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On thé Group of Automorphisms of a Function Field

Kenkichi ITwasawa and Tsuneo TamMacawa

§1. Let X be an algebraic function field over an algebraically closed
constant field 4. It is well-known that the group of automorphisms of X
over £ is a finite group, when the genus of K is greater than 1. In the
classical case, where £ is the field of complex numbers, this theorem was
proved by Klein and Poincaré” by making use of the analytic theory of
Riemann surfaces. On the other hand, Weierstrass and Hurwitz gave more
algebraical proofs in the same case”, which essentially depend upon the
existence of so-called Weierstrass points of KA. Because of its algebraic
nature, the latter method is immediately applicable to the case of an
arbitrary constant field of characteristic zero. In the case of characteristic
20, H. L. Schmid proved the theorem along similar lines”; the proof
being based upon F. K. Schmidt’s generalization of the classical theory
of Weierstrass points in such a case?. _

Now it has been remarked, since Hurwitz, that the representation of
the group G of automo:phisms of K by the linear transformations, induced
by & in the set of all differentials of the first kind of X, is very impor-
tant for the study of the structure of G. The puipose of the present
paper is to show that we can indeed prove the finiteness of G by the help
of such a representation instead of the theorem on Weierstrass points.
In the next paragraph we analyze the structure of the subgroup G(p) of
G, consisting of those automorphisms of X, which leave a given prime
divisor P of K fixed, where K may be any function field of genus greater
than zero. The finiteness of G'(p) is also proved by H. L. Schmid; but
his proof depends essentially upon formal calculations of polynomials,
whereas our method is more group-theoretical. In the last paragraph we
then prove our theorem by considering the above mentioned 1epresentation
of G and by using a theorem of Burnside on irreducible groups of linear
transformations.

1) Cf. Poincaré [3]

2) Cf. Weierstrass [6] and IHurwitz [2]
3) Cf. I. L. Schmid [4]

4) Cf. F. K. Schmidt [5]
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§2. Let K be an algebraic function field over an algebraically closed
constant field &, whose characteristic p may be either zero or a prime

number. In this paragraph we always assume that the genus g of K is
different f.om zero. '

Lemma 1. Loz 6 b2 an automorplisn of K®, whick maps a rational
subficld K'="r%(x) onto itself. If the degree n=[K : K'] is prime to p®, then
o has a finite order, which does not exceed n(2n+2g—2)(2n+2g—3)2n
+2g—4). ‘

Proof. Let P, ...... , F® be all the prime divisors of X, which
divide the different of K/K’, and let Q¥ (i=1,...... , §) be the projection
of P¥ in K'. Choose any Q=0Q%, and consider the decomposition

e

Q=P......... Py

of O in K. As n is prime to p, the contribution of each F; to the dif-
ferent of K/K’ is given by

whose degree is equal to
Svole—D) =Y wi—t=n—t < n—1
On the other hand, the degree & of the different of K/K’ is given by
(D d=2n+2(g—1),

which is greater than 2(z—1), since we have assumed g>0. Therefore
there exist at least three, but at most & different prime divisors among Q.

Now o obviously leaves the different of X/K’ fixed, and it permutes
PP and QP among themselves. Therefore some of o, say o', where

@) I<d(d—1) (d—2),

leaves three different Q“’s invariant. However, an automoiphism of a ra-
tional function field K’=K(x), which leaves three different prime divisors

5) In the following we always consider only those automorphisms of A which leave
every element in £ fixed.

6) 1If p is zero, » may be an arbitrary integer.
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fixed, is the identity. Consequently o’ leaves all elements of -K” - fixed.
As there exist at most 7 relative automorphisms of X with respect to X’ ,
some power of o’, say ¢* is the idenfity automorphism of K, where  is
rot greater than ». From (1), (2) we have

lm<u(27z+2g—2) (2;z+2g 3) 2n+2g—4),

which proves our lemma. '

Now we study the structure of the group G (F), consisting of all
autommphlsms of X, which leave a -prime divisor P of X fixed. For that
purpose, let us consider the set L(P") of all elements in K whose denomi-
nators divide P*. L(P") is a finite dimensional linear space over %, and
we denote its dimension by /(P*). We have then, obviously, »

k=L(PYSL(PYSL(P)E......,
1=[(P) SUPYSUPH oo

However the Riemann-Roch theorem tells us that either /(P™*") =/(P™) or
J(P**)=/(P™) 41 and that the latter case surely occurs if z>2¢g—2. It
follows that we can choose a basis

iy Koy eeeees y Xn (7=1(P29+1))

of L(P**") in such a way, that iy Xiply sevees , &, form a basis of some
L(P%) (n;<2g+1) for every i<r. The denominators of x; and x, are
then just P**' and P* respectively.

" Now any automorphism ¢ of G (2) obviously induces a linear transfor-
mation in every Z(P™). In particular we have, for L(F**"),

o () = 2151424, Uy ke, 7=1, ... , 7y
or simply in a matrix equation
(d(xl), ...... , a(:r,))= (C y %) Aoy Ao= (¢y).

As a reqult of the paltlcular choice of our basis, A4, has the following

triangular form

As= .. (ai:aij)
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and 6—A, gives a representation of G (). Moreover this representation
is an isomorphic one. In fact, if A, is the unit matrix, ¢ leaves x, and
x, and, consequeatly, every elemenf in £(x,, x,) fixed. But this field
£(x;, x,) coincides with K, as one readily sees from the fact that the
degree [K: £(x,, x,) ] divides both degrees [K: 2(x,)]=2¢ +1 and [A: £(x,)]
=2¢. It follows that such ¢ is the identity automorphism of K. '

By the help of this isomorphic representation we can prove the fol-
lowing )

Lemma 2. The ovder of any element ¢ in G(P) is finite and has a
bound whick depends only upon g and p.

Proof. Consider the eigen values «), o, ...... , ¢, of A, and suppose
first that all «; are different from each other. By changing the basis
suitably, we may then assume that 4, is a diagonal matrix, o-, in other
words,

a(x) =ux;, =1, 2, ...... y 7.

The subfields %(x,), 4#(x,) are, consequently, mapped onto itself by . As
one of the deg.ees [A: £(x)]=2¢+1 and [K: £k(x,)]|=2¢ is piime to p,
it follows, from Lemm2 1, that ¢ has a finite order, which is bounded by
a number depending only upon g and n#=2¢+1 or 2g.

Now assumme that some ¢; and «; coincide (i=}/). We can then
find linearly independent elements x and y in Z(P¥*'), such that

o(x) =uzx, o(y)=uv(x+y)

For s/=% we have then

-

a(z)=z+1,

and the field 4(¢) is mapped onto itself by o. Moreover, the degree
n=[K: #(z)] is not greater than 2(2g+1), for the degrees of the denomi-
nators of x and y are most 2¢+1 and that of z is, consequently, at most
2(2¢+1). Therefore, if the characteristic p of £ is zero, it follows again
from Lemma 1 that the order of ¢ is finitc and has a bound depending
only upen g. On the other hand, if p is not zero, we have o”(2) =3,
and o” is a relative automorphism of K with respect to £(z). It follows
that the order of ¢” dose not exceed n and that the order of o is at most
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20(2g+1). :

Now take a prime element # for P2, i. e. such an element # in K,
which is divisible by P, but not by P°. For any ¢ in G(P), a(z) is again
a prime element for P, and we have

3) o(u)= ru mod J3*

where 7 is a suitable constant and 3 is the piime ideal in the valuation
ring of F. As y is uniquely determined by the above congruence, we
may deuote it by 7,. 6—7, is then a representation of G'(2) in 4, and, if
we denote by AV the kernel of this representation, G (P)//NV is isomorphic
to the multiplicative group I' of 7,. However, we know by that
the orders of elements in G(P) are bounded. Therefore, the orders of
elements in G(P)/NV or in I' are also bounded. It follows that I” is the
group of all 7z-th roots of unity in 4, where 2 is a suitable integer primz
to p. Therefore G(P)/NV is also a cyclic group of order » and G (P)
contains an element of order 7. As m is prime to p, we can then prove,
by a standard argument”, that

(4) m=62g—1).

We consider, now, the stiucture of the normal subgroup N. From
(3) it follows immediately that the eigen values «; of A, are powers of
7, and, in paiticular,

= (g +1) 2
o=y, =7

This shows that V consists of all those ¢ in G(P), for which the matrix
A, has the form

(5) ‘

A3
However, if the characteristic of £ is zero, such a matrix can not have a
finite order unless it is the unit matrix. Therefore, we see, by [Lemma 2,

7) Cf. I L. Schmid [4]. Note that 2 ramifies completely in the extension of degree
m and that the degree of the different of that extension is at least wz—1. Cf. the proof of
4 below.
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that /V is the unit group if p=0. On the other hand, if p is not zero, the
groap AV, which is isomorphic to a group of matrices of the form (), is
a nilpotent group and the order of any element in /V is a power of p. In
order to show that &V is actually a finite p-group i1 such a case, we first
prove some lemmas.

Lemma 3. ZLet H bz a group of automorphisms of a function field K of
genus g>0, such that

1) H is abelian and the order of any element in H is a power of p, -

2)  every clement in H leaves a prime divisor P fixed,

3) the fixed field® of any non.trivial finite subgroup of H is a rational
Junction field.

Then H is a cyclic group of order either 1, p or p°.

Proof. Suppose that A is not the unit group, and take a subgroup U
={o} of order 2. By assumption, the fixed field of U is a rational func-
tion field £(x). We can take x in such a way that the denominator of x
is P’. As H is abelian, any = in A then maps 4(2) onto itself, and as
the denominator of x 1is invariant under 7 and since the order of 7 is a
power of p, we have

(6) () =2+« aek.

It follows that t?(x)=ux, o € U, t**=¢, so that the order of any 7 in A is
at most 2°.

To prove the lemma, it is therefore sufficient to show that A/ contains
no subgroup of order p other than U. Suppose, for a moment, that there
exists such a subgroup V=/{r} of order p. We shall deduce a contradic-
tion from this assumption. As 7 is not in U, ¢ is not zero in (6). There-

fore, replacing x» by %, we may assume
[/
o (x)=zx+1, o(x)=x

In a similar way, we can find an element y such that the denominator of

¥ is p” and

8) The fixed field A7 of a finite group G of automorphisms of A is the set of all elements
of G. A/ K7 is then a Galois extension with the Galoisgroup G. In particular we have [A: X7
=[G :e]
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(8) | cN=y+1,  =(H=y.

As y is not contained in £(¥), we have K=%(x, ). On the other hand'
x?—x and y”—y are both contained in the fixed field K’ of the subgroup
UV={a, t{ of order p’. However, as these elements have the same
denominators P and K’ is a rational function field with [K: K']=p% we
must have " : :

== —x) +r B ek

If we then put

®  amy—pra,

we have

(10) s —s—y=(Fr —P)x.

1 . . . -
Therefore, if f» —3=0, =z is constant in 4, and (9) gives us £2(x)=4(p),

which is obviously a contradiction. On the other hand, if ﬁ% — B0 (9)
and show that x and p are both contained in £(s). We have then
K="Fk(x, ) =~(z), which also contradicts the assumption that the genus
of K is not zero. The lemma is thus proved®.

Lemma 4. ZLet K b2 a JSunction field of genus g>0 and H group of
automorphisms of K, whick satisfies the conditions 1), 2) of the previous
Lemma. H is then a finite group, and its order does not exceed r(2g—1). |

~ Proof. Let U be an arbitrary finite subgroup.of order 7 in /A ard
K’ its fixed field. The genus g’ of K’ is given by the following formula:

(11) : 2(g—1)=d+2n(g’'—1),

where & is the degree of the different of K/K’. However, in the present
case, 4 is always at least #n—1, for the prime divisor P ramifies completely
in the exténsion K/K’. Therefore if 2(g—1) <7n—1, namely if 2¢ <, g’
must be zero. It follows that there exists a maximal subgroup V of order
less than 2g, such that its fixed field A has a genus different from zero.

'9) A slightly finer consideration shows us that the condition 2) is not.necessary'in the

present lemma,
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The factor group H/V, considered as a group of automorphisms of X",
obviously satisfies all conditions of the previous lemma. The order of A/ V
is, consequently, at most p°, and the order of /A itself does not exceed
7*(2¢—1).

Finally we prove a purely group-theoretical lemma.

Lemma 5. Lot G b2 a finite or infinite group of order = n, containing
a central subgroup Z of order p, such that the factor group G/Z is an ele-
mentary abclian p-group'®. Then G contains an abelian subgroup of order
at least v pn, _

Proof. We may assume that G is a finite group, for otherwise, we
may replace G by a suitable finite subgroup of order=>w#. ILet U be a
maximal abelian normal subgroup of G. £ is then contaized in U, and
U/Z is an elem:ntary abelian p-group. We select oy, ...... , 0, in U, such
that the cosets of ¢, modulo Z form a basis of U/Z. For an arbitrary ¢
in G, we then put

Uﬂi0_10$~]=55 i=1, ...... y S

As G/Z is abelian, ¢;=(;(a) is contained in Z, and we sce easily that the
mipping

a— (& (a), ...... y &(o))

is a homomorphism from G into the direct product of s copies of Z.
Moreover the kernel of this homomorphism coincides with U, for U is a
maximal abelian normal subgroup of G. It follows that the order of G/U
is at most 2. On the other hand, the order of U is equal to p**'. We.
have, consequently, . |

n < [G:e]=[G:U][U:e] < p. p*,
Var S pr=[U:4)

which proves our lemma.

We now return to the group G'(/?) and show that the nilpotent noimal
subgroup &V of G(p) is a finite group. lLet x=u,_, be the next to last
element in the above choscn basis x, ...... , 24, or L([%*"). Because of

10) A group is called an elementary abelian g-group, when it is abelian and the g-th power
of any element of the group is the unit element. )
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the choice of our basis, # is an element in X, such that it has a denomi-
nator of the least possible positive power of P, say P", among all elements
in X. From (5) we have

a(x) =x-+dg, a.€el,

for any ¢ in V, and 6—u, gives a homomorphism fiom /V into the additive
group of £. Theiefore, if we denote the kernel of this homomorphism by
N, N/N is an elementary abelian p-gioup. Moreover, as any o in 2V, is
a relative automophism of K/Z(x), the order of XV, is at most m=[K":
%(x)]. As NV is nilpotent, we can find a subgroup N, of index p in N,
such that it is normal in AV and N/N, is contained in the center of N//V,.
Let K’ be the fixed field of V,. From the relation

PK: K'|=[N,: V] [V, :e]=[N ) S [K: 2(2)],

we see that the genus g’/ of K’ is not zero, for othewise, X would contain
a non-constant element whose denominator is a proper divisor of P™.
Since N/N, can be considered as a group of automorphisms of K’, we see,
from [Lemma 4, that the otder of any abelians subgroup of N//V, is at most
7°(2¢’—1). On the other hand, if we put Z=25N,/N,, the group N/N, has
the structure mentioned in Lemma 5. Therefore, if the order of N/N, is
not less than 7/, it contains an abelian subgroup of order > +"pz/, It then
follows that

Vol <7 (28 —1).

Consequently the order of NV/N, is at most p*(2¢’—1)° and the order of
N is not greater than 2*(2¢'—1)% mp'=p'mn(2g’—1)°. However, we
know from that

2(g—1D) =(m—1) +2m(g’'—1),
or |
20 —1>m(2g'—1), (2g—1)"=m(2g' —1).

We have thus proved that the order of &V is at most p°(2¢—1)% and ob-
tained the following theorem™.

11) An example in H. L. Schmid [4] shows that z2(2;—1)2 seems to be near to the best
value of the bounds of the order of such NV,
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Theorem 1. 7ot K be a function field of genus g>0 over an algebrai-
cally closed constant field %, aud let P b¢ an arbitrary prime divisor of K.
Then the group G(P) of all automorphisins of K whick leave P fixed has
the following structure :

1) of the characteristic of % is zero, G(P) is a cyclic group of order
=6(2¢—1). ’ |

2) if the characteriatic of k is a prime number p, a p-Sylowgroup N

of G(P) is a normal subroup of order < p*(2g—1)* and the factor group
G(P)/N is a cyclic group of order < 6(2¢—1).
In any case the order of G(P) has a bound depending only wupon g and p.
_ §3. Let us now assume that the genus g of K is greater than 1 and
denote the set of all differentials of the first kind of & by D. As is well-
known D is a g-dimensional linear space over 4 and any automorphism of
K induces a linear transformation in D. Thus the group G of all automor-
phisms of K can be represented by such linear transformations in .

Now take an aibitrary automorphism ¢ in G.© We can then find a
differential w=}0 in D, such that

o (w) =ow, aek.

If follows that ¢ permutes the 2¢—2 zeros of w among themselves, and
some power of «, say ¢, where

1< 202,

leaves one of these zeros of w, say P, fixed. &' is therefore contained in
G(P) and then shows us that the order of ¢ has a bound,
depending only upon g and 2. ,

I.et M be an irreducible invariant subspace of D with \respects to the
above representation of G, We denote by G, the kernel of the irreducible
representation of G in M, so that G/G, is isomorphic to the irreducible
group of linear transformations. However, we know that the orders of
elements in G, a fortiori the orders of elements in G/G,, are bounded.
If follows then from a theorem of Burnside™ that G/G, is a finite group.

Now take a differential w50 in M. Since o(w)=w for any ¢ in G,
each such ¢ permutes the 2¢0—2 zeros of @ among themselves. These
zeros are not necessarily different from each other, but there exists at

12) Cf. Burnside [1]
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least one such zero of w by the assumption g> 1. Therefore there exists
a subgroup G, of G, such that the index [G,:G,] is at most (20—2)
and such that each ¢ in G, leaves a prime divisor P fixed. G, is thus
contained in the finite group G(P) and we see, finally, that the group G
itself is a finite group. .

We have thus proved the following

Theorem 2. The group G of all automorphisms of a function field of
genus g> 1 over an algebraically closed field #, is always a finite group.

From the above proof, we can also find a bound for the order of G,
which depends only upon g and p, though it is much greater than the best
value of such bounds in the case characteristic zero.
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