## On maximum modulus of integral functions.

## By Kihachiro ARIMA

(Received Dec. 26, 1949)

Let D be a region on the z-plane, which lies in the disc |z| < R  $(0 < R \le +\infty)$ , and whose boundary I' lying in |z| < R consists of a finite or infinite number of analytic curves clustering nowhere in |z| < R. For any 0 < r < R, we denote by  $D_r$  the part of D lying in |z| < r. Let  $A_k(r)$   $(k=1, \dots, n(r))$  be the arcs of |z| = r < R contained in D, and  $r \cdot \theta_k(r)$  be their lengths.

We define a function  $\theta(r)$  in 0 < r < R as follows: if |z|=r is contained wholly in D, then  $\theta(r)=+\infty$ , and, otherwise,  $\theta(r)=\max_{r}\theta_{k}(r)$ .

Using Carleman's method10, we shall first prove

THEOREM 1. Suppose that  $\theta(r) > 0$  for 0 < r < R, and let u(z) be a harmonic function in D, which is > 0 in D and = 0 on  $\Gamma$ . We put

$$m(r) = \frac{1}{2\pi} \sum_{k} \int_{A_{k}(r)} \left[ u(re^{i\varphi}) \right]^{2} d\varphi \qquad (0 < r < R)$$

and

$$D(r) = \iint_{D_r} \left[ \left( \frac{\partial u}{\partial \log r} \right)^2 + \left( \frac{\partial u}{\partial \varphi} \right)^2 \right] d \log r \, d\varphi.$$

Then, for any  $0 < r_0 < r < R$ ,

$$D(r) \ge D(r_0) \exp \int_{r_0}^r \frac{2\pi}{r\theta(r)} dr$$

and

$$m(r)-m(r_0) \geq \frac{1}{\pi} D(r_0) \cdot \int_{r_0}^r \frac{dt}{t} \left[ \exp \int_{r_0}^t \frac{2\pi}{s\theta(s)} ds \right].$$

Let f(z) be a regular analytic function in  $|z| < R \le +\infty$ . While applying Theorem 1 to  $u(z) = \log |f(z)|$ , we shall obtain some theorems on the modulus of f(z).

PROOF OF THEOREM 1. Since u=0 on I', we have, by application of Green's formula,

(1) 
$$\frac{dm(r)}{d\log r} = \frac{1}{\pi} \sum_{k} \int_{A_{k}(r)} u \frac{\partial u}{\partial \log r} d\varphi = \frac{1}{\pi} \cdot D(r) > 0,$$

(2) 
$$\frac{d^2 m(r)}{(d \log r)^2} = \frac{1}{\pi} \frac{dD(r)}{d \log r}$$
$$= \frac{1}{\pi} \sum_{k} \int_{A_{b}(r)} \left[ \left( \frac{\partial u}{\partial \log r} \right)^2 + \left( \frac{\partial u}{\partial \varphi} \right)^2 \right] d\varphi > 0.$$

By Schwarz' inequality, we have from (1)

$$\left(\frac{dm(r)}{d\log r}\right)^{2} \leq 2m(r) \cdot \frac{1}{\pi} \sum_{k} \int_{A_{k}(r)} \left(\frac{\partial u}{\partial \log r}\right)^{2} d\varphi$$

$$(3) \quad \text{or} \quad \frac{1}{\pi} \sum_{k} \int_{A_{k}(r)} \left(\frac{\partial u}{\partial \log r}\right)^{2} d\varphi \geq \frac{1}{2m(r)} \left(\frac{dm(r)}{d\log r}\right)^{2}.$$

On the other hand, if  $0 < \theta(r) \le 2\pi$ , we have, by Wirtinger's inequality,

$$\int_{A_{\boldsymbol{k}}(\boldsymbol{r})} \left(\frac{\partial u}{\partial \varphi}\right)^2 d\varphi \geq \frac{\pi^2}{\theta_{\boldsymbol{k}}(\boldsymbol{r})^2} \int_{A_{\boldsymbol{k}}(\boldsymbol{r})} u^2 d\varphi \geq \frac{\pi^2}{\theta(\boldsymbol{r})^2} \int_{A_{\boldsymbol{k}}(\boldsymbol{r})} u^2 d\varphi ,$$

so that

(4) 
$$\frac{1}{\pi} \sum_{k} \int_{A_{k}(r)} \left(\frac{\partial u}{\partial \varphi}\right)^{2} d\varphi \geq \frac{2\pi^{2}}{\theta(r)^{2}} m(r).$$

(4) holds also for the case  $\theta(r) = +\infty$ .

From (2), (3) and (4), we have

$$\frac{2}{m(r)} \cdot \frac{d^2m(r)}{(d \log r)^2} \geq \frac{1}{m(r)^2} \left(\frac{dm(r)}{d \log r}\right)^2 + \frac{4\pi^2}{\theta(r)^2},$$

so that, putting  $\log r = t$  and  $\log m(r) = \lambda(t)$ ,

(5) 
$$\left(\frac{d\lambda}{dt}\right)^2 + 2 \frac{d^2\lambda}{dt^2} \ge \left(\frac{2\pi}{\theta(r)}\right)^2.$$

Since

$$\left[\frac{d}{dt}\left(\log\frac{d}{dt}\,e^{\lambda}\right)\right]^2 = \left(\frac{d\lambda}{dt} + \frac{\frac{d^2\lambda}{dt^2}}{\frac{d\lambda}{dt}}\right)^2 \ge \left(\frac{d\lambda}{dt}\right)^2 + 2\,\frac{d^2\lambda}{dt^2}$$
,

and since, by (1) and (2),

$$\frac{d}{dt}\left(\log\frac{d}{dt}e^{\lambda}\right)=\frac{d^2m(r)}{(d\log r)^2}\Big/\frac{dm(r)}{d\log r}>0$$
,

we have, from (5),

$$\frac{d}{dt} \left( \log \frac{d}{dt} e^{\lambda} \right) \ge \frac{2\pi}{\theta(r)}$$
.

Hence, by integration, we obtain the mentioned relations.

THEOREM 2. Let f(z) be an integral function, and D be the domain, where |f(z)| > 1. Let  $\theta(r)$  be defined as before for the domain D, and put  $M(r) = \max_{|z| = r} |f(z)|$ . Then, for any  $0 < \alpha < 1$ , we have

$$\log_2 M(r) > \pi \int_{r_0}^{\alpha r} \frac{dr}{r\theta(r)} - c(\alpha, r_0)$$
,

where  $0 < r_0 < \alpha r$  and  $c(\alpha, r_0)$  is independent of r.

PROOF. We apply Theorem 1 to  $u(z) = \log |f(z)|$ . Since  $P(t) = \exp \int_{r_0}^{t} \frac{2\pi}{s\theta(s)} ds$  is an increasing function of t, we have, for any  $0 < \alpha < 1$ ,

$$m(r)-m(r_0) \geq \frac{1}{\pi} D(r_0) \cdot \int_{r_0}^{r} \frac{P(t)}{t} dt \geq \frac{1}{\pi} D(r_0) \cdot \int_{\alpha r}^{r} \frac{P(t)}{t} dt$$

$$\geq \frac{1}{\pi} D(r_0) \cdot P(\alpha r) \int_{\alpha r}^{r} \frac{dt}{t} = \frac{1}{\pi} D(r_0) \cdot \log \frac{1}{\alpha} \cdot P(\alpha r),$$

so that

$$\log m(r) \ge \log P(\alpha r) - \text{const.} = 2\pi \int_{r_0}^{\alpha r} \frac{ds}{s\theta(s)} - \text{const.}$$

Hence and since

$$\log m(r) = \log \left[ \frac{1}{2\pi} \int_0^{2\pi} \left( \log |f(re^{i\varphi})| \right)^2 d\varphi \right] \leq 2 \cdot \log_2 M(r)$$
,

we have the mentioned result.

THEOREM 3. Let f(z) be an integral function of order  $\rho$ , then

$$\rho \geq \lim_{r \to \infty} \frac{1}{\log r} \int_{r_0}^{r} \frac{\pi}{r \theta(r)} dr.$$

Proof. By Theorem 2, we have

$$\frac{\log_2 M(r)}{\log r} > \frac{\log \alpha r}{\log r} \cdot \frac{1}{\log \alpha r} \cdot \int_{r_0}^{\alpha r} \frac{\pi}{r \theta(r)} dr - O\left(\frac{1}{\log r}\right),$$

so that

$$\rho = \overline{\lim}_{r \to \infty} \frac{\log_2 M(r)}{\log r} \ge \overline{\lim}_{r \to \infty} \frac{1}{\log \alpha r} \int_{r_0}^{\alpha r} \frac{\pi}{r \theta(r)} dr, \quad \text{q. e. d.}$$

From Theorem 3, we obtain the following

THEOREM 4. Let f(z) be an integral function of finite order  $\rho$ , and, for any K > 0, let  $\theta(r) = \theta(r, K)$  be defined as before for the domain where |f(z)| > K. Then,

$$\lim_{r\to\infty}\theta(r,K)\geq\frac{\pi}{\rho}.$$

If  $\rho < 1/2$ , the above inequality means that there exists a sequence of circumferences  $|z| = r_n$ , on each of which |f(z)| > K.

PROOF. Suppose that, for a  $0 < K < +\infty$  and for a  $k > \rho$ ,  $\theta(r, K) \le \pi/k$  would hold for any  $r_0 < r < +\infty$ . Then, by Theorem 3 applied to f(z)/K, we should have

$$\rho \geq \overline{\lim_{r \to \infty}} \frac{1}{\log r} \int_{r_0}^{r} \frac{\pi}{r \cdot \frac{\pi}{b}} dr = k > \rho$$

which is a contradiction.

By Theorem 4, we can state

THEOREM 5. Let f(z) be an integral function of finite order  $\rho < k$ , and  $K_n \to \infty$  be a sequence of positive numbers. Then, there exists a sequence of circles  $C_n: |z| = r_n \to \infty$ , such that each  $C_n$  has an arc of length  $> \frac{\pi}{b} \cdot r_n$ , on which  $|f(z)| > K_n$ .

Next, let f(z) be an integral function of order  $\rho < 1/2$ . Then, the set of points z, where |f(z)| < 1, consists of an infinite number of bounded closed domains (islands)  $D_n(n=1,\cdots)$ . Let  $\lambda_n$ ,  $\rho_n$  be respectively the greatest and the least distance between  $D_n$  and the origin z=0. Then,

THEOREM 6. (H. Milloux<sup>2)</sup>).

$$\overline{\lim_{n\to\infty}}\,\frac{\log\lambda_n}{\log\rho_n} \leq \frac{1}{1-2\,\rho}.$$

66 K. Arima

PROOF. By Theorem 3, we have

$$\rho \geq \lim_{n \to \infty} \frac{1}{\log r} \int_{r_0}^r \frac{\pi}{r\theta(r)} dr \geq \overline{\lim_{n \to \infty}} \frac{1}{\log \lambda_n} \int_{\rho_n}^{\lambda_n} \frac{\pi}{r\theta(r)} dr$$

$$\geq \lim_{n \to \infty} \frac{1}{\log \lambda_n} \frac{1}{2} \int_{\rho_n}^{\lambda_n} \frac{dr}{r} = \frac{1}{2} - \frac{1}{2} \lim_{n \to \infty} \frac{\log \rho_n}{\log \lambda_n}.$$

Hence the result.

Finally we shall prove

THEOREM 7. Let f(z) be regular in |z| < 1, and let  $\theta(r)$  be defined as before for the domain D, where |f(z)| > 1. If  $\lim_{r \to \infty} \frac{\theta(r)}{1-r} < 2\pi$ , then, either |f(z)| < 1 in |z| < 1 or

$$\lim_{r\to\infty}\log_2 M(r)/\log\frac{1}{1-r}>0.$$

PROOF. If  $\theta(r) \equiv 0$ , we have |f(z)| < 1 in |z| < 1. Otherwise, we have  $\theta(r) > 0$  for  $r_0 < r < 1$ . Then, by the assumption, there exists a positive number  $\delta$ , such that

$$0 < \theta(r) \le \frac{2\pi}{1+\delta} (1-r)$$
 for  $r_0 < r_1 < r < 1$ .

Then, by a simple calculation, we have

$$\log \left[ \int_{r_1}^{r} \frac{dt}{t} \exp \int_{r_1}^{t} \frac{ds}{s\theta(s)} \right] \ge \delta \cdot \log \frac{1}{1-r} - O(1).$$

Hence, by Theorem 1 applied to  $\log |f(z)|$ , we obtain

$$2 \cdot \log_2 M(r) \ge \log m(r) \ge \delta \cdot \log \frac{1}{1-r} - O(1)$$
,

so that

$$\lim_{r\to\infty}\log_2 M(r)/\log\frac{1}{1-r}\geq \frac{\delta}{2}>0$$
, q.e.d.

## References.

- 1) T. Carleman: Sur une inégalité différentielle dans la théorie des fonctions analytiques, C. r. Acad. Sci. Paris, 196 (1933).
- 2) H. Milloux: Sur les domaines de déterminations infinies des fonctions entières, Acta Math. 61 (1933).