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On the Group of Automorphisms of a Function Field

Kenkichi IWASAWA and Tsuneo TAMAGAWA

\S 1. Let lf be an algebraic function field over an algebraically closed
constant field $k$ . It is well-known that the group of automorphisms of $K$

over $k$ is a finite group, when the genus of $K$ is greater than 1. In the
classical case, where $k$ is the field of complex numbers, this theorem was
proved by Klein and Poincar\’e1) by making use of the analytic theory of
Riemann surfaces. On the other hand, Weierstrass and Hurwitz gave more
aigebraical proofs in the same $case^{\underline{o}}$

)
$whi_{-}^{\backslash }h$ essentially depend upon the

existence of $c_{O}$ -called Weierstrass points of $K$. Because of its algebraic
nature, the latter method is immediately applicable to the case of an
arbitrary constant field of characteristic zero. In the case of characteristic
$p\neq 0$ , H. L. $S_{\sim}\wedge hmidP^{loved}$ the theorem along similar lines; the proof
being based upon F. K. Schmidt’s generalization of the classical theory
of Weierstrass points in such a case4).

Now it has been remarked, since Hurwitz, that the representation of
$tlle$ group $G$ of automo;phisms of $K$ by the linear $trallsfolmations,$ $i_{1^{\neg}}.duced$

by $G$ in the set of all differentials of the first kind of $K$, is very impor-
tant for the study of the $struct|_{-1re}$ of $G$ . The $p_{U1}$ pose of the present
paper is to show that we can indeed prove the finiteness of $G$ by the help
of such a representation instead of the theorem on Weierstrass points.
In the next paragraph we analyze the structure of the $s\iota lbgroupG(p)$ of
$G$ , consisting of those automorphisms of $K$, which leave a given prime
divisor $P$ of $K$ fixed, where $K$ may be any function tield of genus greater
than $zelO$ . The finiteness of $G(p)$ is also proved by H. L. Schmid; but
his proof depends essentially upon formal calculations of polynomials,
whereas our method is more group-theoretical. In the last paragraph we
then prove our theorem by considering the above mentioned 1 $e_{P}1esentation$

of $G$ and by using a theorem of Burnside on irreducible groups of linear
transformations.

1) Cf. Poincar\’e [3]
2) Cf. Weierstrass [6] and IIurwitz [2]
3) Cf. H. L. Schmid [4.!
4) Cf. F. K. Schmidt [5]
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\S 2. Let $K$ be an algebraic function field over an algebraically closed
constant field $K$, whose characteristic $p$ may be either zero or a prime
number. In this paragraph we always assume that the genus $g$ of $K$ is
different $f_{1}$ om zero.

I.emma 1. $L\prime t\sigma b_{\vee}^{\rho}$ an $antomorp^{\gamma_{p}}ism$ of $K^{b)},$ $’\iota vflich$ maps a ralional
snbfield $K^{\prime}=k(x)$ onto $itse/f$. $1f$ the degree $n=[A:K^{\prime}]$ is prime to $p^{\Gamma,)}$ , then
$\sigma\prime_{l}as$ a finite order, $w\prime_{l}ic$’ does not exceed $n(2\prime l+ae-2)(2n+2g-3)(2n$

$+2g-4)$ .
Proof. Let $P^{(1)}$ , ......, $P^{(s)}$ be all the $P^{1}ime$ divisors of $K$, which

divide the different of $K/K^{\prime}$ , and let $Q^{(i)}(i=1,\ldots\ldots, s)$ be the projection
of $P^{(i)}$ in $K$‘. Choose any $Q=Q^{(i)}$ , and consider the decomposition

$Q=P_{1}^{e_{1}}\ldots\ldots\ldots P_{t^{t}}^{e}$

of $Q$ in $K$. As , is prime to $p$ , the $contrib\iota\prime tion$ of each $P_{i}$ to the dif-
ferent of $K/K^{\prime}$ is given by

$P_{1}^{e_{1}-1}\ldots\ldots\ldots P_{t}^{\epsilon_{\ell}-1}$

whose degree is equal to

$\Sigma_{i=1}^{l}(e_{i}-1)=\Sigma_{t\simeq 1^{\mathcal{L}}’ i}\ell-t=’\iota-t\leqq$ ;i-l

On the other hand, the degree $d$ of the different of $K/K^{\prime}$ is given by

(1) $d=2n+2(g-1)$ ,

which is greater than 2 $(n-1)$ , since we have assumed $g>0$ . Therefore
there exist at least three, but at most $d$ different prime divisors among $Q^{(i)}$ .

Now $\sigma$ obviously leaves the different of $R/K^{\prime}$ fixed, $a1_{1}^{\backslash }d$ it permutes
$P^{(i)}$ and $Q^{(i)}$ among themselves. Therefore some of $\sigma$ , say $\sigma^{l}$ , where

(2) $l=<d(d-1)(d-2)$ ,

leaves three different $Q^{(i)}’ s$ invariant. However, an $aut_{omo1}phism$ of a ra-
tional function field $I\zeta^{\prime}=K(x)$ , which 1eaves three different prime divisors

5) In the following we always consider $()nly$ those automorphisms of $X^{\prime}$, which leave
every element in ’ fixed.

6) If $l$ is zero, $\prime l$ may be an arbitrary integer.
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fixed, is the identity. Consequently $\sigma^{l}$ leaves all elements of $K^{\prime}$ fixed.
As there exist at most $n$ relative automorphisms of $K$ with respect to $K^{\prime}$ ,
some power of $\sigma^{l}$, say $\sigma^{lm}$ is the idenJity automorphism of $ I\zeta$, where $m$ is
rot greater than $n$ . From (1), (2) we have

$lm\leqq n(2n+2g-2)(2n+2g-3)(2n+2g-4)$ ,

which proves our lemma.
Now we study the structure of the group $G(P)$ , consisting of all

automorphisms of $K$, which leave $a\cdot prime$ divisor $P$ of $K$ fixed. For that
purpose, let us consider the set $L(P^{n})$ of all elements in $K$ whose denomi-
nators divide $P^{n}$ . $L(P^{n})$ is a finite dimensional linear space over $k$ , and
we denote its dimension by $l(P^{n})$ . We have then, obviously,

$ k=L(P^{0})=\subset L(P^{1})=\subset L(P^{2})\underline{\subseteq-}\cdots\cdots$ ,

$ 1=l(\Gamma^{0}\vee)=<l(P^{1})\leqq’(P^{\underline{o}})\underline{\underline{<}}\ldots\ldots$ .

However the Riemann-Roch theorem tells us that either 1 $(P$“’ $)=l(P^{n})$ or
$l(P^{n+1})=l(P^{n})+1$ and that the latter case surely occurs if $n>2g-2$ . It
follows that we can choose a basis

$x_{1},$ $x_{2},$ $\ldots\ldots,$
$x_{r}$ $(r=l(P^{2g+1}))$

of $L(P^{2\underline{r};+1})$ in such a way, that $x_{i},$ $x_{i+1},$ $\ldots\ldots,$ $\chi_{r}$ form a basis of some
$L(P^{n_{i}})(n_{i}\leqq 2g+1)$ for every $i\leqq r$ . The denominators of $x_{1}$ and $x_{2}$ are
then $j$ ust $P^{2g+1}$ and $P^{2g}$ respectively.

Now any automorphism $\sigma$ of $G(P)$ obviously induces a linear transfor-
mation in every $L(P^{n})$ . In particular we have, for $L(P^{o}4g+1)$ ,

$\sigma(x_{j})=\Sigma_{i=1}^{r}a_{ij}x_{i}$ , $a_{tf}\epsilon k$ , $j=1_{f}\ldots\ldots,$ $r$

or simply in a matrix equation

$(\sigma(x_{1}), \ldots\ldots, \sigma(x_{r}))=(x_{1}, \ldots\ldots, x)A_{\sigma}$ , $A_{\sigma}=(a_{ij})$ .

As a result of the particular $\cdot$ choice of our basis, $A_{\sigma}$ has the following
triangular form

$A_{\sigma}=\left(\begin{array}{ll}a_{l} & 0\\a_{2}. & \\* & \Gamma J_{r}\end{array}\right)$ $(a_{i}=a_{ij})$
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and $\sigma\rightarrow A_{\sigma}$ gives a representation of $G(P)$ . Moreover this representation
is an isomorphic one. In fact, if $A_{\sigma}$ is the unit matrix, $\sigma$ leaves $x_{1}$ and
$x_{2}$ and, consequently, every $elemen${ in $l_{\iota}(x_{1}, x_{2})$ fixed. But this field
$k(x_{1}, x_{2})$ coincides with $K$, as one readily sees from the fact that the
degree $[K:k(x_{1}, x_{2})]$ divides both degrees $[K;\prime_{\vee}(x_{1})]=2g+1$ and $[K:k(x_{2})]$

$=2g$ . It follows that such $\sigma$ is the identity $an$ tomorphism of $K$

By the help of this isomorphic representation we can prove the fol-
lowing

Lemma 2. $T^{\prime}/le$ order of any element $\sigma$ in $G(P)$ is finite and $/las$ a
bound $w^{r_{l}}ic/l$ depends only upon $g$ and $p$ .

Proof. Consider the eigen valucs $a_{I},$ $//2’\ldots\ldots,$ $a_{r}$ of $A_{\sigma}$ and $s_{-}\dagger ppose$

first that all $a_{i}$ are different from each other. By changing the basis
suitably, we may then assume that $A_{\sigma}$ is a diagonal matrix, $ 0^{\cdot}\cdot$ , in other
words,

$\sigma(x_{i})=a_{\iota^{X_{i}}}$ , $\iota=1,2$ , ......, $r$ .

The subfields $\gamma_{j}(\chi_{l}),$ $k(x_{2})$ are, consequently, mappcd onto itself by $\sigma$ . As
one of the deglees [ $K;\gamma\iota_{\backslash }^{\prime}/x_{1}$ ) $\rfloor=2g+1$ and $[K:k(x_{\wedge})]=2g$ is $p_{1}i_{I11}e$ to $p$ ,

it follows, fiom Lemmi 1, that $\sigma$ has a finitc older, which is bounded by
a number depending only upon $g$ and $;=2g+1$ or $\sigma 2g$.

Now assumme that some $\sigma_{i}$ and $a_{j}$ coincide $(i=\models j)$ . We can then
find $1i_{1}iearly$ itsdependent elements $x$ and $y$ in $L(P^{\underline{\alpha}}g+1)$ , such that

$\sigma(x)=u_{i}x$ , $\sigma(y)=a_{i}(x+\gamma)$

For $z=\frac{y}{\chi}$ we have then

$\sigma(\approx)=z+1$ ,

and the field $k(\sim\leftrightarrow)$ is mapped onto itself by $\sigma$ . Moreover, the degree
$n=[K:k(\approx)]$ is not greater than 2 $(2g+1)$ , for the degrees of the denomi-
nators of $x$ and $y$ are most $2g+1$ and that of 2 is, consequently, at most
2 $(2g+1)$ . Therefore, if the characteristic $p$ of 1 is $zelO$ , it follows again
from Lemma 1 that the order of $\sigma$ is finite and has a bound depending
only upen $g$ . On the other hand, if $p$ is not zero, we have $\sigma’(\sim’)=z$ ,

and $0^{p}$ is a relative automorphism of $K$ with respect to $\gamma_{\iota^{\prime}}(z)$ . It follows
that the order of d’ dose not exceed , and that the order of $\sigma$ is at most
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$2p(2g+1)$ .
Now take a prime element $u$ for $P,$ $i$ . $e$ . such an element $u$ in $K$,

which is divisible by $P$, but not by $P^{2}$ . For any $\sigma$ in $G(P),$ $\sigma(u)$ is again
a prime element for $P$, and we have

(3) $\sigma(u)\equiv\gamma u$ $mod \mathfrak{P}^{2}$

where $\gamma$ is a suitable constant and $\mathfrak{P}$ is the piime ideal in the $valuati_{o11}$

ring of $P$. As $\gamma$ is uniquely detelmined by the above congruence, we
may $\det_{A}^{\backslash }ote$ it by $\gamma_{\sigma}$ . $\sigma\rightarrow\gamma_{\sigma}$ is then a representation of $G(P)$ in 1, and, if
we denote by $\Lambda^{\Gamma}$ the kernel of this representation, $G(P)/N$ is isomorphic
to the multiplicative group $\Gamma$ of $\gamma_{\sigma}$ . However, we know by Lemma 2 that
the orders of elements in $G(P)$ are bounded. Therefore, the orders of
elements in $G(P)/N$ or in $\Gamma$ are also bounded. It follows that $\Gamma$ is the
group of all m-th roots of unity in $k$ , where $m$ is a suitable integer $prim\vee$

to $p$ . Therefore $G(P)_{/}/N$ is also a cyclic group of order $m$ and $G(P)$

contains an element of order $m$ . As $m$ is prime to $p$, we can then prove,
by a standald argument) that

(4) $\prime n\leqq 6(2g-1)$ .

We consider, now, the stlucture of the normal subgloup $N$. From
(3) it follows immediately that the eigen values $a_{i}$ of $A_{\sigma}$ are powers of

$\gamma,$

$a1^{\tau_{J}d}$ , in palticular,

$a_{1}=\gamma^{-(J+1)}’,$ , $\sigma_{2}=\gamma^{-2g}$

This shows that $N$ consists of all those $\sigma$ in $G(P)$ , for which the matrix
$A_{\sigma}$ has the form

(5) $\left(\begin{array}{lllllllll} & & & & 1 & & & 0 & \\ & & & & & & 1 & & \\ & & & & & * & & & 1\end{array}\right)$

However, if the characteristic of $k$ is zero, such a matrix can not have a
finite older unless it is the unit matrix. Therefore, we see, by Lemma 2,

7) Cf. H. L. $Sc1_{1}mid[4\rfloor$ . Note that $P$ ramifies completely in thc extension of degree
$m$ and that the degree of the different of that extension is at least in–l. Cf. the proof of Lemma
4 below.
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that $\Lambda^{7}$ is the unit group if $p=0$ . On the other hand, if $p$ is not zero, the
$gro\lrcorner pN$, which is isomorphic to a group of matrices of the form (6), is
a nilpotent group and the order of any element in $N$ is a power of $p$ . In
order to show that $N$ is actually a finite $p$-group il such a case, we first
prove some lemmas.

Lemma 3. Let $Hb^{\underline{p}}$ a group of automorpltisms of a function feld $K$ of
$genusg>0$ , such that

1) $H$ is atielian and $tJ_{l}e$ order of any $elemJ^{\prime}\prime nt$ in $H$ is a pozver of $p$ ,

2) $e^{r}/ery$ element in $H$ leaves a prime divisor $P$ fixed,
3) $t/le$ fixed $field^{8)}$ of $ a;l\gamma$ non.lrivial finite subgroup $cfH$ is a rational

function field.
$T/lenH$ is a cyclic group of order $eit/l^{\prime}\vee’\gamma 1,$ $p$ or $ p\rightarrow\emptyset$ .

Proof. Suppose that $H$ is not the unit group, and take a subgroup $U$

$=\{\sigma\}$ of order $p$ . By assumption, the fixcd field of $U$ is a rational func-
tion field $l^{\prime}(x)$ . We can take $x$ in such a way that the $de1^{\urcorner}ominator$ of $x$

is $P^{l}’$ . As $H$ is abelian, any $\tau$ in $H$ then maps $k(x\cdot)$ onto itself, and as
the denominator of $x$ is invariant under $\tau$ and since the order of $\tau$ is a
power of $p$ , we have

(6) $\tau(x)=\mathcal{X}+a$ $a\epsilon k$ .

It follows that $\tau^{p}(x)=x,$ $\overline{p}\in U,$ $\tau^{2}=e\ovalbox{\tt\small REJECT}$ , so that the older of any $\tau$ in $H$ is
at most $p^{2}$ .

To prove the lemma, it is therefore sufficient to show that $H$ contains
no subgroup of order $p$ other than U. $S$ uppose, for a moment, that there
exists such a subgroup $V=\{\tau\}$ of order $p$ . We shall deduce a contradic-
tion from this assumption. As $\tau$ is not in $U,$ $a$ is not zero in (6). There-

fore, replacing $x$ by $\frac{x}{a}$ we may assume

(7) $\tau(x)=x+1$ , $\sigma(x)=x$

In a similar way, we can find an element $y$ such that the denominator of
$y$ is $\mathscr{J}^{2}$ and

8) The fixed field $K^{/}$ of a fnite group $C$ of $a\iota:to1norp1_{1}isms$ of $A^{r}$ is tlue set of all elements
of G. $R^{\prime}/K^{/}$ is then a Galois extension wilh the Galoisgroup $G$ . In particular we have $[K:K^{/}\rfloor$

$=[G:e\rfloor$
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(8) $\sigma(y)=y+1$ , $\tau(y)=y$ .

As $y$ is not contained in $k(x)$ , we have $K=k(x, y)$ . On the other hand
$x^{p}-x$ and $y^{p}-y$ are both contained in the fixed field $K^{\prime}$ of the subgroup
$UV=\{\sigma, \tau\}$ of order $p^{\underline{o}}$ . However, as these elements have the same
denominators $P^{4^{y2}}$ and $K^{\prime}$ is a rational function field with $[K:K^{\prime}]=p^{0}\lrcorner$ we
must have

$ y^{p}-y=\beta(x^{p}-x)+\gamma$ $\beta,$ $\gamma\epsilon k$ .
If we then put

(9) $z=y-\beta^{\frac{1}{p}}x$ ,

we have

(10) $\mathscr{S}-z-\gamma=(\beta^{\frac{1}{p}}-\beta)x$ .

Therefore, if $\beta^{\frac{1}{p}}-\beta=0,$
$z$ is constant in $k$ , and (9) gives us $k(x)=\gamma_{\vee^{\prime}}(y)$ ,

which is obviously a contradiction. On the other hand, if $\beta^{\frac{1}{p}}-\beta\neq 0$ (9)
and (10) show that $x$ and $y$ are both contained in $k(\sim\alpha)$ . We have then
$I\zeta=k(x, \gamma)=k(z)$ , which also contradicts the assumption that the genus
of $K$ is not zero. The lemma is thus provedq).

Lemma 4. Let $Kb^{p}$ a function field of genus $g>0$ and $H$ group of
automorphisms of $K,$ $r\iota vhichsatisfi\ell s$ the conditions 1), 2) of the previous
Lemma. $H$ is then a finite group, and its order does not exceed $p^{\underline{9}}(2g-1)$ .

$P_{1}oof$. Let $U$ be an arbitrary finite subgroup of order $n$ in $H$ ard
$K^{\prime}$ its fixed field. The genus $g^{\prime}$ of $K^{\prime}$ is given by the following formula:

(11) $2(g-1)=d+2n(g^{\prime}-1)$ ,

where $d$ is the degree of the different of $K/K^{\prime}$ . ITowever, in the present
case, $d$ is always at least $n-1$ , for the prime divisor $P$ ramifies completely
in the extension $K/K^{\prime}$ . Therefore if 2 $(g-1)<n-1$ , namely if $2g\leqq n,$ $g^{\prime}$

must be $zelO$ . It follows that there exists a maximal subgroup $V$ of order
less than $2g$ , such that its fixed field $K^{\prime\prime}$ has a genus different fiom zero.

9) A slightly finer consider.ation shows us that the condition 2) is not necessary in the

present lemma.
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The factor group $H/V$, considered as a group of automorphisms of $\tilde{K}^{\prime\prime}$ ,

obviously satisfies all conditions of the previous lemma. The order of $H/V$

is, consequently, at most $p^{2}$ , and the order of $H$ itself does not exceed
$p^{2}(2g-1)$ .

Finally we prove a purely group-theoretical lemma.
Lemma.5. $L^{l}tGb^{\rho}$ a finite or $infi;/ite$ group of $ord.\cdot r\geqq n$ , containing

a central subgronp $Z$ of order $p$ , snclt that $tJ\iota e$ faclor group $G/Z$ is an ele-
mentary $ab_{\vee}^{\rho}lianp- gronf^{(t)}$ . $T/lenG$ conlains an $ab_{i^{y}}lian$ subgroup of orcler
at leasl $\sqrt{p;l}$.

Proof. We may assume that $G$ is a finite group, for otherwise, we
may replace $G$ by a suitable finite $s\iota 1bg_{1}onp$ of order $\geqq;l$ Let $U$ be a
maximal abelian normal subgroup of G. $\swarrow_{\sim}^{\prime}$ is then contai ted in $U$, and
$U/Z$ is an $elem_{-}^{\backslash }nta\iota^{\prime}y$ abelian $p$-group. We select $\sigma_{1},$ $\ldots\ldots,$

$\sigma_{l}$ in $U$, such
that the cosets of $\sigma_{l}$ modulo $Z$ form a basis of $U/Z$. For an albitrary $\sigma$

in $G$ , we then put

$\sigma\sigma_{i}\sigma^{-1}\sigma_{t^{-1}}=\zeta_{i}$ $i=1,$
$\ldots\ldots,$

$s$ .

As $G_{/^{\prime}}^{\prime}\dot{Z}$ is abelian, $\zeta_{i}=\zeta_{i}(\sigma)$ is contained in $Z$, and we see easily that the
mrpping

$\sigma\rightarrow(\zeta_{1}(\sigma), \ldots\ldots, \zeta_{s}(\sigma))$

is a homomorphism from $G$ into the direct product of $s$ copies of $Z$.
Moreover the kernel of this homomorphism coincides with $U$, for $U$ is a
$m3ximal$ abelian normql subgroup of $G$ . It follows that the order of $G/U$

is at most $p^{s}$ . On the other hand, the order of $U$ is equal to $p^{\aleph+1}$ . We
have, consequently,

$n\leqq[G : e]=[G : U][U : e]\leqq p^{s}$ . $p^{\epsilon+1}$ ,

$\sqrt{}^{-}p\prime l\leqq p^{s+1}=_{\sim}[U:e]$ ,

which proves our lemma.
We now return to the group $G(P)$ and show that the nilpotent nolmal

subgroup $\Lambda^{\Gamma}$ of $G(p)$ is a finite group. Let $x=x_{r-1}$ be the next to last
element in the above choscn basis $\chi_{1},$ $\ldots\ldots,$ $\chi_{r}$ or $L(l^{\rightarrow 2g+1}\backslash )$ . Because of

10) A group is called an elementary abelian 1-group, when it is abelian and tlte p-th power
of any element of the group $is$ the unit elen]ent.
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the choice of our basis, $x$ is an element in $K,$ $SL^{1}ch$ that it has a denomi-
nator of the least possible positive power of $P$, say $P^{n}$ , among all elements
in $K$. From (5) we have

$\sigma(x)=x+a_{\sigma}$ , $a_{\sigma}\epsilon k$ ,

for any $\sigma$ in $1V$, and $\sigma\rightarrow a_{\sigma}$ gives a homomorphism fiom $N$ into the additive
group of $k$ . The.efore, if we denote the kernel of this homomorphism by
$N_{1},1V/N_{1}$ is an elementary abelian $p$-gioup. Moreover, as any $\sigma$ in $j\backslash \gamma_{1}$ is
a relative automophism of $K/k(x)$ , the order of $N_{J}$ is at most $m=[K$ :
$k(x)]$ . As $N$ is nilpotent, we can find a subgroup $\Lambda^{\gamma_{2}}$ of index $p$ in $N_{1}$ ,

such that it is normal in $N$ and $\wedge^{\prime V_{1}}/N_{2}$ is contained in the center of $N/\Lambda^{\gamma_{2}}$ .
Let $I\zeta^{\prime}$ be the fixed field of $N_{2}$ . From the lelation

$p[K:I\iota^{\prime/}]=[N_{1} : N_{2}][N_{2} : e]=[N_{1} : e]\leqq[K:k(x)]$ ,

we see that the genus $g^{\prime}$ of $K^{\prime}$ is not $zeIO$ , for othewise, $K$ would contain
a non-constant element whose denominator is a proper divisor of $P^{m}$ .
Since $N/\Lambda^{\gamma_{2}}$ can be considered as a group of $a\iota_{i}tomorphisms$ of $K^{\prime}$ , we see,

from Lemma 4, that the order of any $abe^{1}1ian\sim$ subgroup of $N/N_{2}$ is at most
$p^{\underline{o}}(2_{\mathscr{S}^{\prime}}-1)$ . On the other.hand, if we put $Z=\Lambda^{\gamma_{1}}/N_{2}$ , the $g\iota oupN/iV_{2}$ has
the structure mentioned in Lemma 5. Therefore, if the order of $N/N_{2}$ is
not less than $n^{\prime}$ , it contains an abelian subgroup of order $\geqq\sqrt{pn^{\prime}}$. It then
follows that

$\sqrt{pn^{\prime}}\leqq p^{\underline{o}}(2g^{\prime}-1)$ .
Consequently the order of $N/N_{2}$ is at most $p^{\gamma}’(2g^{\prime}-1)^{2}$ , and the order of
$N$ is not greater than $p^{\tau}(2_{\delta^{0^{\sim}-1)^{2}}}^{\prime}$ . $mp^{-1}=p^{2}m(2g^{\prime}-1)^{2}$ . However, we
know from (11) that

2 $(g-1)\geqq(m-1)+2m(g^{\prime}-1)$ ,

or

$2g-1\geqq m(2g^{\prime}-1)$ , $(2g-1)^{n}\sim\geqq m(2g^{\prime}-1)^{\mathfrak{g}}$ .

We have thus $P^{loved}$ that the order of $\Lambda^{\gamma}$ is at most $p^{2}(2g-1)^{2}$ and ob-
tained the following theorem1i).

11) An example in If. L. Schmid [4] shows that $1^{2}(2_{o^{\backslash }}-1)^{2}$ seems to be near to the best
$\gamma al\iota\iota e$ of the bounds of $tl$}$e$ order of $suc!14^{\gamma}$,
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Theorem 1. $L’\vee tK$ be a function field of genus $g>0$ over an algebrai-
cally closed constant field $\gamma_{\iota^{\prime}}$ , and let $P$ be an arbitrary prime divisor of $K$

Then $t\gamma_{le}$ group $G(P)$ of all automorplisms of $K$ which lcave $P$ fxed has
$lhefollo_{\iota}^{\prime}$ving structure:

1) if th: characteristic of 1 is zero, $G(P)$ is a cyclic group of order
$\leqq 6(2g-1)$ .

2) if the $ ch_{-}^{\gamma}\iota$racteriatic of $k$ is a prime number $p$ , a p-Sylrrvgroup $N$

of $G(P)$ is a normal subroup of order $\leqq p^{\underline{o}}(2g-1)^{2}$ and $thc$ factor group
$G(P)/N$ is a cyclic group of order $\leqq 6(2g-1)$ .
$1n$ any case $t1_{l}e$ order of $G(P)/las$ a lound dependi; $\circ$

$\backslash \cdot$ only upon $g$ and $p$ .
\S 3. Let us now assume that the genus $g$ of $K$ is greater than 1 and

denote the set of all differentials of the first kind of $K$ by $D$ . As is well-
known $D$ is a g-dimensional linear space over $k$ and any automorphism of
$K$ induces a linear transformation in $D$ . Thus the group $G$ of all automor-
phisms of $K$ can be represented by such linear transfolmations in $D$ .

Now take an albitrary automorphism $\sigma$ in $G$ . We can then find a
differential $\omega\neq 0$ in $D$ , such that

$\sigma(\omega)=a\omega$ , $a\epsilon k$ .

If follows that $\sigma$ permutes the $2g-2$ zeros of $\omega$ among themselves, and
some power of $a$ , say $0^{l}$ , where

$l\leqq 2g-2$ ,

leaves one of these zeros of $\omega$ , say $P$, fixed. $\sigma^{l}$ is therefore contained in
$G(P)$ and Theorem 1 then shows us that the order of $\sigma$ has a bound,
depending only upon $g$ and $p$ .

Let $M$ be an irreducible invariant subspace of $D$ with $\sim respects$ to the
above representation of $G$ , We denote by $G_{0}$ the kernel of the irreducible
$representatio:1$ of $G$ in $M$, so that $G/G_{0}$ is isomorphic to the irreducible
group of linear transformations. However, we know that the orders of
elements in $G$ , a fortiori the orders of elements in $G/G_{0}$ , are bounded.
If follows then from a theorem of Burnsidelo) that $G/G_{0}$ is a finite group.

Now take a differential $\omega\neq 0$ in $M$. Since $\sigma(u)=\omega$ for any $\sigma$ in $G_{0}$ ,

each such $\sigma$ permutes the $2g-2$ zeros of $u$ among themselves. These
zeros are not necessarily different from each other, but there exists at

12) Cf. Burnside [1]
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least one such zero of $\omega$ by the assumption $g>1$ . Therefore there exists
a subgroup $G_{1}$ of $G_{0}$ , such that the index $[G_{0} : G_{1}]$ is at most $(2g-2)$

and such that each $\sigma$ in $G_{1}$ leaves a prime divisor $P$ fixed. $G_{1}$ is thus
contained in the finite group $G(P)$ , and we see, finally, that the group $G$

itself is a finite group.
We have thus proved the following
Theorem 2. Tthe group $G$ of all automorphisms of a function field $af$

genzts $g>1$ over $a/l$ algebraically closed field $k$ , is alzvays a fnite group.
From the above proof, we can also find a bound for the order of $G$ ,

which depends only upon $g$ and $p,$ though it is much greater than the best
value of such bounds in the case characteristic zero.
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