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On the Sequence of Additive Set Functions

Gen-ichir\^o SUNOUCHI

(Received September 4, 1949)

In this note we shall discuss three problems on the sequence of ad-
ditive set fuuctions. In \S 1 we prove the Vital-Hahn-Saks theorem in the
space with infinite $m$easure and, as its application, Schur’s theorem on the
equivalence of the strong and the weak convergence in the space $(l)$ .
We shall remark some convergence theorems on the sequence of Riemann
integrals in \S 2 and Lebesgue integrals in \S 3.

1. The Vitali-IIahn-Saks theorem.

The Vitali-Hahn-Saks theorem [ $ 5\rfloor$ is formulated in the following form.
Theorem 1. Let $\mathfrak{M}$ be $t/le$ family of all measurable sets $E$ of an abstract

space $ M_{l}^{r}nit/\iota$ total measure $\mu(J^{\prime}1)<\infty$ . If $\{F_{n}(E)\}$ is completely $additiz/e$

$(c.a.)$ and absolulely continnous $(a. c.)\prime pvithresp\ell ct$ to $\mu(E)$ and $\lim_{n\rightarrow\infty}F_{n}(E)$

$=F(E)$ for all $E\in \mathfrak{M},$ the $t\{F_{n}(E)|$ is umformly absolulely $conti’\iota uous$ and
$F(E)$ is $c.a$ and $a.c$ .

This theorem is also valid in the case $\mu(M)=\infty$ , that is,

Theorem 2. $1ft/lere$ is a sequence $|_{1}\nu 1_{n}$ } $wth$ finite measure such as
$M=\cup^{\infty}M,$ $t/len$ the conclusion of Theorem 1 is $’\iota’ alid$, i.e., if $\{F_{n}(E)\}$ is $c.a$ .

$n=1$

and $a.c$ . and $\lim F_{n}(E)=F(E)$ for all $E\in \mathfrak{M},$ $t/len$ for any posilive $\epsilon$ , there

are $\delta(\epsilon),$

$ m_{0}(\epsilon)n-’\infty$ and $n_{0}(\epsilon)$ such that for $\mu(EnM_{i})<\delta(i=1,2,\cdots,m_{0})$ , we
$/laveF(E)<\epsilon$ for all $n>n_{0}$ .

Proof. We have $E=\bigcup_{n=1}(EnM_{n})$ for any $E\in \mathfrak{M}$ If we put

$\nu(E)=\sum_{n=1}^{\infty}\frac{\mu(EnM_{n})}{2^{n}\{\mu(AI_{n})+1\}}$ ,

then $\nu(M)<\infty$ and $\nu(E)$ is c.a. and a.c. with respect to $\mu(E)$ . Since $F_{n}$

$(E)$ is c.a. and a.c. with respect to $\nu(E)$ , applying Theorem 1 to $F_{n}(E)$

and $\nu(E)$ , we get the theorem.
As an application of Theorem 2, we can prove Schur’s theorem. In

Banach’s book [1], the theorems of linear transformation of infinite sequences
are proved from a general theorem (the Banach-Steinhaus theorem which is
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essentially a category theorem), but Schur’s theorem is only $prov^{-}ed$ by the
direct calculation. Since Theorem 1 is proved by a category theorem, our
way of establishing Schur’s theorem may be of some interest.

Theorem 3. (I. Schur [6] cf. Banach [1] p. 137.). $1n$ the space $(l)$ ,

the $’\iota veak$ convergence is equivalent to $ t/l\ell$ strong convergence.
Proof. By the Banach-Steinhaus theorem a necessary and sufficient

condition for the weak convergeece of the sequence $\{x^{(n)}\}\in(l)$ where

$x^{(n)}=\{a_{1}^{(n)}, a_{2}^{(n)},\cdots,a_{i}^{(n)},\cdots\}$

is that

(1) $\sum_{i=1}^{\infty}|a_{i}^{(n)}|\leqq M$, for all $n$ ,

(2) $\lim_{n-\prime\infty i}\sum_{\epsilon F}a_{i}^{(n)}$ exists where $E$ is any subset of natural numbers. If

we give measure 1 for any natural number, then the set $M$ of all natural
numbers has an infinite measure and $M=\cup M_{i}$ , where $M_{i}$ is a s\‘et consis-
ting of a natural number and $\mu(M_{i})=1$ . Put $F_{n}(E)=\sum_{i\epsilon B}a_{i}^{(n)}$ , then $\{F_{n}(E)\}$

converges for all $E$ by (2). From Theorem 2, we get for $n>n_{0}$ ,

(3) $\sum_{i=n_{0}}^{\infty}|a_{l}^{(n)}|<\epsilon/2$ .

If { $a_{i}^{(n)}!\equiv x^{(n)}$ converges weakly to $0$ , then we have evidently

(4) $\lim_{n\rightarrow\infty}a_{l}^{(n)}=0$ $(i=1,2,\cdots,n_{0})$ .

From (3) and (4), we get

$\lim_{n\rightarrow\infty}\sum_{t=1}^{\infty}|a_{i}^{(n)}|=0$ ,

this means that $x^{(n)}\equiv\{a_{i}^{(n)}\}$ converges strongly to $0$ . The case where the
weak limit is $s\neq 0$ , is reduced to the above case.

Theorem 4. $W/len$ the limit $F_{n}(E)$ exists for all $E\in \mathfrak{M}$ , the limit
function $\lim_{n\rightarrow\infty}F_{n}(E)=F(E)$ is $c.a$ . and $a.c.$ , even $ lf\mu(M)=\infty$ and $M$ is not

an enumerable sum of sets $’\iota vith$ finile measure.
(If $\mu(M)<\infty$ or $/l(M)=\infty$ and $M$ is an enumerable sum of sets with

finite measure, the theorem is above proved.)
Proof. If we put

$\nu(E)=\sum_{n=1\overline{2^{n}[V}_{n}}^{\infty}\frac{V_{n}(E)}{(M)+1\rceil}$
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where $V_{n}(E)$ denotes the total variation of $F_{n}(E)$ , then $\nu(E)$ is c.a., $\nu(E)$

$<\infty$ and $\nu(E)$ is a.c. with respect to $\mu(E)$ . Applying Theorem 1 to $\{F$.
$(E)\}$ and $\nu(E)$ , we get the theorem.

Theorem 5. $1f\mu(M)=\infty,$ $\int_{B}f_{n}(x)d\mu(x)$ converges as $ n\rightarrow\infty$ for all

$E\in \mathfrak{M}$ , then the limit function is the $irld\ell fnite$ integral.
Proof. For our purpose it is sufficient to observe the set

$E=\{x|_{n}\sup|f_{n}(x)|\neq 0\}$ .

Since $uE$ satisfies the condition of Theorem 2, we $get$ the theorem.
N.B. If $\mu(M)=\infty$ and $M$ is not an enumerable sum of sets with finite

measure, then $F_{n}(E)$ are not necessarily indefinite integrals. So Theorem
4 and Theorem 5 is not equivalent.

2. Helly’s theorem for separable metric space.
Helly’s theorem has been extended to n-dimensional Fuclidean space

by Bochner [2] and Frostmann [3]. Kryloff-Bogoliouboff [4] have discused
the convergency of $\int_{u}f(x)d\mu_{n}(x)$ where $M$ is a compact metric space. We
shall consider this theorem from the convergency of the sequence $\{\mu_{n}(E)\}$ ,

after Helly.
Definition 1. $L_{-}\prime t\mu(E)$ be a $c.a$ . set-function and $E_{f}$ and $E_{0}$ be closure

and interior of $E,$ $resp_{\iota^{\prime}’}ctively$ . $1f\mu(E_{f}-E_{0})=0,$ $t/\iota enE$ is said to be a
continuous set of $\mu$ . $1f\mu_{n}(E)$ converges to $\mu(E)$ for all continuous set of $\mu$ ,
then $\mu_{n}(E)$ is said to conmerge to $\mu(E)$ .

Definition 2. $l/t^{\prime}e$ shall call $\mathfrak{M}$ a net in a metric space Mprovided $t/lat$

$\mathfrak{M}$ consists of fnite or enum.rable sets measurable $(\mathfrak{B})$ , mufually exclusive and
covering $t/le$ space M $T/ze$ sets $c\grave{o}i_{\check{l}}stituting$ a $n.t$ zvill be called its meshes. $A$

sequence $\{\backslash Jl_{n}\}$ of nets will $be- ter\prime n^{J}d$ regular, $lf$ each mesh of $\mathfrak{M}_{n+1}$ (where
$n>0)$ is contained in a mesh of $\mathfrak{M}_{n}$ and $furth_{-}\cdot,rt/l_{\vee}^{t}$ maximum ofdiameter of
$mes/les$ of $\mathfrak{M}_{n}$ converges to $0$ as $ n\rightarrow\infty$ .

Then it is easy to see that there exists a regular sequence of nets in
a separable metric space, by Lindel\"of’s convering theorem. Further we
shall denote meshes of nets by I.

Theorem 6. Let $M$ be a separable metric space. $1f0\leqq\mu_{n}(E)\leqq Kfor$

$’\iota=1,2,\cdots$ , and sets measurable $(\mathfrak{B})$ are all $\mu- m_{-}^{\rho}asurable$ , then $w_{\vee}$
’ can select

$\mu_{n_{k}}(E)$ such $t/\iota at\mu_{n_{k}}(E)\rightarrow\mu(E)$ as $ n\rightarrow\infty$ .
Proof. Since meshes are enumerable in all, we can select $\mu_{n_{k}}$ such
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that $\mu_{n_{k}}(1_{O})$ and $\mu_{n_{k}}(1_{f})$ exist for all I. Let $O$ and $F$ be arbitrary open
and closed sets respectively, and put

$\mu(0)=_{I_{f}}1.u_{\subset}b_{O}\{\lim_{k\rightarrow\infty}\mu_{n_{k}}(1_{f})\}$ ,

$\mu(F)=_{I_{0}\supset F}g.1.b_{\backslash }\{\lim_{k*\infty}\mu_{n_{k}}(1)\}$ .

Then we have

$\mu(O)\leqq\varliminf_{k\rightarrow\infty}\mu_{n_{k}}(O)$
, $\mu(F)\geqq\varlimsup_{k\rightarrow\infty}\mu_{n_{k}}(F)$ . It is also easy to see that $\mu$ are

monotone and finitely additive functions of any $O$ and $F$, respectively. Re-
lation between $\mu(O)$ and $\mu(F)$ is given by

$\mu(O)=_{F\subset}1.u.b_{O}\{\mu(F)\}$
,

$\mu(F)=g_{O}.1_{\subset}b_{F}\{\mu(O)\}$ .

For any set $E$, we $put\underline{\mu}(E)=_{F\subset E}1.u.b\{\mu(F)\},\overline{\mu}(E)=g_{O}.1_{\supset}b_{F}\{\mu(O)\}$
, which are

termed inner and outer measures of $E$. If $\underline{\mu}(E)=\overline{\mu}(E)$ , then $E$ is called
to be measurable. Then evidenly any Borel set is measurable. If $E$ is any
continuous set, then we have

$\mu(E)=\mu(E_{o})\leqq\mu_{n_{k}}(E_{o})\leqq\varliminf_{k\cdot*\infty}\frac{\lim}{k\rightarrow\infty}\mu_{n_{k}}(E)\geqq\varlimsup_{k\rightarrow\infty}\mu_{n_{k}}(E)$

$\geqq\varlimsup_{k\rightarrow\infty}\mu_{n_{k}}(E_{f})\leqq\mu(E_{f})\leqq\mu(E)$ .

Thus $\mu_{n_{k}}(E)\rightarrow\mu(E)$ as $ k\rightarrow\infty$ , which proves the theorem.
Theorem 7. $1fMis$ a compact metric space and $\mu_{n}(E)\rightarrow\mu(E)$ as $n$

$\rightarrow\infty$ , then, for any continuous function $f(x)$ ,

$\lim_{n^{\rightarrow\infty}}\int_{u}\wedge f(x)d\mu_{m}(x)=\int_{M}f(x)d\mu(x)$ ,

where $t/\iota e$ in.tegral is take$n$ in the Riemann sense.
Proof. Riemann integral can be approximated by $Rien_{1}ann$ sums where

the sets of division are continuous sets.
Theorem 8. (Kryloff-Bogoliouboff [4]). $LelM$ be a compact metric

space. If $0\leqq\mu_{n}(E)\leqq K$ for $ n=1,2,\cdots$ , then $\prime ve$ can select $\mu_{n_{k}}(E)$ such that

for any continuous $f(x)$ ,

$\lim_{k\rightarrow\infty}\int_{M}f(x)d\mu_{n_{k}}(x)=\int_{M}f(x)d\mu(x)$ ,
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where the integral is taken in the Riemann sense.
Proof. This theorem is immediate from the above two theorems.
3. Convergence of the seqnence of Lebesgue integral.
Theorem 9. Let $f(x)$ be bounded and Borel-measurable function, and

$\{\mu_{n}(E)\}$ be a seque$nce$ of $c.a$ measure functions (posrtive or not) such that
$t/le$ set measurable $(\mathfrak{B})$ is $\mu_{n}$-measurable. $Jf\int_{M}|d(\mu_{m}-\mu_{n})|\rightarrow 0$ as $ m,n\rightarrow$

$\infty$ , tlen thcre exists a $c.a$. set function $\mu(E)$ such that

$\lim_{n\rightarrow\infty}\int_{d}uf(x)\iota f\mu_{n}(x)=\int_{K}f(x)d\mu(x)$ ,

where $ th\ell$ integral is taken in tlte Lebesgue se$nse$.
Proof. Since the sequence $\{\mu_{n}(E)\}$ converges for all Borel sets, $\mu(E)$

is c.a. by Theorem 1. Since

$|\int_{M}f(x)d\mu_{n}(x)-\int_{u}f(x)d(\mu_{n}-\mu)|\leqq|\int_{Jl}f(x)d(\mu_{n}-\mu)|$

$\leqq\int_{M}|f(x)||d(\mu_{n}-\mu)|\leqq K\int_{M}|d(\mu_{n}-\mu)|\rightarrow 0$ ,

we get the theorem.
Theorem 10. Let $\{P_{n}(E)|E\in \mathfrak{B}\}$ be a sequence of $c.a$ . ineasure functions

szich as

$\sum_{n=1}^{\infty}\int_{r}|df_{n}^{\supset}|<\infty$ ,

$t/len\sum_{n=1}^{\infty}P_{n}(E)co\prime\prime verges$ to a measure funclion $P(E)$ . Further $\ell ff(x)$ is

bounded and Borel-measnsable, then

$\sum_{n=1}^{\infty}\int_{J}f(x)dP_{\hslash}(x)=\int_{K}f(x)dP(x)$ .
Proof. Let us put

$\sum_{i=1}^{\infty}p_{p}(E)=\mu_{n}(E)$ ,

then

$\int_{r}|d(\mu_{n}-\mu_{m})|=\int_{Ji}|d(P_{n+1}+\cdots+P_{n})|$

$\leqq\int_{M}\sum_{i\Rightarrow\hslash}|_{+}d_{1}p_{i}|\rightarrow 0$ , as $ m,n\rightarrow\infty$ .
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Thus the theorem is reduced to the above theorem.
This theorem is proved by F. Yagi [7], in case $M$ is the one-dim-

ensional Euclidean space,
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