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Let 7 be a Riemann surface spread over the z-plane, on which o
one-valued, bounded and non-constant harmonic function exists. 1f' F possesses
no Green’s function, the above condition is satisfied as Myrberg proved?.
Let F, be a connected piece of F lying above an open disc K: |z—z,| <p,
‘which is cut off from # by the circumference |z—z)|=p. By a function

z=2,(x), we map the universal covering surface F [ of #, conformally
on

x| <1. Then, we shall prove:
Theorem 1. 7Ve function (z,(x)—z,)/p &elongs to U-class in Seidel's
- sense.? : ‘

By Frostman’s theorem® on functions belonging to U-class, we have
immediately the following

Theorem 2. F, covers wcry point in K except possibly a set of loga-
withmnic capacity zero.
' In other words, if a comzectm’ picce aéave a a’zsc does not cover a set of
jasztzw capacity, then there exists a one-valued, bounded and non-constant har-
monic function on the original Riemann surface.

Some consequences of this theorem will be stated later. ,

For the proof we use the following extension of Léwner’s theorem.

Lemma. (Kametani-Ugaheri®). Let w=w(x) be regular in |x| <1 aud
w(0)=0, |w(x)| <1, and let ¢ be an arbitrary set of points ¢ on |x|=1,
such that w(e®) =lim w(re®) exists and |w(e®)|=1. Further, let E be the

>
set of w(e®)=¢" on |w|=1 for ¢*® € c. Then, we have mye<m*E, where
my and m* denote the inner and outer lincar measurve of the sets respectzwlj/

Proof of Theorem 1.

Let it be remarked before the proof : we can assume that & does not
cover. three points a, 4, ¢ lying outside K on the z-plane. In fact, we can
exclude, if necessary, all the points lying above a, 4, ¢ which are- isolated
- points.on F and have no influence on the ex15tence of bounded harmonlc
function on £ ' : -

Since z=2,(x) is regular and bounded in |z| <1, rl_r)xln 2, (re®) =z, (")

exists for almost all ¢*® on | x |=1. Let ¢x be the set of x=¢*, such that
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2,(c®) € K i. e. |z,(¢M) =2, <p. Since z,(¢®) is measurable in. 0, and since
K is an open set, ¢y is a measurable set. Under the assumption that mex> 0,
we shall construct a one-valucd, bounded and non-constant harmonic function
on F. '

First, we divide the open disc K into a countable number of half-closed
rectangles Q,, Q.-+, whose sides are parallel to the coordinate axes of the
z-plane. Let ¢, be the set of x=¢", such that z,(¢°) € Q,. Then, since

Slen=rx, there exists an index », for which me,>0. Suppose that, for any

n=1

such division, m2¢,>0 would hold for only one index 7 corresponding to
one rectangle Q,. Then, by repeated subdivision of Q,, we see easily that
there would exist a point z, in K, such that z,(¢®)=2z for almost all
), ¢x must be of measure zero,
which is a contradiction. Hence, dividing X suitably, we can find two rect-
angles O, Q' (Q, Q' Cc K, QQ'=0) satisfying the condition : the sets ¢,, ¢
of x=¢"*, such that 2,(¢*) € Q, € Q' respectively, are both of positive
measure.

¢*® € ex. Then, by Lusin-Priwaloff’s theorem®

Let ¢® be a point of ¢, then, since lim1 z,(re®) =2,(c) € O, the curve
z=z,(7e"®) (¢ € ¢y, 0= 7» <1) on F{ defines an accessible boundary point
Q(x=¢"; Q) of F{, whose projection belongs to Q. Let F be the
'universal covering surface of F, so that F{* is a connected piece of F (=
above the disc K. Then, 2(x=¢"; Q) is, at the same time, an accessible
boundary point of ). |

Since F does not cover three points a, 4, ¢ on the z-plane, F ¢ is
of hyperbolic type and can be mapped conformally on |w| <1 by
z=z(w), w=1w(z), so that the point z=2,(0) on F corresponds to
w=0. g=2z(w) is meromorphic and #a, #6, #c in |w| <1, and is auto-
morphic with respect to a Fuchsian group &, whose fundamental domain
. corresponds to # in one-to-one manner. '

Consider the function w=w,(x) =w(z,(x)). When w moves along
the curve w=1w, (") (¢ € ¢g, 0<r<1), z=2(w) tends to Z(xr=¢"; Q)
‘as is readily seen. Hence, this curve must end at a point 7,(¢®) =¢* on
|zwj=1. In fact, otherwise, z=2(w) would reduce to a constant by the
well-known' Gross-Koebe’s theorem. Let £, be the set of w,(¢®)=¢" for
¢'® € ¢q, then, by the lemma, O <me,<m*E,. Further, by Iversen-Lindelsf’s
‘theorem, llixP 2z (Re'?) =2(¢') € Q exists for any ¢ € E,.

0> .

‘Let M, be the set of all the points ¢ on ‘|w|=1, such that
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llm 2(R%) =2(¢*) exists and € Q. It is easily seen that A4, is measurable.
Smce E,c M, we have 0 <m*E,< mM,. Further, M, is invariant by the
Fuchsian group G, as is seen by Iversen-Lindelsf’s theorem.
Starting from the set ¢y on |x|=1, we obtain similary another set My
on |w|=1, such that ;>0 and 111? 2(R*) =2(e") € Q' for and ¢ €
— .

My. Since Q and Q' are disjoint, so are the sets k]lIQ and My, and from
mMy>0 and mMy>0 we obtain 0 <mM, <2w. : .
Then, the harmonic function defined by the Poisson integral

1—R2 : ,
u(w) = db  (10=Re*
() = 271'L|/QI+R —2R cos (¢—¢) ¢« )

is 3 const., and is automorphic with respect to the Fuchsian group G, since

M, is invariant by &. Hence, #(2)=#u(w(2z)) is a one-valued, bounded

and non-constant harmonic function on . Thus Theorem 1 is proved.
The following corollaries are derived from Theorem 2.

Corollary 1. For any z € K, let 0 < n(2) oo denote the number of
sheets of F, above z, and let I' be the set of points z € K, suck that n(z) <N
=sup n(z) < Then, I" is of (inner) capacity zevo. _
““The same was proved by Y. Nagai® and M. Tsuji” under the more
restrictive assumption that / possesses no Green'’s function.

To deduce Corollary 1, it suffices to prove:

Lemma. /f Cap. I">0, we can find an open disc K com‘amm’ in K,
such that a connected piece of F, above K, does not cover a set of positive
capacity in K. .

Proof.  For any integer 7, we denote by I, the set of points z € X,
such that #(2)<#n. Then, I, is closed with respect to X and [;,_;Cl,,
2[,=1I" Hence, for a value of <N we have Cap. I',>0. Let m be

n<N
the smallest of such indices. Since m </, K—1I, is a non-empty open set.

Hence, the boundary set B, of I',, with respect to X is not empty and
Cap. B,,>0. Then, since B, =B, ([,—I,._\)+B,[n and Cap. B,I,_,
< Cap. ', =0, we have Cap. B, ([,—I,_1)>0. Hence, we can find
a point z, € B,([,—1I._1), such that, for any small disc K, about z,
Cap. K, B,.(",—T_)>0 and consequently Cap.X,[,>0. Since 2, €
I'n—1I,_i, F, has exactly » discs above K, if K is sufficiently small (v-
sheeted disc counted as v discs). Besides these » discs, F, has at least one
connected piece above K. In fact, since 2, € B,, K contains points 2, such
that 7(2)>m. Since any point of K, is already covered by the mentioned
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m discs, this connected piece does not cover the set K,I',, of positive
capacity, q. e. d.

Corollary. 2. 7V set I'g of the projections of direct accessible boundary
points £ of F is of (inner) capacity zero.

A direct accessible boundary point is, by deﬁmtlon, an accesmble boun-
dary point £, such that, for sufficiently small p >0, the p-neighbourhood
of £ does not cover the projection of £. From this it is easily seen that
F possesses [versen's property®

Corollary 2 contains the following Kametani-Tsuji-Noshiro’s theorem?:
Let z=f(w) be k-valued algebroidal outside a bounded closed sct of capacity
zero on the w-plane, and w=¢(z) bc its inverse function. Then, the set of
projections on the s-plane of the direct transcendental singularities of w=¢(z)
is of capacity zero. In fact, the Riemann surface of z=f(w) spread over
the ze-plane, which is conformally equivalent to that of w=¢(z) spread
over the z-plane, possesses no Green’s function, as can be seen easily.

To deduce Corollary 2, it suffices to prove:

Lemma. [f Cap. I'y>0, we can find a disc K on the s-plane, such
that a connected piece of F above K does not cover a set of positive capacity
in K

Proof. Iet {z,{ (A=12,---) be a sequence of all the rational points
on the z-plane, and K, (#=1,2,---) be the disc |z—z,] <1/#. We denote
by Fyu (¥»=12,---) the connected pieces of F above A,,. Further, let
[y, be the set of points in K,,, which are not covered by £,,,. By the

definition of direct accessible boundary points, we see easily that 3175,, D [,
A’F’)v

so that Cap. (21",\,,,\,)>0 Since [},, are Borel sets, it follows that
Cap./5,,>0 for *Certain values of 4, p# and v, q.e.d.

Mathematical Institute,
Tokyo University.
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