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Let $V^{d}$ be a non-singular projective model in the algebraic geometry
with the universal domain of all complex numbers and let

$(\gamma)=(\gamma_{1}, \gamma_{2},\ldots, \gamma_{2q})$

be a base of the first integral Betti group of $V$, then we can find the
“ invariant cycles “ on the generic curve7) $ C(\wedge/\infty$ in $V$

$(\beta)=(\beta_{1}, \beta_{2},\ldots, \beta_{2q})$ ,

which is homologous to $(\gamma)$ modulo $Q$ . Moreover let $\omega$ be the period
matrix of the Picard integrals of the first $ki^{d}$ in $V$ along $(\gamma)$ and let

$E=^{t}1_{s^{-1}}$

be the transposed inverse of the intersection matrix of the invariant
cycles on $C(\wedge^{/}1f)$ then $E$ is one of the principal matrices of the Riemann
matrix $\omega$ .

We have also attached the Albanese variety $A^{q}$ and the Picard variety
$P^{q}$ to the Riemann matrices $\omega$ and

$\hat{\omega}=\omega\epsilon^{-1}E$,

where $\epsilon$ means the Pfaffian of $E$ . More precisely if we denote by $[\omega]$ the
discrete subgroup of rank $2q$ in the complex vector space $S^{q}$ , then $A^{q}$ is
isomorphic with the complex toroid $S^{q}/[\omega]$ ; and similary for $P^{q}$ and $\wedge cu$ .

On the other hand let
$(\Gamma)=(\Gamma_{1}\Gamma_{2}, .., \Gamma_{2q})$

be a base of the integral homology group of $(2d-1)$ dimension in V,
which is dual to $(\gamma)$ in the sense

$I(\gamma_{i}, \Gamma_{j} ; V)=\delta_{ij}$ $(1\leq i, j\leq 2q)$ .
Then if we put

$\hat{\gamma}_{i}=\Gamma_{i}\cdot C(M)$ $(1\leq i\leq 2q)$ ,

$v$

We shall use freely the results and $t^{\prime}erminology$ of Weil’s book: Foundations of algebraic
geometry, Am. Math. Soc. Colloq., Vol. 29 (1946).

1) See my paper, On the Picard varieties attached to algebraic varieties, Amer. J. of Math.
Vol.$J4$ (1952). We cite this paper as $(P)$ .
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we see readily the relation

$(\hat{\gamma})\sim(\gamma)^{\ell}E$ $(mod. Q)$ ;

which I have missed in my previous papers.’o)
Now let $Y$ be a V-divisor, which is continuously equivalent to $0$ , then

$Y$ induces a character $\chi_{Y}(\gamma)$ of the first integral Betti group of $V$. We
shall denote by $\hat{\varphi}(Y)$ the point of $P$ with “ coordinates “ (v) modulo $[\hat{\omega}]$

such that

${}^{t}(v)=\frac{1}{2m}(\log\chi_{Y}(\gamma_{1}),\ldots, 1og\chi_{Y}(\gamma_{\underline{o}_{q}}))^{l}\hat{\omega}$

As in $(P)$ we shall denote by $\mathfrak{G}_{c}(V)$ and $\mathfrak{G}_{l}(V)$ the groups of V-divisors
which are defined respectively by continuous and iinear equivalences.
Then we have the following suppleme$nt$ to our theorem r) in $(P)$ .

(P1) The mapping $\hat{\varphi}$ induces an $iso’;lorp/lism$ betrveen $t/le$ factor group
$\mathfrak{G}_{c}(V)/\mathfrak{G}_{l}(V)$ and the Picard varlety $P$.

Moreover $\varphi$ is “ continuous “ in the following sense.
(P2) Tltere exists a common field of defirlition $K$ of $V$ and $P$ sucli $t/lat$

$lf$ a V-divisor $Y$ in $\mathfrak{G}_{c}(V)$ ltas $i/\iota e$ speciali2ation $\overline{Y}$ over a field
$L$ containing $K,$ $t1_{l}eima_{\grave{c}^{0}},$ $e\hat{\varphi}(\overline{Y})$ is the uniquely determin$ed$

$ specialiralio/\iota$ of $\hat{\varphi}(Y)$ over $t/lat$ specialization.
In fact $A$ is the parameter variety of the Poincar\’e family $X$ with the

property that if $\sim\sigma-2^{\prime}$ has the coordinates (v) modulo $[\omega]$ , the point
$\hat{\varphi}(X(\approx)- X(2^{\prime}))^{3)}$ has the same coordinat\^es (v) modulo $[\wedge u]$ . Therefore if
$\approx^{;}$ is the neutral element in $A$ with coordinates in $[cu]$ , the mapping

$i_{1}(z)=\hat{\varphi}(X(\alpha)- X(2^{\prime}))$

gives an analytic and hence4) algebraic $ho$momorphism from $A$ onto $P$.
I.et $A^{\prime}$ be a common field of definition of $X$ and $\lambda$ , hence of $V,$ $A,$ $P$,

2) Cf. $(P)$ and also my paper, Algebraic correspondences between algebraic varieties, Jap.
J. of Math., Vol. 3 (1951).

3) The V-divisor $X(z)$ was defined in the following way. Let $k$ be a field of definition
of the continuous family $X$ and let $\epsilon v$ be a generic point of $A$ over $k$, then $X(z)$ is one of the
specializations of

$X(w)=fr_{V}\lceil X\cdot(w\times V)]$

over the specialization $\prime Pt!\rightarrow z$ with reference to $k$.
4) Cf. W. L. Chow, On comp.xct $compIe\kappa$ analytic varieties, Amer.. J. of Math., Vol. 71

(1949), theorem 7.
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and of the composition functions in $A$ and $P$ over $\cdot$ wirch $X(z^{\prime})$ is
rational.

Now let $X(2)- X(\sim r^{\prime})$ be a V-divisor which is linearly equivalent to
$Y$ and let $\pi$ be any specialization of the point

$\hat{\varphi}(Y)=\lambda(2)$

over $Y\rightarrow\overline{Y}$ with reference to $L$ . Let $X(\overline{z})$ be any specialization of $X(2)$

over this specialization, then since the linear equivalence is preserved by
specializations,5) we see that $X(\overline{z})- X(2^{\prime})$ is linearly equivalent to $\overline{Y}$.
Moreover since the homomorphism $\lambda$ is everywhere defined, the value of
$\lambda$ at $\overline{z}$ is the uniquely determined specialization of $\lambda(2)$ over $z\rightarrow\overline{2}$ with
reference to $L$ . Therefore we must have

$\hat{\varphi}(\overline{Y})=\lambda(\overline{2})=\pi$ ,

which proves our assertion.
It follows from the above complement that $lfY$ is raiional over $L$ ,

$th^{\rho}$ image $\hat{\varphi}(Y)$ is a rational point of $P$ with $refere’\iota ce$ to $L$ . Moreover we
see readily that $t/\ell e$ Picard variety $P$ is uniquely determined by (P1) and
(P2).6) Therefore we can take them together as a convenient definition
of the Picard variety. In the same way Albanese variet $y$

$A$ is uniquely
determined by the following two postulates.7)

(A1) There exists a function $\varphi$ from $V$ inlo A wthose image is a set
of generators of $A$ .

Moreover $\varphi$ is “ universal “ in the following sense.

. (A2) Let $f$ be any function from $V$ into an Abelian variety $B,$ $t/lenf$

can be put in $tl_{l}e$ form
$f=\mu 0\varphi+const$ .

$’\iota vith$ some $ ho\prime\prime lomorphism\mu$ from $A$ into $B$ .
Now let $V_{1^{!i_{1}}}$ and $V_{2^{(}}l_{2}$ be two non-singular projective models; we shall

attach 1 and 2 to $(\gamma),$ $(\Gamma)$ etc., which we have defined for $V$. Let $X$

5) This fact can be redticed easily to the case of cur.ves. In this case the assertion is
proved in Weil’s book: Vari\’et\’es Ab\’eliennes et courbes alg\’ebriques, Act. Sc. et $Ind$ . $n^{o}$ 1064
(1948), lemme 10.

6) Indeed this idea had been applied in my first (unpublished) proof of the birational
invariance of the Picard variety.

7) I have borrowed this formulation (with a slight modification) from a letter of A. Weil
to W. L. Chow in February 12, 1951. We note also that the functions $\hat{\varphi}$ and $\varphi$ are essentially
unique, which correspond to the ” canonical function ” (Cf. loc. cit. 5) in the case of curves.
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be a $(V_{1}xY_{2})- di$visor, then it can be written uniquely in the form

$ X\sim\Gamma_{1}\times V_{2}+V_{1}\times\Gamma_{2}+\Sigma_{i_{11}d^{S}j}:(\Gamma_{1i}\times\Gamma_{?j})\langle$

over integers and the mapping
$X\rightarrow S=(s_{ij})$

induces an isomorphism between the module of correspondences $C(V_{1},$ $ V_{2}\rangle$

and the module of integral matrices $S$ satisfying the linear relation
$c^{\wedge}u_{1}S^{\ell}\hat{\omega}_{2}=0$ .

Therefore ${}^{t}S$ and $S$ are the complex multiplicalions from $cu_{1}$ to $\hat{\omega}_{2}$ and from
$\omega_{2}$ to $\hat{\omega}_{1}^{8)}$ Since the converse is also true, we have the natural iso-
morpliisms $ b_{lj}lwepntk\ell$ module $C(V_{1}, V_{2})$ and $t/le\prime\prime lodul_{d}s$ of complex
multiplications from $\omega_{1}$ to $\hat{\omega}_{2}$ and from $\omega_{2}$ to $\hat{\omega}_{1}$ . Although this is a matter
of interpretation in the case of curves, where the Albanese variety is iso-
morphic with the Picard variety, it is of some importance in the general
theory of Picard varieties.

The above isomorphisms have the following geometrical meaning.
Let $K$ be a field containing $K_{1}$ and $K_{2}$ over which $X$ is rational and let
$\wedge^{\prime}1T_{0}$ and $\rightarrow\gamma/I$ be two independent generic points of $V_{1}$ over $K$, then if we
put $L=K(\wedge\Psi_{0})$ , the $V_{2}$-divisor $X(\rightarrow jtf)- X(_{\wedge}If_{0})$ is rational over $L(M)$ .
Therefore the point $\hat{\varphi}_{2}(X(\rightarrow l^{\prime}J)- X(t1f_{0}))$ in P. is rational over $L(l\Psi)$ ,
hence there exists a function $f$ from $V_{1}$ into $P_{2}$ , which is defincd cver $L$ ,

such that
$f(\rightarrow M)=\hat{\varphi}_{2}(X(\rightarrow\pi)- X(\rightarrow/VI_{0}))$ .

As we have remarked before $f$ can be written in the form
$f=\mu\circ\varphi_{1}+const$ .

with some homomorphism $\mu$ from $A_{1}$ into $P_{2}$ , which is also defined over
$L$ . It can be readily verified that $\mu$ has the representation $\ell S$ in the co-
ordinate systems with respect to $cu_{1}$ and $\hat{\omega}_{2}$ . In the same way $X$ determines
a homomorphism $\mu^{t}$ from $A_{2}$ into $P_{1}$ with the representation $S$ in the
coordinate systems with respect to $\omega_{2}$ and $ t/J_{1}\wedge$ Therefore

we can identify the $tl\iota ree$ modules
$A$

$C(V_{1}, V_{2}),$ $H(A_{1}, P_{2})$ and $H(A_{2}, P_{1})$

by tltese natural isomorphisms.
Ky\^oto University.

8) An integral matrix llf is called a complex multiplication from $\omega_{1}$ to $\hat{\omega}_{2}$ if there exists a
$coluplex$ matrix $\mu$ such that $\mu\omega_{1}=\hat{\omega}_{2}M$.
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