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On maximum modulus of integral functions.

By Kihachiro ARIMA

(Received Dec. 26, 1949)

Let D be a region on the z-plane, which lies in the disc |z| < R
(0<<RX + =), and whose boundary I’ lying in | z| < R consists of a
finite or infinite number of analytic curves clustering nowhere in
|z] <<R. For any 0 <» <R, we denote by D, the part of D lying
in |z]| <7 Let Ax(r) (k=1,---,n(»)) be the arcs of | z|=» <R con-
tained in D, and 7- 6«(») be their lengths.

We define a function 6(») in 0 <» <R as follows: if |z|=7» is
contained wholly in D, then 6(r)= + oo, and, otherwise, B(r)=nzax Ox(7).

Using Carleman’s method?, we shall first prove

THEOREM 1. Swuppose that 6(r) >0 for 0<r,<r< R, and let
u(z) be a harmonic function in D, which is >0 in D and =0 on I.
We put

m(r)= —21; %} S [u (re"“’)]2 dp O0O<r<R)

Ak(r)

and D)= HD [(6 f;‘g r)2+ (Z_:)Z] dlog rdg .

Then, for any 0 < r, r R,
2

D(») = D(r,) exp. j oy ¥
1 r dt ! 27
and m(r)—m(r,) = — D(r,) Sro Tl:exp.gro $8(s) ds:l .
Let f(2) be a regular analytic function in |z| <R < + . While

applying to u(z)zl(;g [ f(z) |, we shall obtain some theorems

on the modulus of f(z). o
PrOOF OF THEOREM 1. Since #=0 on I’, we have, by application

of Green’s formula,
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dm() __ 1 <
M dlog r —7Z§Ak<r)ualogrd ——7: D >0,
@) d’m(r) __ 1 dD(7)

(dlog 7)? w dlogr

L3llGe )+ (25 ] dw>o0.

By Schwarz’ inequality, we have from (1)

( dm_(_r)ﬁ) < om(7) - 7% j pon (_,aL )2d<P

dlogr» olog 7.
1 ou V4,~ 1 (dmbr) Y
(3) or T ;Lk(r)(alogr> dp = 2m(7) <dlogr>'

On the other hand, if 0<{4(r) <2w, we have, by Wirtinger’s in-
equality,

ou > j wdp > ™ g w’d
S. Ay ( a¢> dp = Or(7)? JAaym» P = O(r)? Jay» P
so that

; 1 ‘ou N g~ 2
(4) o % SAk(r) ( 6q)) d¢_~ 0( )2 m(r)
(4) holds also for the case 0(r)=+ .
From (2), (3) and (4), we have

2 dm(r) > 1 (dm_(Q)z_,_ 47?

m(») (dlogrP = m(r? \dlogr o(ry ’
so that, putting log »=¢ and log m(7)=x(t),
ar \? dan
®) B vk =)
Since ‘
d*n \?
d d \Po |, df S (dn ,dn
ar lom e )=+ . <dt> ae ’
‘ dt

and since, by (1) and (2),




64 K. ARIMA

d d \\_ dm(r) /dm(r)
o (log ’ e ) >0

‘ (dlog 7y / dlogr
we have, from (5),

2 (tog 2 ¢ )_>_g;(7;).

Hence, by integration, we obtain the mentioned relations.

THEOREM 2. Let f(z2) be an integral function, and D be the
domain, wheve | f(z2)| > 1. Let 6(r) be defined as beforve for the domain
D, and put M(r)=max |f(2)|. Then, for any 0 < a <1, we have

log, M() > |2V —le, ),

where 0 < ry,< ar and c(a, ry) is independent of r.

PrROOF. We apply Theorem 1 to w(z)=log|f(z)|. Since P(t)

= exp.ﬁo?g(’;)-v ds is an increasing function of #, we have, for any
0<a<,
m(r)—m(r) 2. | Dir)- & PO > 1 ! DGy j PQ) 4
=1 D) Plan || f;’i= L Doy -10g 1 - Plan),
so that
*" ds

-~ —const.

log m(7) = log P(ar)—const.=2 o
r, SO(S

Hence and since
— A_]; 2e y i 2 .
log m(r)=log| _L-{ “(log [ fire) | dpp | <2 - log. M(»),

we have the mentioned result.
THEOREM 3. Let f(2) be an integral function of order p, then

1 r 7T
li j dr.
= rl})l: log » J», 76(r)

Proor. By Theorem 2, we have
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log, M(r) - logar . 1 Lr” dr 0( 1 )

log » logr logar O(r) B ‘log r
so that |
g logeM(7) — .0 1 (" =
=lim /=22 > lim —— — ~-r —dr, .e.d.
= logr s log ar LD 70(7) 4 d-¢

From [Theorem 3, we obtain the following

THEOREM 4. Let f(z) be an integral function of finite order p,
and, for any K> 0, let 0(r)=0(r, K) be defined as before for the domain
where |f(2)| > K. Then,

h_}rg 6(r, K) > 1;— .
If p <<1/2, the above inequality means that there exists a sequence
of circumferences |z |=7s, on each of which |f(z)| > K.
PrOOF. Suppose that, for a 0 <K<+ and for a k(> p),
6(r, K) < w/k would hold for any 7, <7<+ . Then, by [Theorem
3 applied to f(z)/K,; we should have

p=lim L "7 ar=k>op,
7 logr rorol

which 1s a contradiction.

By we can state

THEOREM 5. Let f(2) be an integral function of finite order p <k,
and Kn— o be a sequence of positive numbers. Then, there exists a
sequence of circles Cn: |2 |=rn— oo, such that each Cn has an arc of

length > —Z— - vn, on which | f(2) | > Ka.

Next, let f(z) be an integral function of order p <1/2. Then, the
set of points 2z, where |f(z)| <1, consists of an infinite number of
bounded closed domains (islands) D, (z=1,---). Let A«, p» be respectively
the greatest and the least distance between D. and the origin z=0.
Then,

" THEOREM 6. (H. Milloux?).

~ log An 1
lim =222 <~
n>e logpn — 1—2p
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Proor. By Theorem 3, we have

1 (" = 1 *n
> 1li dr> i -d,
P= n»I2 logrsr 76(r) g n—l:E log An L,, 76(r) 4

gl 1 7”1 snrdr:”l___lﬂlimlggpﬁn_.
me log An 2 by ¥ 2 2 noe logAn

Hence the result.
Finally we shall prove
THEOREM 7. Let f(2) be regular in |z | <1, and let 8(r) be defined

as before for the domain D, where |f(z)|>1. If lim 19(’)<27r,
7 Hoo —r
then, either |f(2)| <<1in |2 <1 or

lim log, M(r)/log 11 >0.
yoo —7r

ProOF. If 6() =0, we have |f(2)| <1 in |z|<1. Otherwise, we
have 6(r) > 0 for »,<7» <1. Then, by the assumption, there exists a
positive number 3§, such that :

0<Zon=< 17 -(1—7») for rn<n<r<1.
Then, by a simple calculation, we have
r dt t 1
1 : = — .
og Url ; exD. Sﬁ sH(s)] 8-log 1 0(1)

Hence, by Theorem 1 applied to log | f(z) ], we obtain
2 - log, M(r) = log m(7) = 8 - log Tl -0,
—7r
so that

lim log, M(r)/ log e > —g—> 0, q.e.d.
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