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A metamathematical theorem on the theory
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The purpose of this paper is to show that the consistency proof
of a theory of ordinal numbers in the weakened form considered in
G. Gentzen’s logical system LK (cf. Gentzen can be reduced to
that of a weakened theory of ordinal numbers < w®, this latter theory
being considered in a logical system which is obtained in extending
slightly the system LK by the use of the symbol Min: if %a) is a
formula and x is any bound variable not contained in %(a), the figure
Min (x) %(x) is a ‘term’, a figure for a particular object. (We follow
the terminology of Gentzen [1]) What these theories mean, will be
described below by sets of axioms 1.1,---,1.16 and 2.1,---,2.19 respec-
tively. Thus, we shall prove that any set of axioms indicated in
1.1,---, 1.16, containing no special object other than 0, ® and no func-
tion other than ¥ (x indicates an argument-place), is consistent, in
assuming that any set of axioms indicated in 2.1,---,2.19 can not lead
to a contradiction.

To perform this, we shall establish a metatheorem called Repre-
sentation Theorem, which is meaningful in the weakened theory of
ordinal numbers.

Each of 1.12,---,1.16, 2.16,---,2.19 stands for a finite number of
arbitrary axioms of the indicated form, and [z] stands for a row of
symbols of the form Vz;---Vz,; properly we should write A(x, z;,---, 2;)
or Alx,y, z1,-++, 2x) for A(x) or A(x,y) respectively, but it seems impro-
bable that any confusion should occur from our simplified expression.

Some metamathematical lemmas, e.g. the one formulated immedi-
ately below, will be useful in our consideration, but it seems unim-
portant to give all such lemmas used, which are merely explicit and
rather long formulation of mathematicians’ common sense.

LEMMA. Let M;(:=0, 1) be two formulas obtained exactly in the
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same way from formulas %@, -+, a.), €,--,6, by means of logical
operations (7, A, VV, VY or E) and, possibly, of substitution among
variables (for instance, M, is 6,V Vx Ae(x, b, @,,--, @) and My is €;V Vx
(x,b, @, -~ a;)). Then the sequence (cf. Gentzen

Vxl---\ixk(%(xl,--~, xp) — Wpxy,--, xk)) — N, — M, is provable.

A—B means (A —B)NA(B+~A), and A —B means 7 AV B; the
symbols — and +~ have ‘weaker adhering power’ than the other
logical symbols:e.g. AAB+— 7 6 means (AN B) — (7 @), i.e. 7(AADB)
\VV 7 €. Throughout this paper, the last index in a series of figures
T, Tr may be 0, in which case the series is void.

COROLLARY. Let m+1 formulas M (:=0,1,---,m) be as before,
and let B;(j=1,---,m) be the formula

Vxl---ka (Q{O(xl’ Tty xk) = ?Ij(xl’.“’ xk)) :

Then, if m+1 sequences

1" -_ %1'...’ %m
]1____’9%.1, (]21,,1’)2)
are provable, the sequence
I — My
is also provable.
1 (THEORY OF ORDINAL NUMBERS)

1.1 VYx(x=x) (=1is a predicate)

12 0<w (0 and o are special objects; < is a predicate.)
1.3 VxVy(x<yVax=yVy<x)

14 VaVy7 (x=yAzx<y)

1.5 VxVy7(x<y/\y<x)

16 VaVyVz(x<yNny<lzr—2a2<2)

1.7 Vx(0<<xV0=x)

18 VaVyx<yr—a'=yVva<yp) (¥ is a function)
19 Vx(x<<x')

1.10 VaxVy(x'=y ~ x=y)

111 Va(x <o 2 <o)

112 [z]Vx Vy {x=y —(A(x) — A(y))}
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113 [2] V2{u(0) A V3(A(y) — AN A x < o —Ax)}
1.14 [2]Vx{N(0) A Vy{Vau(u <y —A(n)) —A(y)} - Ax)}
1.15 [2]Vu[Vx Vy Vs(U(x, s) A Ay, s) —x=2)
—Ex Vy{Es(U(y, )N s <<u) —y<x}]
1.16 Vau Ev[z][Vx Vy Vs(U(x, s) A Ay, s) — x=y)
—Ex{x <o AVy 7 Ux,y) Ny <u)}]

2. (THEORY OF ORDINAL NUMBERS < »®)
21 Vx(x=x)
22 <o

23 VaVyx<<yVa=yVy<x)
24 VxVy 7 (x=y N x<y)

25 VaVy 7 (x<yAy<x)

26 VaVyVzx <<yNny<zrx<2)

27 Yx(0<Lx)
a<b means a < b\ a=b; a<b and a < b are often written
b > a and b= a respectively.

28 VaVy(x <y <Zy)

29  Valx <x)

210 Vx Vy(a'=y —x=y)

211 Valx <o 2 <o)

212 Vx(x+0=x) (x+x is a function)

213 VYxVyVz(y<<zrzx+y<ax+2z)

214 YaxVyEzx <y r—x+z=y)

215 VxEy{x<<yAVuVo(u<yNv<yr—utv<y)}
2.16 [2]1Vx Vy{x=y — (A(x) — A(¥)}

2.17  [2] Vx{2(0) A Vy(Q(y) — Ay NN x < 0 —A(x)}
218 [z]Vx{an(x) —x = Min (»)A(»)}

2.19 [z] {Ex(x) — % (Min (y) 2(y))}

The series of axioms 2.1,:--,2.19 will be denoted by 77,; but these
axioms will not be written explicitly in the left sides of sequences,
that is, I" — 4 means I’y I’— 4. Also a formula % will be said to be
‘ provable’ when 7I’,— % is provable.
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In order to show formulas to be provable, we shall write the
proofs of formulas % in the usual mathematical language instead of
showing the formal proof-figures to the corresponding sequences /7, — %,
which would cost too much space; thus we procede as if we were
constructing, in a naive stand point, a usual mathematical system from
the axioms 7’y with mathematical ‘ meaning’.

According to 2.18 and 2.19, we have transfinite induction of the
form 1.14, whence we see easily that the following axioms are provable.

31 VaVy(x+y=y) '
32 VYaxVy@x+y'=(x+y))
33 VaVyVz{0 <yAVulu<yrx+uz)—x+y =<z}
34 VxVyVz((x+y)+z=x+(y+2))
35 VaVyVz(x<yr2x2+z2=y+2)
36 Vx(0+x=x)
37 VaVy(r<<oNy<orx+y <o)
- Now we define a special object »” for each concretely given natural
number 7 :
4.1 &)1= @
42 o*''=Min ){e* <zAVaxVyx <<zAy<lz+ x+y<2)}
(n=1,2,3,-)
A ‘definition’ of such type should be understood as follows: w”*!

is an ‘abbreviation’ of the right hand side of 4.2; that is, a formula
Ww?*!) is a formula of the form

A Min 2){w*< zA V2 Vy(x <zAy<z-2x2+y<2)}),

in which x,y,z stand for any bound variables admissible in the con-

struction of formulas.
’From 215, 2.18, 2.19 and 3.7 follow -

51 o*<o”'!
52 VaVy(x <" ANy <ow®"+—2x+y<o®)
53 Vx(x<ow” —X+w?=w").

Now we introduce new functions x—x and egs(*) (* n-th essential
part’ or ‘n-th principal part’ of x) defined as follows
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6.1 a—b=Min(z) (b+z=a)

62 ess(a)=Min (z) (z+o" > a)
Clearly
71 VxVy{x =y +—y+(x—y)=x}
72 Vx(ess ()4 w" > x)
73 Vx(x>>ess(x))
74 VYxVyVz(x=y+z+—z=x—y)
75 VYxVyVz(xa>SyNANy=z—-x—2_>y—2)

Using this function ess (%), we define the following metamathematical
concept.

A function f(x)is called ° periodic of order n’ (n=1, 2, 3,-;-_), when
Va {f(x)=ess (x)+flx—ess (¥) )}
AYa(x << o” - fla) <o) AVxVy (x <y —=flx) < Ay))

is provable.
After some simple calculations, we can show that our new func-

tions ess (x) and x—x have the following properties.
81 VaxVy(x>y — ess (x)ge”ss ().
82 V("> rx—ess(x));

this follows from the provable formula ess (x)+(x—e§s (x))=x< es”s(x)
+ w”, in which (and in similar expressions) the bound variable stands
for an arbitrary free variable not contained in the given figure.

83 {w">x—yAx=yr-yess(®)},
because we have -
x>y > y+x—y)=x,
and so from 5.3
x>y, o >x—y > Y+to"=y+{(x—y)to*}=x+0* >x
whence

x =9, o > xX—Yy -—»yg’éss(x);
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84 ggsl (x+ o) =g§é} (x)
because, from o”tl > x— élgsl (x) and ;5.3 we obtain
0" > (x—68s (%)) + " |
so that 688 (%) + "1 > ess (%) + {(x—688 () + 0"} =% + w” |
and g;é () = ggsl (% + ™).
85 ess (ess (x))=ess (x),

because from 8.4 follows

n+tl = ”

ess (ess (x))=e§é (e”ss () + 0”) = ggé (x).
86 a=b — (a—b)+c=(a+c)—0b,

because a=>b — b+(a—b)+c=a+c.
87 a=c+b — (a—c)—b=a—(c+b),
because a=>c+b — c+{b+({(a—c)—b)}=a.

8.8 ess (a+b)==egs (a)+egs (&).

In fact, if » < e®, this is evidently equivalent with ess (a+ b)=e§s~(a)
and so can be verified in the same way as 8.4.
Therefore we assume b6 = o”. Then

ess (@) tess (b)=a+ ess (b)
and a+egs(b)+w”>a+b
S0 ess (a)+ess (b) = ess (a+b).
On the other hand
(ess (@+b)—a)+w* > (a+b)—a=b
S0 ess (a+5) > a-+ess (b)

and ess (a+b) =e’és (a)+ ess (b).
89 Any periodic function of order » is periodic of order n+1.

PrROOF: Let f(x) be a pe}iodic function of order ». We have only
to prove




152 . ‘ G. TAkEUTI

¥ { flx)=ess (x) +fx —ess (x) )} .
As  ess(x)+flx—ess (x))
—oss (%) + e8s (x—ess 1)) +f((x —ess (%)) —ess (x—ess (x) ) )
— {085 (x) + €8s (X —088 (%))} +f(x— {88 (x)+e8s (x—ess (1)}) ,

n +1 n+l
it is sufficient to prove that ess (x):gss (x)+egs (x—ess(x)).

But (655 (x)— 088 (1)) + o = (e85 () + 0") — 088 (x) > x —ess (x) ,
) ess (x)—’égls (x) = egs (x—ggé (%))
and ess (x) > ass (x)+ess (x—ess (x) ) .

On the other hand we have
n+l ”n n+l n+l ntl
ess (x) +ess (x—ess (%)) + " > ess (x)+(x—ess (x))=x
n+l ”n n+l ”n
and so ess (x) +ess (x—ess (x)) > ess (x) .
ntl ” n+l
Hence ess (x)=ess (x)+ess(x—ess (x)). q.e.d.

810 ess x)+(x— ess (%)) = {ess (x)+(x— ess ()} =
in other words, x’ is a periodic function of order ». (n=1,2,3,:--)

9.1 For any given function f (%), we define new functions f-(x),
fa(x) as follows :

f(@)=Min (z) (f(2) > a)
fu(@)=Min (z) (f(z) = a).

9.2 If f(x) is a periodic function of order », then f2(x) and f(x)
are periodic of order n+1.

PrROOF : We have clearly

f(x+o7) = ess (x+w")=ess (x)+o" > x .

So it is easily verified that f(f5(a)) >a, f(fo(a))=a.
Moreover a+w” = f%a), a+ o™= fo(a).

So if a<le”", then f(a) <o”"! and fD(a)<w

So we have only to prove

fPa)= ess (@)+f“(a— ess (),
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fr(a)=ess (cz)+fm(a—e;s (a)).
We prove this only for f5(x), as the proof for f-(x) goes in the same
way. We have

9.3  fless(a)+b) |
—ess (ess (@) + b) +f((ess (@) +b)—ess (ess (a) +b))
=ess (@) +ess (b)-+£((eSs (@) +b) — (ess (@) +ess (b))
—ess (a) +ess (5)+f(b—ess (b))
:egs‘(a) +£(b),
SO f(egs (@)+f(a— ess (@)))
=ess (@) +£(f"(a—ess ()))
> ess (a) +(a—ess (@) =a,
therefore ess (@)+f E’(cz——egs (@) =fa).
Conversely we have
Fl(eSs (@) +8)—ess (@) =1(b)=F(ess (@) +b)—ess (a),
thus f(b—egs (@))=f(b)— ess (@) provided that 4 > ess (a).
Therefore
AF7 (a)—ess (@) =f(f (@) —ess (@) > a—ess (a)
SO - fﬂ(a)—egs (@) gfm(a—egs (a))
and f“a)=> ess (@) +fD(a——e’§s (@),

Hence fD(a)———e’és (@)+f D(a—e’sz,s (). q.e.d.
From the preceding results follows
94 VaVy{f(»>x—y=f"(x)}
A2 Ny {f () =x —y =fa(x)}
AT Ny{f(y) <x =y <So(x)}
AYxVy{f(y) < x—y <S2(2)}
for an arbitrary periodic function f (X).
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9.5 If f(x), g(x) are periodic of order =, then f(g(x)) is periodic
of order #,

because f(g(x))=F(ess (x) + g(x—ess (x)))=eSs (x) + flg(x—ess (x))) .

THEOREM 1 (REPRESENTATION THEOREM).

Let % (a;,--, @;) be an arbitrary formula consisting solely of V, E, A,
V, 7, x<x, x=x, ¥, special objects, bound variables and a, -, a;.
Then there exists a set of formulas B, (ay,---, @), -+, B, (ay,---, @) consist-
ing solely of A, Vv, <, =, special objects, periodic functions, and
a,,a, ¥, +, 7, ¥V, E, Min and bound variables may be used to
construct a periodic function or a special object, but should be used
nowhere else) such that the following sequence (without free variable)
is provable.

Iy — Nxp N2, (U, -, x8) — By (X, X2)),0 « o

V-V, Ny, -, %) — By (2,7, X)) .

ProoF: Let us call ‘specialized symbols’ the kind of symbols
enumerated above as admissible in B, (ay,---, @), -, Bn(a,--, a,). If
A(ay,---,a;) has no V, E, then our assertion is evident, because X is
periodic and 7 (e=b), 7 (a <b) are equivalent with a< b\ a > b,
a=>b\/ a > b respectively.

So we prove the theorem by induction on the number of V, E, in
A(ay,---, a;). Clearly we may assume that %(a,---,a.) is of the form
Exo (x,a, -, a) or VxW (x,a, -, a;). Since Vx¥ (x,ay,--,a) is equi-
valent with 7 Ex 7 % (x, ay,---, a,), we treat only the case where
A(a,.---a), is of the form Ex ¥ (x, @), -, ap).

By the hypothesis of induction, there exist B, (a,, a1,--, @), -, ¥ (a,,
a, -, a,) consisting of specialized symbols, such that the following
sequence is provable :

— VgV (W (Ko, -, 2) = By (K, o7, X))o - -,
V-V, (W (xo, -+, i) ¥ By (%o, 7, X2)) «
So we can assume that %(ay, -, @) is of the form Ex 8(x, a,, -+, a;,) where
B(ay, @y, -, ;) consists of specialized symbols and, possibly, a,.

According to 89 and 9.5 B(x,a;, -, @) is obtained in combining
figures of the form

f(x) < g(=), f(x)=g(x), flx) < ¢, flx)=¢,
g(x) > t; tl < t21 t1=t2
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by A and \/, where f(x) and g(x) are arbitrary periodic functions and
t, t, ¢, are terms of the form p(a), where p(x) is a periodic function
and @ is one of the free variables a,, --, @, or a special object.

Then we can transform, in virtue of 9.4,

fle) <t to x < faol?)
flx)>t to x =)
flx)=t to x = fo ) N x<SO(F).

So B(«x, ay, -, a;) may be obtained in combining figures
flx) < g(x), Ax)=g(x), x <t, x> t,
x=t, t, <ty L=t

by A and V. (f(x)<g(x), etc. merely indicate the forms of figures
considered.)

Now, the combination of figures by A and \/ can be brought to
a form in which the combination by \/ is executed after the combina-
tion by A is accomplished. We shall call such normal form, the
‘VV—A normal form’, in opposision to another normal form, the
{ A=V normal form’, in which the combination by A, \V are executed
in the inverse order. '

If we transform 8(x, a;, -+, a,) to the \V—A normal form, then we
have clearly a provable formula

Ex8(x, a1, -, a,) — Ex 6y(x, @y, ap) V- VEX 6%, a1,-, ap) ,
where 6,(x, a;,--, @;) has no V, that is, a combination of

flx) < g(=), fx)=g(x), x <t x>t

x=t, 1, <ty L=t

by A alone. Then we can reduce the proof of the theorem to the
case where %(a;, -, ;) is of the form Ex 6(x,a, -, ;) in which 6(x,
ay,-, ay) is of the type described above. After that, we can transform
6(x, ay,---, ap) to 6'(x,a, -, a;) N\ 6" where 6¢'(x,a, -, a;) is a combina-
tion of

fley<<glx), flo)=gx), <t x=t, x>t
by A, and 6" is a combination of #; <t, =t by A. By this reduc-
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tion we can assume, without loss of generality, that 6(x, a;, -, @;) is a
combination of

fx)<gx), fix)=gx), x<t =x=t x>t by A.

Moreover, if 6(x,a, -, a,) contains a figure of the type x=¢, say

x=t;, then Ex€6(x,a, -, a,) is equivalent to a formula obtained in
combining

) <<gltyp), AtH=gts), t;<t, ti=t, t;>t

by A. Therefore the proof is completed if x=¢ appears in 6(x, a;, - az).
So we may assume that 6(x,ay,- -, a;) is a combination of

flx) <<gl), flx)=g(x), 21, x>t by A

If no figures of the type x<t or x>t appear in 6(x,a, -, a),
Ex6&(x,a, -, a.) is of the form Ex 6(x) and we have easily

— Ex@(x)—0=0, ExCx)—0>0
and all is proved.
Therefore we may assume that Ex 6(x, a,---,a@;) is of the form

Ex{x<ty AN NXS,NANXxSEN-Nx > AD(x)}, .

where ®(x) is a combination of f(x) < g(x) and f(x)=g(x) by A and
either m or n is > 1.
Let #,---, ¢, be any permutation of 1,---,#; and let 7}, -+, 7, be any
‘permutation of 1,---,m. Then we have the sequence
— Ex6x, a1, @) —

(aZ St N> = tm NExC(x,ay, -, a)}
\/ .-

Vit Z - St N = Z=2tm NEx 6(x, @y, @)}

AVARRD ' ]
Lt <t 1<t, means, as usual, H <t N\--Nt,.; < t,). Hence
we have only to consider the formula

W< <t A= " NExC(x, a1, @) .
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This is equivalent to
h= SN - ZIPNANEx{x<HNAx >PEAD(x)).
Therefore we may restrict ourselves to the following three types: - -
Ex{x>tAND(x)}
Ex{x <t AD(x)}
Ex{x <t Ax>HADX)},

where ®(x) is of the form flx) < gx)NA-Af'(x)=g'(x)A--- and all
fx), g(x),--, f'(x), g'(x),-- are periodic of order . %

10.1 The case Ex{x >t A D(x)}.
First, let us assume ®(a) i.e.

fla)<g@n-Nf(a)=g'(@)N---.

This implies

egs (a@)+fla— ess (a)) < egs (@) +g(a— ess (@) etc.
and egs (@)+f' (a—egs (@)= ess (@)+ g’ (a-—egs (@) etc.
s Aa—ess (@) < gla—ess (@) etc. |

and fl(a—ess (@) =g'(a—ess (a))  etc.
Hence we have

flt+ " +a)=eSs (t+ 0" +a) +f(E + o+ @) —ess ({+ o™ + a))
—=ess (t+ o™+ a) —'l-f(a—egs(cz))

”n »n
< ess(t+ow”+a)+gla—ess(a)=g(t+ o”+a),
therefore f(i+o”+a) < g+ o*+a) etc. '
After a similar calculation as above, we have

f’(t+w”+a)~(——g’(l+w”+a) etc.
Therefore ®(¢+ o”+ a). ‘Hencef_orth follows
Na) = t+ o +a >t NADt+o”+a)
SO Na) = Ex{x >t NDx)}
and Ex®x) = E@x){x >t ADx)}.

So we have
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- Vy[Ex{x > AD(x)} — 0=0],
Vy[Ex{zx > AD(x)} —0>0],

where { is obtained from ¢ by subs\tituting y for the free variable in
¢t if such a variable exists, or else ¢ is ¢ itself.

10.2 The case Ex{x <tAD(x)}.
Put s,=Min (z) ®(z); s is a special object. Then
Ex®D(x) 2> Ex{x <<tAD(x)} — s, < ¢
SO — Vy[Ex{x <EAD(x)} — s, < £}],
Vy [Ex{x <t AD(x)} = 0>0],
where ¢ has the same meaning as in 10.1. |
10.3 The case Ex{x <<HAx>HENAD(x)}.
We introduce a new function %(x) by
h(a)=Min (2)[{z> a N D(2)} V{7 Ey D(¥) A\ z=a}].

If 7 Ey ®(y), then A(x) is periodic of order 1.
Next we shall assume Ey D(y). We see easily by the same con-
sideration as in 10.1

Vx Ey(y > 2 A D(y)
) Va{h(x) > x N\ D(h(x))}.
So  f(68S (x)+ h(x—ess (x)))=ess (x)+ A h(x—ess (x)))

< a5 (x) + g(h(x—ess (x))) =g (ess (x)+ h(x—ess (x))) .
‘Therefore

Floss (%) + h(x—ess (x))) < g(ess (x) + h(x—ess (x))) etc.
In the similar way we have

Fr(6a8(x) + h(x—ess (x))=g'(6ss () + h(x—ess (1)) etc.
Hence D68 (x) + h(x—ess (%)) .

Therefore 688 (x)+ h(x—eSs (x)) = h(x) .
On the other hand

Fi(x)—ess (x))=F(h(x)) —6sS (x)
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< g(h(x)— 658 (x)=g (h(x)—ess (x)) .

So F(h(x)—ess (x)) < g(h(x)—ess (x)) etc.
In the similar way we have

F/(h(x) —ess (x))= g’ (h(x)—ess (x)) etc.
Therefore D(h(x)— gs:rsf (x)),
s0 h(x)—éss (x) = h(x—éss (x))
and  h(x) 2> ess (x)+ h(x—ess (x)).
This gives, together with ng (x)+ h(x—gsg (%)) = h(x),

1) =088 (%) + h(x—oss (1)) .

Moreover, as Ey ®(y), we may assume ®(a); so, by the same considera-
tion as in 10.1, we have

Da—ess (@) and D+ e*+(a—ess (@)).

Hence h(x) < %+ "+ (a—ess (@), S0
Vx (x < 0™ — h(x) < 0™*).
Thus A(x) is periodic of order n-+1.
Now it is easily verified that
ExD(x) - Ex {x<tHNAXx>LENADX)} — 1> h(ty)
and 7 ExDx)—->Ex{x<HtNANXx>HEAD(x)}—=0>0.
Hence

— Yy, Vy, [Ex{x <ENANE>HLA D(x)} 1 £ > h(t:)1,
Vo Yy [Ex{x <EAx>EHAD(x)} — 0> 0],

where #, or £, is obtained from #, or £, by substituting y, or ¥, for the
variable (if contained) in # or £, respectively. Thus the theorem is
completely proved.
Now we shall prove the consistency of 1.1,---,1.16. Clearly we

have only to prove the following :

11. If Ak, %) contains only x < x and x=x as predicates, ¥ as
function and 0, » as special objects and does not contain Mm -then
1.15 and 1.16 are provable.
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First we prove /13— 1.15. Let [z] be Vz---Vz, and let %A(x,s) be
of the form A(x,s,z, -, 2,). According to theorem 1 there exist
Gk, -, k), -+, Bu(%,---, %) consisting solely of A, \V, <, =, special objects
and periodic functions satisfying the following sequence:

— Vx Vz VZ]_"’VZk{%I(x, Z,21, ", 2p) — @l(x’ 2,21,y zk)} ’

Va Vz Vz--Vz {0, 2, 21,-++,2,) — Culx, 2, 21,707, 20)} .

Therefore we may assume that A(%,---,%) consists of the symbols
enumerated above.
Now we bring %(x, z) (precisely : %A(x, z, z,---, z;)) to the \V—A normal
form
Bilx, 2) V-V Brx, 2) .

Then B,(x, z) has no logical symbol other than A. Clearly we have

Iy, YxVy Vz(U(x, 2) A A(y, 2) — x=1y)
— Vx Vy V2(B,(x, 2) N Bi(y,2) — x=Y).

So, if 1.15 is true for the case when %(x, %) is B;(x, x), i.e. if

Iy, Vx Yy Vz(Bi(x, 2) A\ Bi(y, 2) —x=y)
—ExVyVz{B,(y,2) N2 b~y <x} for each i,
then, together with
VyVz(Bi(y, ) Nz <bry<ca), a<d,

VyVaBr(y, ) Nz bry<c) co<d
— Vy Vz(U(y,2) Nz <b+—y<_d),
we see easily that 1.15 is true in general.
Therefore we have only to prove 1.15 for the case when A(x, z,
a, -, a) is one of the B,(x, z, a,,"-, @), which may be written as
x <fE)NNANx=g(t) N Nx > hts) N\ NADx) NG,

Here each of t,--, %, -, 13, -~ is either one of 2z a,---,a, or a special
object ; f(x),---, g(x),---, h(x),--- are periodic functions; ®(x) has neither
special object nor variable other than x; and € has no x.
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‘If B;(x, z) contains a figure of the form x <f(¢t) or x=g(), we
have easily Ex Vy Vz{8;(y,2) Nz <a+~y < x}, and 1.15 is proved.

If 8;(x, z) does not contain any figure of above forms, then 9B,(x,
z,ay,---, a,) will be of the form

x> h(t) A\ NAD(x) ANE.
Here ®(x) is of the form f(x) < g(x) A---Af(x)=g'(x)--, and f(x),
g(x), -+, (%), g'(x),--- are periodic of order n. [f &> h(t) NN\ D(B)
A ¢ holds, then
b+w"+(b—e’§s (5)) > h(t) NN @(b+w"+(b—egs ) NeE,
and there are two x’s for one z which satisfy B;(x,z). So
I'y, Nx Ny Va(Bi(x, 2) NB(y,2) —x=y) > Vx Vy 7 Bi(x, )

and 1.15 is proved.

Now we shall consider 77— 1.16.  _ -
In the same way as above, we may assume that (x, z) consists solely
of N, VV, <, =, periodic functions, special objects and bound variables.
Suppose that all the periodic functions in A(x,---,%) are of order .
We are going to prove

— [2{Vx Vy Vs (Ax, s) AUy, s) —x=y)
—Ex Vylx a+ o2 A\ 7 (Ux,p) Ny < a))}

where @ is a free variable not contained in A(x, z). It is sufficient to
prove, for each z(i=1,---, L), the sequence

11.1 I, Va Vy VzQUx, 2) AUy, 2)—x=y) -
—EyVaVz{y <<a+w"2A 7 (y<x<atw 2 A\Bx,2) Nz< a)}.

where B,(b, ¢) \V---VBy(b,¢c) is a V—A normal form of %A(b,c) (b and ¢
are free variables not contained in %(x, z)). It is to be noted that

11.2 Y Vy Va(U(x, 2) AUy, 2) ~ x=y)
— Vax Vy Vz(B;(x, 2) AB;(y, 2) —x=y)

is provable. As $B;(x, z) has no logical symbol other than A, we may
and shall assume that it is a combination of figures of the forms

x<lt, x=t, x>t [flo)<gk), fx=gx), D)
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by A, where f(x), g(x) are periodic functions of order # and neither
t nor ®(z) contains x; consequently, if £ contains z, then ¢ should be
of the form #%(z), A(x) being a periodic function of order #n-1.

If ¥;(x,2) contains a figure of the form x < %#(z) or of the form
x=h(z), then

I'y— 7 (@a+ ™1 <bNABi(b, ) Nc< a)
can be proved easily, and 11.1 follows at once. If B,(x,z) does not

contain such a figure, then as 11.2 is provable, we have only to prove
the sequence

113 7'y 6 < - Sitv<a+o"? ity < Z by,
Vx Vy Vz2(Bi(x, 2) N By, 2) — x=y)
= VaVz 7 (ty<x<a+w*"? NBix,2) Nz <a)

for each permutation #,---,%,, of all ¢# without z and for each N,
0N M.

Proof is obvious when ®,(x,z) contains x <_?; or x=¢; for some
7 =< N; in the remaining case we have, as in the last part of the proof
of I'y— 1.15, the provable sequence

Py h < Sity<ato"™? ity X -ty

— {ty<<b<<a+o" 2 N\BLb, c) — Bi(b+ 0"+ + (b—géé ), ©}

Ab < b+ on+(b—ess (b))
and so
Iy < - Stv<ato"™ Sty <X - iy,
Vx Vy Va(Bi(x, 2) A Bi(y, 2) —x=y)
— 7 (v <<b< a+o"? NBi(b, 2))

from which 11.3 follows at once.
Thus 11 and so the consistency of 1.1,---,1.16 is established.

Appendix

In this appendix we prove a metatheorem called Representation
Theorem in the theory of arithmetics. As the theory of arithmetics
we consider the following axioms:
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12 (THEORY OF ARITHMETICS)
121 Vx(x=x)

122 VaVyx<yVa=y\Vy<x)
123 VYxVy 7 (x=y A x <)

124 VaxVy 7 (x<yNny<zx)

125 VaxVyVzx<<yNny<z+—zx<2)
126 V(1< x)

127 VaVyx<yr+=a'<Zy)

128 Vax(x<<x')

129 VxVy('=y —x=y)

1210 VxEy(Q <<x+—3y' =x)

1211 [z]Vx Vy{x=y — (A(x) — A(»))}

(12.11 stands for a finite number of axioms of this kind.)

The series of axioms 12.1,---,12.11 will be denoted by I7,; but in
this appendix these axioms will not be written explicitly in the left
sides of sequences, that is, /'— 4 means [’,, I"— 4. Also a formula
% will be said to be provable when 717, — % is provable.

THEOREM 2 (REPRESENTATION THEOREM).

Let %(ay, -, @) be an arbitrary formula consisting solely of V, E, A,
\, 7, *x<x, x=x, %/, 1, bound variables and a, ---,a;. Then there
exists suitable formula B(a, -, @;) consisting just of A, V, <, =,1, ¥
and @, -, a,, so that the following axiom is provable

Vo oo V(- x2) — B(x1, 5 X))

Proor: From now on, we shall write for convenience’s sake x+#»
for x'~', as usual, where » is the number of ”s in ’---/. In the same
way as in the proof of theorem 1, we can assume that %(a,---, @) is
of the form Ex B(x, ay, -, a;) and B(x, ay,-, a;) is obtained in combining
the figures of the forms

xl...[ < xl...r, x,...fzx/.../’ x/,.., < t, x/..,/=t’ x/.../ > t

by A, where ¢ is of the form a’*/, @ being either 1 or one of the free
variables a, -, aj. '

Clearly we can remove the case where 9B(x,a,- -, @,) contains
x <& or x/'=4x""". Therefore we can assume that B(x, @, -, @)
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is a combination of the figures of the forms
x+1< ¢, x+m=lt, x+n>t by A.

Let m, be the greatest of the numbers /, m and » such that x+1<t,
x+m=t and x+n >t are contained in B(x, @, -, a;).

In virtue of a<b— &’ <b and a=b+— a'=b', ExB(x, ay, -, @) is
equivalent with a formula of the following form

Ex(x+my < N NAx+me=t NNt x+my /),
hence it is equivalent with

Eyimy <<y Ayt N\ Ay=t ANty A+)
or Ey(y<<tin-Ny=toNNAl<yAe)

according as m, is positive or zero.
If this formula contains a figure of the form y=f then Ex 3B(x,
a, -, a,) is equivalent to

mo<t/\t<t1/\.../\t:tz/\.../\t3<t/\... ,

in which m, <t should be omitted when e, is zero, and the theorem
is proved.

Therefore we have only to prove the theorem where Ex®B(x, a;,- -,
a;) is of the form

Ex(x <ty NAx<tug ANB<x NNt X).

In the same way as in the proof of theorem 1 we can reduce this case
to the following three simple cases :

131 Ex(x<<?),
13.2 Ex(t<<x),
133 Ext, <<xNx<2),
where #,, ¢, and ¢ are of the form &’ or 1’"’. Since we have clearly
Ex(x<<t)—1<4, Ext<x)—1=1 and
Ex(tiv<<laxNnx<ltb)—t;<t,

the theorem is completely proved.
From theorem 2 follows immediately
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THEOREM 3.

Let % be an arbitrary formula consisting solely of V, E, A, V, 7,
x <%, ¥x=x, ¥/, 1 and bound variables. Then either 77, — % is provable
or I"',— 7 A is provable.

In terminating, the author wishes to express his thanks to Mr.
T. Iwamura, who has discussed on the subject with him, and given him
valuable remarks.
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