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On Riemann Surfaces, on which no Bounded 4

Harmonic Function Exists

AKIRA MORI

(Received Dec. 20, 1950)

Let $F$ be a Riemann surface spread over the z-plane, on which $no$

one-valued, bounded and non-constant harmonic function exists. If‘ $F$ possesses
no Green’s function, the above condition is satisfied as Myrberg provedl).
Let $F_{r}$. be a connected piece of $F$ lying above an open disc K. $|z-z_{0}|<\rho$ ,
which is cut off from $F$ by the circumference $|z-2_{0}|=\rho$ . By a function
$z=z_{\rho}(x)$ , we map the universal covering surface $F_{\rho^{(\infty)}}$ of $F_{\rho}$ conformally

on $|x|<1$ . Then, we shall prove:
Theorem 1. Th function $(2_{\rho}(x)-z_{0})/\rho$ belongs to U-class in Seidel’s

sense
By Frostman’s $theorem^{S)}$ on functions belonging to U-class, we have

immediately the following
Theorem 2. $f^{F_{p}}$ covers cvery $po$int in $K$ except possibly a set of loga-

rithmic capacity $\sim rero$ .
In other words, if a connectvd piece above a disc does not cover a set of

positive capacity, lhen there exists $a$ one-valued, bounded and non-constant $har-$

monic function on $t/le$ original Riemann surface.
Some consequences of this theorem will be stated later.
For the proof we use the following extension of L\"owner’s theorem.
Lemma. $(Kametani- Ugaheri^{4)})$ . Let $w=w(x)$ be regular in $|x|<1aud$

$w(0)=0,$ $|w(x)|<1$ , and let $e$ be an arbitrary set of points $e^{i\theta}$ on $|x|=1$ ,
suck $t/zatw(e^{i\theta})=\lim_{r\rightarrow 1}w(r\supset^{i\theta})$ exists and $|w(e^{i\theta})|=1$ . Furlker, let $E$ be the

set of $w(e^{i\theta})=e^{i\varphi}$ on $|w|=1$ for $e^{i\theta}\in e$ . $T/len$ , we have $m_{*}e\leqq m^{*}E,$ $wh\ell re$

$n_{*}$ and $m^{*}$ denote the inner and outer linear measure of tlte sets respectively.
Proof of Theorem 1.
Let it be remarked before the proof: we can assume that $F$ does not

cover three points $a,$ $b,$ $c$ lying outside $K$ on the 2-plane. In fact, we can
exclude, if necessary, all the points lying above $a,$ $b,$ $c$ which are isolated
points on $F$ and have no influence on the existence of bounded harmonic
functiOn on $F$.

Since $z=z_{\rho}(x)$ is re gular and bounded in $|x|<1,$ $\lim_{2_{\rho}}_{r\rightarrow 1}(re^{\theta})=z_{\rho}(e^{i|})$

exists for almost all $e^{i\theta}$ on $|x|=1$ . Let $e_{K}$ be the set of $x=e^{f}$ , such that
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$ 2_{\rho}(e^{:\theta})\in$ I $i$ . $e$ . $|\propto_{\rho}(e^{i\dot{0}})-z_{0}|<\rho$ . Since $2_{\rho}(e^{i\theta})$ is measurable in. $\theta$ , and since
$K$ is an open set, $e_{K}$ is a measurable set. $Und\ell r$ the assumption that $m_{F}>0$ ,
$z\nu e$ shall construct a $one- nalu_{c^{\prime}}’ d$, boundvd and non-constant $/:armonic$ function
$O,lF$.

First, we divide the open disc $K$ into a countable number of half-closed
rectangles $ Ql’ Q_{2},\cdots$ , whose sides are parallel to the coordinate axes of the
2-plane. Let $t_{n}$ be the set of $x=e^{i\theta}$ , such that $\sim,(e^{i\theta})\in Q_{l}$ . Then, since
$\sum_{n\Leftrightarrow 1}^{\infty}e_{n}=e_{K}$ , there exists an index $n$ , for which $me_{n}>0$ . $Suppo$se that, for any

such $divisi\cap n,$ $\prime\prime le_{n}>0$ would hold for only one index $n$ corresponding to
one rectangle $Q_{n}$ . Then, by repeated subdivision of $Q_{n}$ , we see easily that
there would exist a point $2_{1}$ in $K$, such that $z_{\rho}(e^{i0})=\nu_{1}$ for almost all
$e^{i\theta}\in e_{K}$. Then, by $Lu\sin- l^{\supset}riwaloffs$ theorem6), $e_{K}$ must be of measure zero,

which is a contradiction. Hence, dividing $K$ suitably, we can find two rect-
angles $Q,$ $Q^{\prime}(Q, Q^{\prime}\subset K, QQ^{\prime}=0)$ satisfying the condition: the sets $e_{Q},$ $e_{q}$,
of $x=e^{i9}$ , such that $2_{\rho}(e^{i\theta})\in Q,$ $\epsilon Q^{\prime}respective1_{d}v$ , are both of positive
measure.

Let $e^{i_{\theta}}$ be a point of $e_{Q}$ , then, since $\lim_{2_{\mu}}(re^{i0})=2_{\mu}(i^{0})\in Q$ , the curve
$z=2_{\rho}(re^{i\theta})(e^{i0}\in e_{Q}, 0\leqq r<1)$ on $ F_{\rho}^{t\infty)}defin^{1}es\rightarrow$ an accessible boundary point
$\Omega(x=e^{i\theta};Q)$ of $F_{\mu}^{t\infty)}$ , whose projection belongs to $Q$ . Let $F^{(\infty)}$ be the
universal covering surface of $F$, so that $F_{P}^{(\infty)}$ is a connected piece of $F^{(\infty)}$

above the disc $K$ Then, $\Omega(x=v^{i\theta};Q)$ is, at the same time, an accessible
boundary point of $F^{(\infty)}$ .

Since $F$ does not cover three points $a,$ $b,$ $c$ on the 2-plane, $F^{(\infty)}$ is
of hyperbolic type and can be mapped conformally on $|w|<1$ by
$\sim\sigma=_{\sim}\sigma(w),$ $w=w(2)$ , so that the point $2=2_{\rho}(0)$ on $F^{(\infty)}$ corresponds to
$w=0.2=\sim(w)$ is meromorpbic and $\neq a,$ $\neq b,$ $\neq c$ in $|w|<1$ , and is auto-
morphic with respect to a Fuchsian group $G$ , whose fundamental domain
corresponds to $F$ in one-to-one manner.

Consider the function $w=w_{p}(x)=w(\sim\alpha p(x))$ . When $w$ moves along
the curve $w=zv_{\rho}(r\ell^{i\theta})(e^{i0}\in e_{Q}, 0\leqq r<1),$ $2=z(w)$ tends to $\Omega(x=e^{i\theta};Q)$

‘as is readily seen. Hence, this curve must end at a point $\tau v_{\rho}(e^{i\theta})=e^{ip}$ on
$|w|=1$ . In fact, otherwise, $2=i^{\prime}(w)$ would reduce to a constant by the
well-known Gross-Koebe’s theorem. Let $E_{t)}$ be the set of $w_{\rho}(e^{i\theta})=e^{i\varphi}$ for
$e^{r\theta}\in e_{Q}$ , then, by the lemma, $0<m_{Q}\leqq m^{*}E_{q}$ . Further, by Iversen-Lindel\"of’s
theorem, $\lim_{\Lambda\rightarrow 1}z(Re^{i\varphi})=2(e^{t\varphi})\in Q$ exists for any $e^{i\varphi}\in E_{Q}$ .

Let $M_{Q}$ be the set of all the points $e^{l\varphi}$ on $|w|=1$ , such that
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$\lim 2(R^{i\mathcal{P}})=2(e^{i\varphi})$ exists and $\epsilon Q$. It is easily seen that $M_{Q}$ is measurable.
$S^{:}in^{1}$’ce $E_{Q}\subset M_{(l^{r}}$ we have $0<m^{*}E_{Q}\leqq mM_{Q}$ . Further, $M_{Q}$ is invariant by the
Fuchsian group $G$ , as is seen by Iversen-Lindel\"of’s theorem.

Starting from the set $e_{Q}$, on $|x|=1$ , we obtain similary another set $M_{Q}$,
on $|w|=1$ , such that $mM_{(\ell},>0$ and $\lim_{r\rightarrow 1}z(Re^{i\varphi})=2(e^{i\varphi})\in Q^{\prime}$ for and $ e^{i\varphi}\epsilon$

$M_{Q}$ . Since $Q$ and $Q^{\prime}$ are disjoint, so are the sets $M_{Q}$ and $1u_{Q},$ , and from
$mM_{\prime},>0$ and $mM_{Q},>0$ we obtain $ 0<mM_{c_{l}}<2\pi$ .

Then, the harmonic function defined by the Poisson integral

$ u(zv)=\frac{1}{2\pi}\int_{\Lambda l_{Q}}\frac{1-R^{2}}{1+R^{A}-2R\cos(\psi-\varphi)}d\psi$ $(w=Re^{i\varphi})$

is $\neq$ const., and is automorphic with respect to the Fuchsian group $G$ , since
$M_{Q}$ is invariant by $G$ . Hence, $u(z)=u(’\angle v(2))$ is a one-valued, bounded
and non-constant harmonic function on $F$. Thus Theorem 1 is proved.

The following corollaries are derived from Theorem 2.
Corollary 1. For any $z\in K$, let $ 0\leqq n(2)\leqq\infty$ denote the number of

$s/zeets$ of $F_{\rho}$ above $z$ , and let $\Gamma$ be the set of points 2 $\epsilon K$, such that $n(z)<N$
$=\sup_{zeK}n(z)\leqq\infty$ . Then, $I^{7}$ is of (inner) capacity zero.

The same was proved by Y. Nagai6) and M. Tsuji7) under the more
restrictive assumption that $F$ possesses no Green’s function.

To deduce Corollary 1, it suffices to prove:
Lemma. $1f$ Cap. $l^{\tau}>0$ , we can find an open disc $K_{1}$ contained in $K$,

such lhat a connected piece of $F_{P}$ above $K_{1}$ does not cover a set of positive
capacity in $K_{1}$ .

Proof. For any integer $n$ , we denote by $\Gamma_{n}$ the set of points 2 $\epsilon K$,
such that $n(z)\leqq n$ . Then, $\Gamma_{n}$ is closed with respect to $K$ and $\Gamma_{n-1}\subset\Gamma_{n}$ ,
$\sum_{n<N}\Gamma_{;}=\Gamma$. Hence, for a value of $n<N$ we have Cap. $\Gamma_{n}>0$ . Let $m$ be

the smallest of such indices. Since $m<N,$ $K-\Gamma_{m}$ is a non-empty open set.
Hence, the boundary set $B_{m}$ of $\Gamma_{m}$ with $re$spect to $K$ is not empty and
Cap. $B_{7n}>0$ . Then, since $B_{m}=B_{m}(\Gamma_{m}-\Gamma_{m-1})+B_{m}\Gamma_{m-1}$ and Cap. $B_{m}\Gamma_{m-1}$

$\leqq Cap$ . $\Gamma_{m-\rceil}=0$ , we have Cap. $B_{m}(\Gamma_{m}-\Gamma_{m-1})>0$ . Hence, we can find
a point $z_{1}\in B_{m}(\Gamma_{m}-\Gamma_{m-1})$ , such that, for any small disc $K_{1}$ about $2_{1}$ ,
Cap. K $B_{m}(\Gamma_{m}-\Gamma_{m-1})>0$ and consequently Cap. $K_{1}\Gamma_{m}>0$ . Since $ 2_{1}\epsilon$

$l_{m}^{1}-I_{m-1}^{\prime},$ $F_{p}$ has exactly $m$ discs above $K_{1}$ , if $K_{1}$ is sufficiently small $(\nu-$

sheeted disc counted as $\nu$ discs). Besides these $m$ discs, $F_{\rho}$ has at least one
connected piece above $K_{1}$ . In fact, since $2_{1}\in B_{m},$ $K_{I}$ contains points 2, such
that $n(2)>m$ . Since any point of $1\zeta_{1}$ is already covered by the mentioned
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$m$ discs, this connected piece does not cover the set $K_{1}\Gamma_{m}$ of positive
capacity, $q$ . $e$ . $d$ .

Corollary. 2. The set $\Gamma_{\Omega}$ of $tke$ projcctions of dircct acccssible boundary
points $\Omega$ of $F$ is of (inner) capacity $2ero$.

A direct accessible boundary point is, by definition, an accessible boun-
dary point $\Omega$ , such that, for sufficiently small $\rho>0$ , the $\rho$-neighbourhood
of 9 does not cover the projection of $\Omega$ . From this it is easily seen that
$F$ possesses lversen’s property.8)

Corollary 2 contains the following Kametani-Tsuji-Noshiro’s theorem $\eta$):

$I,ctz=f(p\prime v)$ be $k-’\iota\prime al/lvdatgebro_{\iota}’ dal$ outside a boun&d closed $svt$ of capacity
$2ero$ on the w-plane, and $’\iota v=\varphi(z)b_{\iota^{n}}$ its inverse function. $T1_{l}en$ , the set of
projections ou $t/\ell e$ 2-plane of $t/le$ direct transcendenfal $si\prime igr/larities$ of $w=\varphi(2)$

is of capacity zero. In fact, the Riemann surface of $z=f(w)$ spread over
the $’\iota V$-plane, which is conformally equivalent to that of $w=\varphi(\leftrightarrow)$ spread
over the 2-plane, possesses no Green’s function, as can be seen easily.

To deduce Corollary 2, it suffices to prove:
Lemma. $1f$ Cap. $\Gamma_{\Omega}>0,$ $’\iota ve$ can find a disc $K$ on $t/le$ c-plan$e$ , such

$t/\iota at$ a connected piece of $F$ altove $K$ does not cover a set of positive capacity
in $K$

Proof. Let } $\sim r_{\lambda}$ } $(\lambda=1,2,\cdots)$ be a sequence of all the rational points
on the z-plane, and $K_{\lambda\mu}(\mu=1,2,\cdots)$ be the disc $|z-z_{\lambda}|<1/\mu$ . We denote
by $F_{\lambda\mu\nu}(\nu=1,2,\cdots)$ the connected pieces of $F$ above $K_{\lambda\mu}$ . Further, let
$\Gamma_{\lambda\mu\nu}$ be the set of points in $K_{\lambda\mu}$ , which are not covered by $F_{\lambda\mu_{V}}$ . By the
definition of direct accessible boundary points, we see easily $that\sum_{\lambda,\mu,\nu}\Gamma_{\lambda\mu\nu}\supset l^{\gamma}.$

,

so that Cap. $(\sum_{\lambda,\mu,\nu}\Gamma_{\lambda\mu\nu})>0$ . Since $1_{\lambda\mu\nu}^{\tau}$ are Borel sets, it follows that
Cap. $\Gamma_{\lambda\mu\nu}>0$ for certain values of $\lambda,$

$\mu$ and $\nu,$ $q$ . $e$ . $d$ .

Mathematical Institute,
Tokyo University.
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