition $\Omega^{\prime}(z_{0}, \zeta)=1$
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is given by

$c(\zeta)=\lim_{z_{1}\rightarrow z_{0}}\{-\int z_{0^{*}}^{1}zd\omega_{Z_{C}\zeta}-\int_{zo’}^{z_{1}}d\omega_{z_{0}\zeta}+\log(2_{1}-z_{0}),\}$ ,

and we obtain the following definite form of $\log\Omega(2, \zeta)$ ,

$\log\Omega(z, \zeta)=\lim_{Z1\rightarrow z_{0}}\{\int_{z_{1}}^{z}d\omega_{zo’ t}+\int_{z_{1}}^{l}d\omega_{zo’ t}+\log(2_{1^{-z_{0})}}\}\cdot$

We assume that $\zeta$ lies on $\Gamma_{k}$ , and consider the difference

$\log\Omega(2, \zeta)-\log\Omega(2, \zeta_{k})$

$=\lim_{z_{1}\rightarrow\approx 0}\{\int_{z1}^{x_{d\omega_{z_{0}’\zeta}}}-\int_{e}^{z_{1}}d\omega_{z_{0}\sigma_{k}}+\int_{z_{1}}^{z}d\omega_{zo’ t}-\int_{z}^{z_{1}}d\omega_{zo’\sigma_{k}}\}$

$=\lim_{\epsilon_{1}\rightarrow z_{0}}2\int_{\approx\iota}^{z}d\omega_{\sigma_{k},t}=2\int_{z}^{z_{0}}d\omega_{t_{k’}t}$ .

By the theorem of interchange of argument andparameter,2) we can write this
in the form

$\log\Omega(z, \zeta)-\log\Omega(z, \zeta_{k})=2\{\mathfrak{R}\int_{\zeta}^{t_{k}}d\omega_{zo’ e}+i\mathfrak{R}\int_{t^{t_{k}}}d\omega^{\prime}.\circ z$
$\}$ .

This proves the mentioned property of $\log\Omega(z, \zeta)$ .
While taking the imaginary part of this formula, we have

$\Theta(z, \zeta)-\Theta(2, \zeta_{k})=2\mathfrak{R}\int_{\zeta}^{\sigma_{k}}d\omega_{zo,z}^{\prime}$ .

Since the right-hand side is certainly uniformly bounded for $z$ in $D_{0}$ , and
since $\Theta(z, \zeta_{k})$ is, by Lemma 2, bound $ed$ in $D_{0},$ $\Theta(z, \zeta)$ is uniformly bound-
ed for 2 in $D_{0}$ .

Lemma 4. Let $f(z)$ be a function one-valued and regular $i\prime lD,$ $wf_{l}ose$

imaginary part is bounded. $1f$ the limiting value

$\lim_{z\rightarrow\zeta}\mathfrak{J}f_{(2}^{\prime})$

exists for each $\zeta$ on $\Gamma$ excepl at most an enumerable infinity of points, and
if this limiting value is equal respeclively to a constant on each $\Gamma_{k}$ , then $f(2)$

is $ identicall\parallel$ equal to a constant.
Proof. In the first place, since 9 $f(2)$ is bounded, there exist in fact

no $excep\dot{t}ional$ points. Then, we can continue $f(z)$ analytically on $\Phi$ across
each $I_{k}^{7}$ , by the principle of reflection. Since $\mathfrak{R}f(z)$ remains unchanged by
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reflection in a straight-line parallel to the real axis, we obtain, by this
continuation, a one-valued potential function $\mathfrak{R}f(p)$ everywhere regular on
$\Phi$ , which must be identically a constant.

Q. E. D.
Now we will prove Theorem 1.
Proof of Theorem 1.
Sufficiency. Since $\log\Omega(\vee\sim, \zeta)$ is continuous as function of $\zeta$ by Lemma

3,

$w(2)=exp.\int_{\Gamma}\Omega(2, \zeta)d\sigma(\zeta)$

represents an analytic function of 2, which obviously satisfies the conditions
1 and 2 The property 3 can be proved as follows.

For a branch of $Argw(\approx)$ one-valued in $D_{0}$ , we have

$Arg\prime pv(2)=\int_{\Gamma}\theta(z, \zeta)d\sigma(\zeta)$

By Lemma 3, this function of 2 is bounded in $D_{0}$ . When 2 approaches to
a point $\zeta^{*}$ on $\Gamma$, which is a point of continuity of the distribution $\sigma$ , we
have, by Lemmas 2, 3 and by Lebesgue’s theorem,

$\theta(\zeta^{*})=\lim_{z\rightarrow t^{\vee:}}Arg\prime zv(\approx)=$
$\lim_{\vee:,z\rightarrow t}\int_{I^{\backslash }}\theta(z, \backslash ’)d\sigma(\zeta)=\int_{\Gamma}\theta(\zeta^{*}, \zeta)d\sigma(\zeta)$ .

Therefore, the limiting value $\theta(\zeta^{*})$ certainly exists for a point of continuity
of $\sigma$ .

Let $C$ be an arc of positive direction on $I_{k}$ , which does not contain
the point $\zeta_{k}$ , and whose starting and ending points $\zeta_{1}^{*},$ $\zeta_{2^{*}}$ are both points
of continuity of $\sigma$ .

Then, we have

$\theta(\zeta_{2^{*}})-\theta(\zeta_{1^{*}})=\int_{\Gamma}\{\theta(\backslash r_{\underline{o}}*, \zeta)-\theta(\zeta_{1}^{*}, \zeta)\}d\sigma(\zeta)$ .

On th $e$ other hand, we have by Lemma 2,

$\theta(\zeta_{2^{*}}, \zeta)-\theta(\zeta_{1^{*}}, \zeta)=\{02\pi$ $\zeta\zeta f\epsilon CC.$
’

Therefore we obtain
$\theta(\zeta_{2^{*}})-\theta(\zeta_{1}^{*})=2\pi\sigma(C)$ .
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This proves the last part of 3 and the mentioned relation between $\theta$

and $\sigma$ .
$\lrcorner \mathbb{V}ecessity$ . Let $w(\sim\vee)$ be $a\cdot function$ which satisfies the conditions 1, 2

and 3. We define by $\frac{1}{2\pi}\theta(\zeta^{*})$ a distribution $\sigma$ of bounded variation on $\Gamma$.
Obviously $\sigma$ has the total mass $a$ . We put

$w_{1}(z)=exp.\int_{\Gamma}\log\Omega(2, \zeta)d\sigma(\zeta)$ ,

$\theta_{1}(\zeta^{*})=\lim_{z\rightarrow t^{:}}.Argw_{1}(2)$

and $f(2)=\log\frac{w(z)}{w_{1}(z)}$ .

$f(z)$ is one-valued and regular in $D$ .
Let $C$ be such an arc of $\Gamma_{k}$ , as mentioned in the first part of this proof.

Then we have

$\lim_{z\rightarrow\zeta_{2}}..\mathfrak{J}f(\rightarrow\alpha)-\lim_{z\rightarrow^{\ovalbox{\tt\small REJECT}}\zeta_{1^{*}}}\mathfrak{J}f(z)$

$=\{\theta(\zeta_{0^{*}}\sim)-\theta_{1}(\zeta_{2^{*}})\}-\{\theta(\zeta_{1^{*}})-\theta_{1}(\zeta_{1^{*}})\}$

$=\{//(\zeta_{2^{*}})-\theta(\zeta_{1^{*}})\}-\{\theta_{1}(\zeta_{2^{*}})-\theta_{1}(\zeta_{I^{*}})\}$

$=2\pi\sigma(C)-2\pi\sigma(C)=0$ .
Therefore, $\mathfrak{J}f(z)$ has a constant limiting value on each $\Gamma_{k}re$spectively.

Further, $\mathfrak{J}f(z)$ is bounded in $D$ , since $Argw(z)$ and Arg $zv_{1}(z)$ are both
bounded in $D_{0}$ . Consequently by Lemma 4 we obtain

$f(z)\equiv const.$ ,

and the normalisation in condition 1 gives
$’\tau v(2)\equiv w_{1}(\approx)$ .

Q. E. D.
$Re$mark 2 Making use of conformal representation, Theorem 1 finds

itself valid, in the form as it stands, for any n-ply connected Jordan domain.

\S 2.
If $D$ is the interior of a circle or a circular ring-shaped domain, we

can write down the explicit forms of $\Omega(2, \zeta)$ and $\Omega(2, z^{*})^{3)}$
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The case $\prime vh\ell reD$ is $ th\ell$ interior of tlte unit circle $|2|<1$ and $2_{0}$ is $th_{\ell O^{\prime}}.igin$

$2=0$ .
By reflection in $|z|=1$ , the Riemann surfac $ e\Phi$ represents itself con-

formally on the whole 2-plane. And the elementary integral $w_{l0,*1}$ is
given by

$w_{u),*1}(z)=\log\frac{2}{z-z_{1}}+const.$ .

Wnile giving suitable values to $z_{1}$ and combining th$em$ , we obtain by (2)
and (3)

$\Omega(2, \zeta)=\frac{2}{(1-\frac{z}{\zeta})}2$

and
$\Omega(2,2^{*})=\frac{2}{(1^{\alpha_{*}}-2^{\sim}-)(1-\overline{2}^{*}2)}$

under consideration of the normalisation $\Omega^{t}(0)=1$ .
The case $\tau$vhere $D$ is $th\ell ri’\iota g- s’\iota aped$ donzain $q<|z|<1$ and $z_{0}$ is real

and posztive.
By repeated reflections in the boundary curves, and by the transforma-

tion

$u=u(2)=-i\log\frac{z}{0}2$

the universal covering surface of $\Phi$ is mapped conformally on the whole
finite u-plane. Then, putting $u_{1}=u(2_{1}),$ $u_{zo,\iota_{1}}$ is given by

$\iota u_{z_{0,\approx 1}}=\log\frac{\sigma(u)}{\sigma(u-u_{1})}-(\frac{\eta_{1}}{\omega_{1}}\mathfrak{R}u_{1}+i\frac{\eta_{3}}{\omega_{3}}\mathfrak{J}u_{1})u+const.$ ,

where $\sigma$ denotes the Weierstrass’ $\sigma$-function with primitive $pe$riods
2 $ u_{1}=2\pi$ , $2\omega_{3}=-2i\log q$

and $\eta_{1}$ and $\eta_{3}$ have the ordinary significations.
While giving suitable values to $z_{1}$ and combining them, we obtain by

(3), after simple calculations,
12 $(z, 2^{*})=$

$-i_{2_{0}}\frac{\sigma(i\log\frac{2_{0}}{2^{*}})\sigma(i\log\overline{z}^{*}z_{0})}{\sigma(2i\log z_{0})}\cdot\frac{\sigma(i\log 2\frac{2}{0})i\log_{2_{(\nu^{\prime}}}\vee}{\sigma(i\log\frac{z}{2^{*}})\sigma(i\log_{\overline{Z}^{t}2})}\cdot(\frac{z}{z_{0}})^{2i\frac{\eta_{1}}{\pi}Argz^{*}}$
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under consideration of the normalisation $\Omega^{\prime}(z_{0})=1$ .
When we replace $z^{*}$ by $\zeta$ in the above formula, we obtain the ex-

pression for $\Omega(z, \zeta)$ . But it can be a little simplified by separating the
two cases $|\zeta|=1$ and $|\zeta|=q$ In fact, we have

$\Omega(z, e^{ip})=$

$-\frac{iz_{0}}{\sigma(2i\log z_{0})}\cdot\frac{\sigma(i\log 2_{0}+\varphi)^{2}}{\sigma(i\log 2+\varphi)^{3}}\cdot\sigma(i\log\frac{2}{z_{0}})\sigma(i10_{a^{2_{0}}}^{\sigma}\epsilon\rangle\cdot(\frac{2}{r_{0}})^{2i\frac{\eta_{1}}{\pi}\varphi}$

and
$\Omega(z, qe^{i\varphi})=$

$-\frac{i_{2_{0}}}{\sigma(2i\log 2_{0})}\cdot\frac{\sigma_{0\ovalbox{\tt\small REJECT}}(i]_{0_{p’\sim}^{\sigma i}}\nu_{0}+\varphi)^{o}\sim}{\sigma_{3}(i\log z+\varphi)^{2}}\cdot\sigma(i\log\frac{2}{2_{0}})\sigma(i\log z_{0}z)\cdot(\frac{2}{2_{0}})^{2i\frac{\eta_{1}}{\pi}\varphi}$

$Remar/$ . If $D$ is the domain $|2|<1$ , or if $D$ is $q<|2|<1$ and $a=0$ ,
while differentiating the logarithm of (1) and multiplying it by 2, we
obtain by the above $e$xpressions for $\Omega(2, \zeta)$ the Poisson-Stieltjes’ or the
Villat-Stieltjes’4) expression for $2w^{\prime}/’\iota v$ . Further, it is easy to prove fiom
Theorem 1 thes $e$ two formulae in their $pe$rfect forms.

\S 3.
As an application of Theorem 1, we shall give an expression for the

mapping function of n-ply connected polygonal domain, an analogue of
Schwarz-Christoffel’s formula. Here, by the word ” n-ply connectedpolygonal
doneain”, we mean an n-ply connected Riemann surface $P$ ofplanar character
(schlichtar$tig$), rvhose boundary consists of a finite number of segments or half
straight-lines. $P$ may contain in it a finite number of points of ramification,

and may cover the point at infinity a finite number of times.
We assume that $n$ is greater than 1. Let $D$ be a concentric circular

ring $R_{1}<|z|<R_{2}$ with $n-2$ concentric circular slits, whose $2(n-2)$ end
points we denote by $s_{k}(k=1,\cdots\cdots)$ . And we fix a point $z_{0}$ in $D$ arbitrarily.

Let $f(z)$ be the functIon which maps $D$ conformally on $P$. We denote
by $\zeta_{k}$ the boundary point of $D$ , which corresponds by this function to a
vertex of $PwIth$ the interior angle $ a_{k}\pi$ . If the vertex lies on the point
at infinity, we agree to give $a_{k}$ negative sign.

$1n$ the first place, we assume that P’contains in it neither points of rami-
fication nor points lying at infinity.

Then, $\approx f^{\prime}(z)$ is regular and does not vanish in $D$ , and when 2 moves
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on the boundary of $D$ in positive direction, the variations of its argument
are as follows:

$dArg2f(2)=dArg\frac{df(2)}{d\log z}=dArgdf(z)-dArgd\log 2$,

$ dArgdf(2)=(1-a_{k})\pi$ at $\zeta_{k}$ and $=0$ elsewhere,

$dArg$ dlog $ 2=-\pi$ at $s_{k}$ and $=0$ elsewhere.
Therefore, while defining the distribution $\sigma$ by

$\sigma(\zeta_{k})=\frac{1-a_{k}}{2}$ , $\sigma(s_{k})=\frac{1}{2}$ and $\sigma\equiv 0$ elsewhere,

we obtain by theorem 1.

$zf^{\prime}(z)=2_{0}f^{\prime}(z_{0})\prod_{k}\Omega(z, \zeta_{k})\prod_{k}\Omega(z\frac{1-a_{k}}{2}, s_{k})^{\frac{1}{2}}$

Thus, we have the $foflo^{i}\cdot ving$ expression for the $ma\ovalbox{\tt\small REJECT} ing$ function.
$f(z)=z_{0}f^{\prime}(2_{0})\int.\prod_{ok}\Omega’)\frac{1-\alpha_{k}}{2}\prod_{k}\Omega(\sim\sim, s_{k})^{2}$ .

$1n$ the general case, we denote by $2_{k}$ the point of $D$ which corresponds
to a point of ramification of $m_{k}$-th order $(m_{k}>0)$ on $P$ lying in the finite
part of the plane, and by $2_{k}^{\prime}$ the point which corresponds to a point of
ramification of $m_{k^{\prime}}$-th order $(m_{k^{\prime}}\geqq 0)$ lying at infinity.

Then, Of(2) has a zero of $m_{k}$-th order at $z_{k}$ and a pole of $(m_{k^{\prime}}+2)- th$

order at $2_{k}^{\prime}$ . We can apply Theorem 1 to th $e$ function

$zf^{\prime}(2)\cdot\frac{\prod_{k}\Omega(l,2_{k})^{m_{k}}}{\prod_{k}\Omega(Z,2_{k}^{\prime})^{mt_{k}+2}}$

and, since we have
$dArg\Omega(z, z^{*})\equiv 0$

on the boundary of $D$, the distribution $\sigma$ can be so determined as before.
Therefore, we have

$\approx f^{\prime}(z)=C_{1}\prod_{k}\Omega(2, \zeta_{k})^{\frac{1-\alpha_{k}}{2}}\cdot\frac{\prod_{k}\Omega(2,2_{k}^{\prime})^{m_{k};+2}}{\prod_{k}\Omega(z,z_{k})^{m_{k}}}\cdot\prod_{k}J2(2, s_{k})^{1}2$ ,

$C_{1}$ being a suitable constant.
Thus, we obtain the following
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Theorem 2. The funclion which maps $D$ conformally on $P$ is given by

$f(2)=C_{1}\int^{t}\prod_{k}\Omega(2, \zeta_{k})^{1_{\frac{-\alpha_{k}}{2}}}\cdot\frac{\prod_{k}\Omega(z,z_{k^{\prime}})^{m_{k}\prime+2}}{\prod_{k}12(\sim r,z_{k})^{m_{k}}}$ . $\prod_{k}\Omega(2, s_{k})^{2}\cdot\frac{dz}{z}+C_{2}\iota$

where $C_{1}$ and $C_{2}$ are constants depending on position and magnitude of $P$ and
on the $lo_{\overline{\iota}}ver$ bound of the integration.

Remark 1. If one of th $e$ points $z_{k}$ or $2_{k^{\prime}}$ coincides with $2_{0}$ , we have
to understand $\Omega(z, z_{0})$ to be $\equiv 1$ in the above formula.

Remark 2. Though we have deduced Theorem 2 under th $e$ assump-
tion $n\geqq 2$ , it is also valid for $n=1$ , as can be seen easily, if $D$ is the
domain $|z|<R$ and $z_{0}$ is the origin $z=0$ .

By the expressions for $\Omega(2, \zeta)$ given in \S 2., we can easily see that,

in case $P$ is schlicht, the formula of Theor$em2$ coincides for $n=1$ with
the ordinary Schwarz-Christoffel $s$ formula, and for $n=2$ with the formula
given by Mr. Y. $Komatu^{\ovalbox{\tt\small REJECT})}$ .

Mathematical Institute,

Tokyo University.
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