On Riemann Surfaces, on which no Bounded Harmonic Function Exists

Akira Mori

(Received Dec. 20, 1950)

Let F be a Riemann surface spread over the z-plane, on which no one-valued, bounded and non-constant harmonic function exists. If F possesses no Green's function, the above condition is satisfied as Myrberg proved¹⁰. Let F_{ρ} be a connected piece of F lying above an open disc $K: |z-z_0| < \rho$, which is cut off from F by the circumference $|z-z_0| = \rho$. By a function $z=z_{\rho}(x)$, we map the universal covering surface $F_{\rho}^{(\infty)}$ of F_{ρ} conformally on |x| < 1. Then, we shall prove:

Theorem 1. The function $(z_{\rho}(x)-z_{0})/\rho$ belongs to U-class in Seidel's sense.²⁾

By Frostman's theorem³⁾ on functions belonging to U-class, we have immediately the following

Theorem 2. F_{p} covers every point in K except possibly a set of logarithmic capacity zero.

In other words, if a connected piece above a disc does not cover a set of positive capacity, then there exists a one-valued, bounded and non-constant harmonic function on the original Riemann surface.

Some consequences of this theorem will be stated later.

For the proof we use the following extension of Löwner's theorem.

Lemma. (Kametani-Ugaheri⁴). Let w = w(x) be regular in |x| < 1 and w(0) = 0, |w(x)| < 1, and let e be an arbitrary set of points $e^{i\theta}$ on |x|=1, such that $w(e^{i\theta}) = \lim_{r \to 1} w(re^{i\theta})$ exists and $|w(e^{i\theta})| = 1$. Further, let E be the set of $w(e^{i\theta}) = e^{i\varphi}$ on |w|=1 for $e^{i\theta} \in e$. Then, we have $m_*e \leq m^*E$, where m_* and m^* denote the inner and outer linear measure of the sets respectively.

Proof of Theorem 1.

and and a constant

Let it be remarked before the proof: we can assume that F does not cover three points a, b, c lying outside K on the z-plane. In fact, we can exclude, if necessary, all the points lying above a, b, c which are isolated points on F and have no influence on the existence of bounded harmonic function on F.

Since $z=z_{\rho}(x)$ is regular and bounded in |x|<1, $\lim_{r \to 1} z_{\rho}(re^{i\theta}) = z_{\rho}(e^{i\theta})$ exists for almost all $e^{i\theta}$ on |x|=1. Let e_x be the set of $x=e^{i\theta}$, such that A. MORI

 $z_{\rho}(e^{i\theta}) \in K$ i. e. $|z_{\rho}(e^{i\theta}) - z_{0}| < \rho$. Since $z_{\rho}(e^{i\theta})$ is measurable in θ , and since K is an open set, e_{κ} is a measurable set. Under the assumption that $me_{\kappa} > 0$, we shall construct a one-valued, bounded and non-constant harmonic function on F.

First, we divide the open disc K into a countable number of half-closed rectangles Q_1, Q_2, \cdots , whose sides are parallel to the coordinate axes of the z-plane. Let c_n be the set of $x=e^{i\theta}$, such that $z_{\varphi}(e^{i\theta}) \in Q_n$. Then, since $\sum_{n=1}^{\infty} e_n = e_K$, there exists an index *n*, for which $me_n > 0$. Suppose that, for any such division, $me_n > 0$ would hold for only one index *n* corresponding to one rectangle Q_n . Then, by repeated subdivision of Q_n , we see easily that there would exist a point z_1 in K, such that $z_{\varphi}(e^{i\theta}) = z_1$ for almost all $e^{i\theta} \in e_K$. Then, by Lusin-Priwaloff's theorem⁵⁾, e_K must be of measure zero, which is a contradiction. Hence, dividing K suitably, we can find two rectangles $Q, Q' (Q, Q' \subset K, QQ'=0)$ satisfying the condition: the sets $e_Q, e_{Q'}$ of $x=e^{i\theta}$, such that $z_{\varphi}(e^{i\theta}) \in Q$, $\in Q'$ respectively, are both of positive measure.

Let $e^{i\theta}$ be a point of e_q , then, since $\lim_{r \to 1} z_{\mu}(re^{i\theta}) = z_{\mu}(e^{i\theta}) \in Q$, the curve $z = z_{\mu}(re^{i\theta})$ $(e^{i\theta} \in e_q, 0 \leq r < 1)$ on $F_{\mu}^{(\infty)}$ defines an accessible boundary point $\mathcal{Q}(x = e^{i\theta}; Q)$ of $F_{\mu}^{(\infty)}$, whose projection belongs to Q. Let $F^{(\infty)}$ be the universal covering surface of F, so that $F_{\mu}^{(\infty)}$ is a connected piece of $F^{(\infty)}$ above the disc K. Then, $\mathcal{Q}(x = e^{i\theta}; Q)$ is, at the same time, an accessible boundary point of $F^{(\infty)}$.

Since F does not cover three points a, b, c on the z-plane, $F^{(\infty)}$ is of hyperbolic type and can be mapped conformally on |w| < 1 by z=z(w), w=w(z), so that the point $z=z_{p}(0)$ on $F^{(\infty)}$ corresponds to w=0. z=z(w) is meromorphic and $\neq a, \neq b, \neq c$ in |w| < 1, and is automorphic with respect to a Fuchsian group G, whose fundamental domain corresponds to F in one-to-one manner.

Consider the function $w = w_p(x) = w(z_p(x))$. When w moves along the curve $w = zv_p(re^{i\theta})$ $(e^{i\theta} \in e_q, 0 \leq r < 1)$, z = z(w) tends to $\mathcal{Q}(x = e^{i\theta}; Q)$ as is readily seen. Hence, this curve must end at a point $w_p(e^{i\theta}) = e^{i\varphi}$ on |w| = 1. In fact, otherwise, z = z(w) would reduce to a constant by the well-known Gross-Koebe's theorem. Let E_Q be the set of $w_p(e^{i\theta}) = e^{i\varphi}$ for $e^{i\theta} \in e_Q$, then, by the lemma, $0 < me_Q \leq m^* E_Q$. Further, by Iversen-Lindelöf's theorem, $\lim_{k \to 1} z(Re^{i\varphi}) = z(e^{i\varphi}) \in Q$ exists for any $e^{i\varphi} \in E_Q$.

Let M_Q be the set of all the points $e^{i\varphi}$ on |w|=1, such that

286

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

On Riemann surfaces, on which no bounded harmonic function exists 287

 $\lim_{\substack{R \neq 1 \\ Since \ E_Q \subset M_Q}} z(R^{i^{\varphi}}) = z(e^{i^{\varphi}}) \text{ exists and } \epsilon Q. \text{ It is easily seen that } M_Q \text{ is measurable.}$ Since $E_Q \subset M_Q$, we have $0 < m^* E_Q \leq m M_Q$. Further, M_Q is invariant by the Fuchsian group G, as is seen by Iversen-Lindelöf's theorem.

Starting from the set $e_{Q'}$ on |x|=1, we obtain similary another set $M_{Q'}$ on |w|=1, such that $mM_{Q'}>0$ and $\lim_{r \to 1} z(Re^{i\varphi}) = z(e^{i\varphi}) \in Q'$ for and $e^{i\varphi} \in M_{Q'}$. Since Q and Q' are disjoint, so are the sets M_Q and $M_{Q'}$, and from $mM_Q>0$ and $mM_{Q'}>0$ we obtain $0 < mM_Q < 2\pi$.

Then, the harmonic function defined by the Poisson integral

$$u(w) = \frac{1}{2\pi} \int_{M_Q} \frac{1 - R^2}{1 + R^2 - 2R \cos(\psi - \varphi)} d\psi \quad (w = Re^{i\varphi})$$

is \geq const., and is automorphic with respect to the Fuchsian group G, since M_Q is invariant by G. Hence, u(z) = u(w(z)) is a one-valued, bounded and non-constant harmonic function on F. Thus Theorem 1 is proved.

The following corollaries are derived from Theorem 2.

Corollary 1. For any $z \in K$, let $0 \leq n(z) \leq \infty$ denote the number of sheets of F_{p} above z, and let Γ be the set of points $z \in K$, such that $n(z) < N = \sup n(z) \leq \infty$. Then, Γ is of (inner) capacity zero.

The same was proved by Y. Nagai⁶⁾ and M. Tsuji⁷⁾ under the more restrictive assumption that F possesses no Green's function.

To deduce Corollary 1, it suffices to prove:

Lemma. If Cap. $\Gamma > 0$, we can find an open disc K_1 contained in K, such that a connected piece of F_{ρ} above K_1 does not cover a set of positive capacity in K_1 .

Proof. For any integer *n*, we denote by Γ_n the set of points $z \in K$, such that $n(z) \leq n$. Then, Γ_n is closed with respect to K and $\Gamma_{n-1} \subset \Gamma_n$, $\sum_{n < N} \Gamma_n = \Gamma.$ Hence, for a value of n < N we have Cap. $\Gamma_n > 0$. Let *m* be the smallest of such indices. Since m < N, $K - \Gamma_m$ is a non-empty open set. Hence, the boundary set B_m of Γ_m with respect to K is not empty and Then, since $B_m = B_m(\Gamma_m - \Gamma_{m-1}) + B_m \Gamma_{m-1}$ and Cap. $B_m \Gamma_{m-1}$ Cap. $B_m > 0$. \leq Cap. $\Gamma_{m-1} = 0$, we have Cap. $B_m(\Gamma_m - \Gamma_{m-1}) > 0$. Hence, we can find a point $z_1 \in B_m(\Gamma_m - \Gamma_{m-1})$, such that, for any small disc K_1 about z_1 , Cap. $K_1 B_m (\Gamma_m - \Gamma_{m-1}) > 0$ and consequently Cap. $K_1 \Gamma_m > 0$. Since $z_1 \in$ $\Gamma_m - \Gamma_{m-1}$, F_{ρ} has exactly *m* discs above K_1 , if K_1 is sufficiently small (ν sheeted disc counted as ν discs). Besides these *m* discs, F_{ρ} has at least one connected piece above K_1 . In fact, since $z_1 \in B_m$, K_1 contains points z, such that n(z) > m. Since any point of K_1 is already covered by the mentioned A. MORI

m discs, this connected piece does not cover the set $K_1\Gamma_m$ of positive capacity, q. e. d.

Corollary. 2. The set Γ_{Ω} of the projections of direct accessible boundary points Ω of F is of (inner) capacity zero.

A direct accessible boundary point is, by definition, an accessible boundary point \mathcal{Q} , such that, for sufficiently small $\rho > 0$, the ρ -neighbourhood of \mathcal{Q} does not cover the projection of \mathcal{Q} . From this it is easily seen that F possesses Iversen's property.⁸⁾

Corollary 2 contains the following Kametani-Tsuji-Noshiro's theoremⁿ: Let z=f(w) be k-valued algebroidal outside a bounded closed set of capacity zero on the w-plane, and $w=\varphi(z)$ be its inverse function. Then, the set of projections on the z-plane of the direct transcendental singularities of $w=\varphi(z)$ is of capacity zero. In fact, the Riemann surface of z=f(w) spread over the w-plane, which is conformally equivalent to that of $w=\varphi(z)$ spread over the z-plane, possesses no Green's function, as can be seen easily.

To deduce Corollary 2, it suffices to prove:

Lemma. If Cap. $\Gamma_{\Omega} > 0$, we can find a disc K on the z-plane, such that a connected piece of F above K does not cover a set of positive capacity in K.

Proof. Let $|z_{\lambda}|$ $(\lambda=1,2,\cdots)$ be a sequence of all the rational points on the z-plane, and $K_{\lambda\mu}$ $(\mu=1,2,\cdots)$ be the disc $|z-z_{\lambda}| < 1/\mu$. We denote by $F_{\lambda\mu\nu}$ $(\nu=1,2,\cdots)$ the connected pieces of F above $K_{\lambda\mu}$. Further, let $\Gamma_{\lambda\mu\nu}$ be the set of points in $K_{\lambda\mu}$, which are not covered by $F_{\lambda\mu\nu}$. By the definition of direct accessible boundary points, we see easily that $\sum_{\lambda,\mu,\nu} \Gamma_{\lambda\mu\nu} \supset \Gamma_{\mu}$, so that Cap. $(\sum_{\lambda,\mu,\nu} \Gamma_{\lambda\mu\nu}) > 0$. Since $\Gamma_{\lambda\mu\nu}$ are Borel sets, it follows that Cap. $\Gamma_{\lambda\mu\nu} > 0$ for certain values of λ , μ and ν , q. e. d.

> Mathematical Institute, Tokyo University.

References.

1) P. J. Myrberg: Über die Existenz der Greenschen Funktionen auf einer gegebenen Riemannschen Fläche, Acta Math. 61 (1933).

2) W. Seidel: On the distribution of values of bounded analytic functions, Trans. of Amer. Math. Soc. 36 (1934).

3) O. Frostman: Potentiel d'équilibre et capacité des ensembles, Thèse Lund (1935).

4) S. Kametani and T. Ugaheri: A remark on Kawakami's extension of Löwner's lemma,

288

On Riemann surfaces, on which no bounded harmonic function exists 289

Proc. Imp. Acad. Tokyo Vol. 18 (1942).

5) Lusin-Priwaloff: Sur l'unicité et multiplicité des fonctions analytiques, Ann. Sci. norm. sup. 42 (1925). M. Tsuji: Theory of meromorphic functions in a neighbourhood of a closed set of capacity zero, Japanese Journ. of Math. Vol. 19 (1944).

6) V. Nagai: On the behaviour of the boundary of Riemann surfaces II, Proc. of Japan Acad. Vol. 26 (1950).

7) M. Tsuji: Some metrical theorems on Fuchsian groups, which will appear in Kôdai mathematical seminar reports.

8) Cf. S. Stoilow: Sur les singularités des fonctions analytiques multiformes dont la surface de Riemann a sa frontière de mesure harmonique null, Mathematica, 19 (1943), pp. 126-138.

9) M. Tsuji: loc. cit. ⁵⁾. K. Noshiro: Contribution to the theory of the singularities of analytic functions, Japanese Journ. of Math. Vol. 19 (1948).

58.5