Journal of the Mathematical Society of Japan

Vol. 4, No. 2, October, 1952.

Theorems in the geometry of numbers for Fuchsian groups.

By Masatsugu TSUJI

(Received June 1, 1952)

1. We introduce a non-euclidean metric in |z| < 1 by

$$ds = \frac{2 |dz|}{1 - |z|^2},$$

so that the non-euclidean radius r of a circle $|z| = \rho < 1$ is

$$r = \log \frac{1+\rho}{1-\rho} \tag{1}$$

and the non-euclidean measure $\sigma(E)$ of a measurable set E in |z| < 1 is

$$\sigma(E) = \iint_E \frac{4 r dr d \theta}{(1-r^2)^2} \qquad (z=re^{i\theta}),$$

hence the non-euclidean area of a disc $\Delta: |z| \leq r < 1$ is

$$\sigma(\varDelta) = \frac{4 \pi r^2}{1 - r^2} . \tag{2}$$

Let G be a Fuchsian group of linear transformations, which make |z| < 1 invariant and D_0 be its fundamental domain. Let E be a measurable set in |z| < 1 and E_{ν} ($\nu = 0, 1, 2, \cdots$) be its equivalents by G and $A(r, E_{\nu})$ be the non-euclidean measure of the part of E_{ν} contained in $|z| \leq r$ and put

$$A(r,E) = \sum_{\nu=0}^{\infty} A(r,E_{\nu}).$$
(3)

If $\sigma(D_0) < \infty$, then I have proved in another paper¹⁾ that

$$\int_{0}^{r} \frac{A(r,E)}{r} dr = \frac{2\pi \sigma(E)}{\sigma(D_{0})} \log \frac{1}{1-r} + O(1) \qquad (r \to 1).$$
 (4)

1) M. Tsuji: Theory of Fuchsian groups. Jap. Journ. Math. 21 (1951).

By means of (4), we shall prove

THEOREM 1. Let G be a Fuchsian group and D_0 be its fundamental domain, such that $\sigma(D_0) < \infty$. Let E be a measurable set in |z| < 1. If $\sigma(E) > \sigma(D_0)$, then the equivalents E_{ν} of E overlap.

PROOF. Suppose that E_{ν} do not overlap, then

$$A(r, E) \leq \int_{0}^{r} \int_{0}^{2\pi} \frac{4 t dt d \theta}{(1-t^{2})^{2}} = \frac{4 \pi r^{2}}{1-r^{2}},$$

so that

$$\int_{0}^{r} \frac{A(r, E)}{r} dr \leq 2\pi \log \frac{1}{1-r} + O(1) \qquad (r \to 1),$$

hence by (4),

$$\frac{2 \pi \sigma(E)}{\sigma(D_0)} \log \frac{1}{1-r} + O(1) \leq 2 \pi \log \frac{1}{1-r} + O(1),$$

so that, making $r \to 1$, we have $\sigma(E) \leq \sigma(D_0)$. Hence if $\sigma(E) > \sigma(D_0)$, then E_{ν} overlap.

THEOREM 2. Let G be a Fuchsian group and D_0 be its fundamental domain, such that $\sigma(D_0) < \infty$, and z_{ν} ($\nu = 0, 1, 2, \cdots$) be equivalents of z=0. Let $\Delta: |z| \leq \rho < 1$ be a disc. If

$$\sigma(\varDelta) \ge 4 \ \sigma(D_0) + rac{\sigma^2(D_0)}{\pi}$$
, or $ho \ge \sqrt{1 - rac{4\pi^2}{(\sigma(D_0) + 2\pi)^2}}$,

then Δ contains one z_{ν} (± 0).

This is an analogue of Minkowski's theorem.

PROOF. Let $\Delta_t : |z| \leq t$ $(0 \leq t < 1)$. We increase t from t=0 to t=1 and let ρ be the smallest value of t, such that Δ_{ρ} contains $z_{\nu} (\neq 0)$. We choose ρ_0 , such that the non-euclidean radius of Δ_{ρ_0} is one-half of that of Δ_{ρ} , so that $\log \frac{1-\rho}{1-\rho} = \log \left(\frac{1+\rho_0}{1-\rho_0}\right)^2$, or

$$\rho = \frac{2\rho_0}{1+\rho_0^2} \,. \tag{5}$$

Then the equivalents of Δ_{ρ_0} do not overlap, so that by Theorem 1,

$$\sigma({\scriptscriptstyle {\mathcal I}}_{
ho_0}) = rac{4\pi
ho_0^2}{1\!-\!
ho_0^2} \leq \sigma(D_0)$$
 ,

hence from (5),

190

Theorems in the geometry of numbers for Fuchsian groups.

$$\sigma(\mathcal{A}_{\rho}) = \frac{4\pi\rho^{2}}{1-\rho^{2}} = \frac{16\pi\rho_{0}^{2}}{(1-\rho_{0})^{2}} = \frac{16\pi\rho_{0}^{2}}{1-\rho_{0}^{2}} \left(1 + \frac{\rho_{0}^{2}}{1-\rho_{0}^{2}}\right)$$
$$\leq 4\sigma(D_{0})\left(1 + \sigma(D_{0})/4\pi\right) = 4\sigma(D_{0}) + \sigma^{2}(D_{0})/\pi, \text{ or}$$
$$\rho \leq \sqrt{1 - \frac{4\pi}{(\sigma(D_{0}) + 2\pi)^{2}}}, \qquad (6)$$

so that, if $\sigma(\Delta_{\rho}) > 4\sigma(D_0) + \sigma^2(D_0)/\pi$, then Δ contains one $z_{\nu} (\pm 0)$. If $\sigma(\Delta_{\rho}) = 4\sigma(D_0) + \sigma^2(D_0)/\pi$, then considering a slightly larger disc, we see that \varDelta contains one $z_{\nu} (\pm 0)$. Hence our theorem is proved.

2. We consider special cases of Theorem 2. Let F be a closed Riemann surface of genus $p \ge 2$ spread over the *w*-plane and we map the universal covering surface $F^{(\infty)}$ of F on |z| < 1. Then we have a Fuchsian group G in |z| < 1, whose fundamental domain D_0 is bounded by 4p orthogonal circles to |z|=1, such that $\sigma(D_0)=4\pi(p-1)$. Then (6) becomes $\rho \leq \sqrt{1 - \frac{1}{(2p-1)^2}}$. Hence

THEOREM 3. Let G be a Fuchsian group, which corresponds to aclosed Riemann surface of genus $p \ge 2$. If

$$ho \geq \sqrt{1 - rac{1}{(2p-1)^2}}$$
 ,

then a disc $\Delta : |z| \leq \rho < 1$ contains one $z_{\nu} (\neq 0)$.

Let D_0 be a domain in |z| < 1 bounded by $p(\geq 3)$ orthogonal circles C_i $(i=1, 2, \dots, p)$ to |z|=1, where C_i , C_{i+1} touch each other at a point on |z|=1. We invert D_0 on one of C_i and performing inversions indefinitely, we obtain a modular figure and let G be the group of all inversions and z_{ν} ($\nu = 0, 1, 2, \cdots$) be equivalents of z=0 by G, then D_0 is its fundamental domain, such that $\sigma(D_0) = \pi(p-2)$, hence by Theorem 3, we have

THEOREM 4. If
$$\rho \ge \sqrt{1 - \frac{4}{p^2}}$$
, then a disc $\Delta: |z| \le \rho < 1$ con-

tains one z_{ν} (\mp 0).

3. We divide the z=x+iy-plane by parallel lines x=n and y=m $(n, m=0, \pm 1, \pm 2, \cdots)$ into squares of equal sides, which we call cells. In each cell, let k points be given, which are congruent mod. 1 to those in other cells. We call the totality of these points lattice points. Let E be a measurable set of measure mE. Then we can translate

191

E into *E'*, such that the number of lattice points contained in *E'* is $\geq k m E$ and we can translate *E* into *E''*, such that the number of lattice points contained in *E''* is $\leq k m E^{2}$. We shall prove an analogous theorem for Fuchsian groups.

Let G be a Fuchsian group and D_0 be its fundamental domain, and k points z_0^1, \dots, z_0^k be given in D_0 and z_{ν}^i ($\nu = 0, 1, 2, \dots$) be equivalents of z_0^i . We call the totality of these points lattice points. We call a linear transformation of the form:

$$z' = \frac{z+a}{1+\bar{a}z} \qquad (|a| < 1)$$

a (non-euclidean) translation. Then we shall prove

the number of z_{ν}^{i} contained in a set E is

THEOREM 5. Let G be a Fuchsian group and D_0 be its fundamental domain, such that $\sigma(D_0) < \infty$. Let $\Delta : |z| < \rho_0 < 1$ be a disc, then we can translate Δ into Δ' , such that the number of lattice points contained in Δ' is $\geq k \frac{\sigma(\Delta)}{\sigma(D_0)}$ and we can translate Δ into Δ'' , such that the number of lattice points contained in Δ'' is $\leq k \frac{\sigma(\Delta)}{\sigma(D_0)}$.

PROOF. For a fixed i $(1 \le i \le k)$, we put a mass 1 at each z_{ν}^{i} $(\nu = 0, 1, 2, \cdots)$, then we have a mass distribution μ^{i} in |z| < 1, so that

$$\mu^i(E) = \int_E d \,\mu^i(a) \,.$$

Let T_a : $z' = \frac{z+a}{1+\bar{a}z}$ (|a| < 1) be a translation and put $\Delta(a) = T_a(\Delta)$. If $\Delta(a)$ contains z_{ν}^i , then

$$\left|\frac{a-z_{\nu}^{i}}{1-\bar{z}_{\nu}^{i}a}\right| < \rho_{0}, \qquad (7)$$

so that a is contained in an equivalent A_{ν}^{i} of the disc

²⁾ Blichfeld: A new principle in the geometry of numbers, with some applications. Trans. Amer. Math. Soc. 15 (1914).

M. Tsuji: On Blichfeld's theorem in the geometry of numbers. Jap. Journ. Math. 19 (1948).

Theorems in the geometry of numbers for Fuchsian groups.

$$\Delta_0^i: \left| \frac{z-z_0^i}{1-\bar{z}_0^i z} \right| < \rho_0, \qquad (8)$$

so that

$$\int_{|a| < r} \mu^i (\varDelta(a)) d \sigma(a) = \sum_{\nu=0}^{\infty} A(r, \varDelta_{\nu}^i) = A(r, \varDelta_0^i) .$$

Hence if we put $\mu = \mu^1 + \dots + \mu^k$, then

$$\int_{|a| < r} \mu(\Delta(a)) d\sigma(a) = A(r, \Delta_0^1) + \cdots + A(r, \Delta_0^k),$$

where $\mu(\Delta(a))$ is the number of lattice points contained in $\Delta(a)$. If we put $M = \underset{|a| \leq r}{\operatorname{Max}} \mu(\Delta(a))$, then

$$M \int_{|a| < r} d\sigma(a) = \frac{4 \pi M r^2}{1 - r^2} \ge A(r, \Delta_0^1) + \dots + A(r, \Delta_0^k)$$

We multiply dr/r and integrate on (0, r), then by (4), since $\sigma(\Delta_0^1) = \cdots = \sigma(\Delta_0^k) = \sigma(\Delta)$, we have

$$\begin{split} & 2 \pi M \log \frac{1}{1-r} + O(1) \ge \sum_{i=1}^{k} \frac{2\pi \sigma(\varDelta_{0}^{i})}{\sigma(D_{0})} \log \frac{1}{1-r} + O(1) \\ & = \frac{2\pi k \sigma(\varDelta)}{\sigma(D_{0})} \log \frac{1}{1-r} + O(1) \,, \end{split}$$

hence, making $r \to 1$, we have $M \ge k\sigma(\Delta)/\sigma(D_0)$. Since M is an integer, there exists $a_0 \ (|a_0| < 1)$, such that $M = \mu(\Delta(a_0))$, so that

$$\mu(\Delta(a_0)) \ge k \sigma(\Delta) / \sigma(D_0) . \tag{9}$$

Similarly putting $m = \text{Min } \mu(a(a))$, we have for a suitable a_1 $(|a_1| < 1)$,

$$\mu(\varDelta(a_1)) \leq k \, \sigma(\varDelta) / \sigma(D_0) \;. \tag{10}$$

Hence our theorem is proved.

If k=1 and $\sigma(\Delta) < \sigma(D_0)$, then $\mu(\Delta(a_1))=0$, so that

THEOREM 6. If $\sigma(\Delta) < \sigma(D_0)$, then we can translate Δ into Δ' , such that Δ' does not contain equivalents of z=0.

Mathematical Institute, Tokyo University.

193