A remark on the prolongation of Riemann surfaces of finite genus.

By Akira Mori

(Received April 27, 1951)

Let F be an abstract Riemann surface. If there exists no one-valued, regular analytic and non-constant function on F such that its Dirichlet integral taken over F is finite, we shall say that F is a surface of class $N_{\mathfrak{D}}$ (F has "einen hebbaren Rand" in Sario's terminology¹⁾).

If F is of finite genus p, we can map F conformally onto a part \overline{F} of a closed Riemann surface F^* of the same genus²⁾. Then, Nevanlinna stated the following conjecture³⁾:

THEOREM. The prolongation of a Riemann surface F of finite genus p onto a closed Riemann surface F^* is unique, if and only if F is a surface of class $N_{\mathfrak{D}}$.

The "uniqueness" means: if F is mapped conformally onto a part \overline{F} of F^* and a part \overline{F}_1 of F_1^* respectively, then the analytic function which maps \overline{F} onto \overline{F}_1 maps necessarily F^* onto F_1^* .

This conjecture was proved by Ahlfors and Beurling⁴⁾ for the case p=0: A plane region Ω is of class $N_{\mathfrak{D}}$ if and only if every univalent (schlicht) function in Ω is linear. In this note we shall show that the conjecture for an arbitrary p can be easily proved by means of this Ahlfors-Beurling's theorem.

Let E be a bounded closed set of points on the complex z-plane. If any one-valued regular analytic function in a neighbourhood U-E of E with finite Dirichlet integral taken over U-E is regular also on E, we shall say, for convenience' sake, that E is a *null-set of class* $N_{\mathfrak{D}}^{5}$.

We cut F along a non-decomposing system of p analytic loop cuts on F having no points in common with each others, and map the resulting surface of planar character (schlichtartig) conformally onto a domain D on the z-plane, which is bounded by 2p closed analytic curves C_i , C'_i $(i=1, \dots, p)$ and a bounded closed set of points E, so

28 A. Mori

that C_i and C_i' correspond to one and the same loop cut on F and E corresponds to the ideal boundary of F. Let $D^*=D+E$ be the domain bounded by C_i, C_i' $(i=1, \cdots, p)$. Since there exist analytic correspondences between C_i and C_i' , D^* can be regarded as a closed Riemann surface F^* of genus p, while we identify the corresponding points on C_i and C_i' . F is conformally equivalent to the part $\overline{F}=F^*-E$ of F^* .

First we shall prove:

Lemma. F is a surface of class $N_{\mathfrak{D}}$ if and only if the set E is a null-set of class $N_{\mathfrak{D}}$.

The sufficiency of this condition and its necessity for the case p=0 were proved by Sario.⁶⁾

PROOF. Sufficiency. Suppose that E is of class $N_{\mathfrak{D}}$. Let f be a one-valued regular analytic function on F with finite Dirichlet integral taken over F. Then, considered as a function of $z \in D$, f = f(z) is regular also on E. Hence, as a function on F^* , f is everywhere regular, so that $f \equiv \text{const.}$, q. e. d.

Necessity. Suppose that E is not of class $N_{\mathfrak{D}}$. Then there exists a function $\varphi(z)$ one-valued and regular in a neighbourhood U-E of E, which is not everywhere regular on E and whose Dirichlet integral taken over U-E is finite. If E is of positive areal measure, we can choose, as $\varphi(z)$, the function which maps the complement of E onto the corresponding Koebe's minimal slit-domain, whose slits have the areal measure zero as is well-known.

First, suppose that E is totally disconnected. Let E_0 be the closed subset of E consisting of all singular points of $\varphi(z)$ on E. If E is of areal measure zero, the Dirichlet integral of $\varphi(z)$ taken over $U-E_0$ is also finite. The same holds also for the case of positive areal measure by the mentioned choice of $\varphi(z)$. Then, $\varphi(z)$ can have neither poles nor isolated essential singularities, so that E_0 is a totally disconnected perfect set. We divide E_0 into 2p+1 disjoint closed subsets E_k ($k=1, \cdots, 2p+1$) and take a neighbourhood U_k-E_k of E_k for each k, such that $U_k \subset U$, $U_kU_j=0$ ($k \neq j$). We put $\varphi_k(z) \equiv \varphi(z)$ for $z \in U_k-E_k$.

If E contains a continuum γ , we take 2p+1 disjoint sub-continua $E_k(k=1,\dots,2p+1)$ of γ and 2p+1 domains U_k containing E_k as above. In this case, let $\varphi_k(z)$ be an arbitrary function, which is one-valued and regular in U_k-E_k but not everywhere regular in U_k , and whose

Dirichlet integral taken over U_k-E_k is finite. The existence of such functions is obvious.

By the well-known smoothing process, we construct a one-valued regular harmonic function u_k on F^*-E_k , such that $u_k(z)-\Re\varphi_k(z)$ is harmonic throughout U_k . The Dirichlet integral of u_k taken over F^*-E_k is finite. Let v_k be a conjugate harmonic function of u_k . Then u_k+iv_k is one-valued and regular in U_k-E_k .

Let $\alpha_1, \dots, \alpha_{2p}$ be a base of loop cuts on F^* described in $F^* - E = \overline{F}$. v_k has 2p moduli of periodicity $(a_1^{(k)}, \dots, a_{2p}^{(k)})$ along these loop cuts. Then, we can find 2p+1 not all vanishing real numbers c_1, \dots, c_{2p+1} such that

$$\sum_{k=1}^{2p+1} c_k \, a_i^{(k)} = 0 \qquad (i=1, \cdots, 2p)$$

hold. Then $f=\sum c_k(u_k+iv_k)$ is a one-valued, regular and non-constant function on $F^*-\sum E_k\supset F^*-E=\overline{F}$, whose Dirichlet integral taken over \overline{F} is finite. Hence, F is not of class $N_{\mathfrak{D}}$, q. e. d.

Remark. As is seen from the above proof, the Lemma remains valid, if we replace the surface and the null-set of class $N_{\mathfrak{D}}$ by those of class $N_{\mathfrak{B}}$ defined similarly with respect to the family \mathfrak{B} of one-valued, regular and bounded functions.

PROOF OF THE THEOREM,

Sufficiency. Suppose that F is of class $N_{\mathfrak{D}}$, and that F is mapped conformally onto $\overline{F} = F^* - E$ and $\overline{F}_1 = F_1^* - E_1$ respectively. Let D, D^* , D_1 and D_1^* be the corresponding domains on the z-plane. Then, by the conformal mapping $\overline{F} \to F \to \overline{F}_1$, the domain D is mapped onto D_1 . Since $E = D^* - D$ is of class $N_{\mathfrak{D}}$ by the lemma, D^* is necessarily mapped onto D_1^* by this mapping, so that F^* is mapped onto F_1^* , q. e. d.

Necessity. Suppose that F is not of class $N_{\mathfrak{D}}$, so that, by the lemma, the corresponding set $E=D^*-D$ on the z-plane is not of class $N_{\mathfrak{D}}$. Then, again by the lemma (for p=0), the complement \mathcal{Q} of E is not of class $N_{\mathfrak{D}}$. Hence, by Ahlfors-Beurling's theorem, there exists a univalent function $\varphi(z)$ in \mathcal{Q} , which has a pole in \mathcal{Q} and is not everywhere regular on E. Let D_1 be the image of D by $\varphi(z)$, and D_1^* , \overline{F}_1 and F_1^* be the corresponding domain and Riemann surfaces. $\varphi(z)$ provides a conformal mapping of \overline{F} onto \overline{F}_1 . But since

30 A. Mort

 $\varphi(z)$ can not be analytically prolonged onto D^* , it does not map F^* onto F_1^* . Thus, the prolongation of F is not unique, q.e.d.

Mathematical Institute, Tokyo University.

References.

- 1) L. Sario: Über Riemannsche Flächen mit hebbarem Rand, Ann. Acad. Sci. Fennicae A. I. Nr. 50 (1948).
- 2) S. Bochner: Fortsetzung Riemannscher Flächen, Math. Ann. 98 (1928). L. Sario: loc. cit. Also our argument in this note contains a proof of the possibility of such mappings.
- 3) R. Nevanlinna: Eindeutigkeitsfragen in der Theorie der konformen Abbildung. 10. Congr. Math. Scand. Copenhagen 1946.
- 4) L. Ahlfors and A. Beurling: Conformal invariants and function-theoretic null-sets, Acta Math. 83 (1950), Theorem 6.
- 5) Ahlfors-Beurling: loc. cit. The equivalency of our definition with theirs is shown by Theorem 5 there or by the Lemma in this note.
 - 6) L. Sario: loc. cit. Ahlfors-Beurling: loc. cit., Theorem 5.
- 7) C. Neumann: Abelsche Integrale, 2. Aufl. 1884. W. F. Osgood: Lehrbuch der Funktionentheorie II, 2, Kap. 5.