On the uniform distribution of numbers mod. 1.

By Masatsugu TSUJI

(Received October 6, 1952)

1. Let $\{x_n\}$ $(n=1, 2, \cdots)$ be a sequence of real numbers and put

$$\bar{x}_n = x_n - [x_n], \quad 0 \le \bar{x}_n < 1.$$

Let I be an interval in [0, 1] and |I| be its length and n(I) be the number of \bar{x}_{ν} ($\nu=1, 2, \dots, n$) contained in I. If for any I

$$\lim_{n\to\infty}\frac{n(I)}{n}=|I|, \qquad (2)$$

then $\{x_n\}$ is called to be uniformly distributed mod. 1.

The following theorems are known.

THEOREM 1 (Weyl)¹⁾. The necessary and sufficient condition that $\{x_n\}$ is uniformly distributed mod. 1 is that for any R-integrable function f(x) in [0, 1],

$$\lim_{n\to\infty}\frac{f(\bar{x}_1)+\cdots+f(\bar{x}_n)}{n}=\int_0^1f(x)dx.$$

THEOREM 2 (Weyl)²⁾. The necessary and sufficient condition that $\{x_n\}$ is uniformly distributed mod. 1 is that for $m=0, \pm 1, \pm 2, \cdots$

$$\sum_{\nu=1}^{n} e^{2\pi m x_{\nu} i} = o(n).$$

THEOREM 3 (van der Corput)³⁾. Let $g_h(t) = g(t+h) - g(t)$ ($h=1, 2, \cdots$). If $\{g_h(n)\}$ is uniformly distributed mod. 1 for any h, then $\{g(n)\}$ is uniformly distributed mod. 1.

^{1), 2).} H. Weyl: Über die Gleichverteilung von Zahlen mod. 1, Math. Ann. 77 (1916).

³⁾ J.G. van der Corput: Diophantische Ungleichungen, I, Zur Gleichverteilung modulo Eins, Acta Math. 56 (1931).

THEOREM 4 (Fejér)⁴⁾. Let g(t) > 0 be a continuous increasing function with a continuous derivative g'(t) for $1 \le t < \infty$ and satisfy the following conditions:

- (i) $g(t) \rightarrow \infty$, as $t \rightarrow \infty$,
- (ii) $g'(t) \rightarrow 0$ monotonically, as $t \rightarrow \infty$,
- (iii) $tg'(t) \rightarrow \infty$, as $t \rightarrow \infty$.

Then $\{g(n)\}\$ is uniformly distributed mod. 1.

We shall give a simple proof of Theorem 4.

PROOF. By Euler's summation formula, if we put $P_1(t) = [t] - t + \frac{1}{2}$,

$$\sum_{\nu=1}^{n} e^{2\pi mg(\nu)i} = \int_{1}^{n} e^{2\pi mg(t)i} dt + \frac{1}{2} \left(e^{2\pi mg(n)i} + e^{2\pi mg(1)i} \right) - \int_{1}^{n} P_{1}(t) \frac{d}{dt} \left(e^{2\pi mg(t)i} \right) dt$$

$$= \int_{1}^{n} e^{2\pi mg(t)i} dt + O(1) + O\left(\int_{1}^{n} g'(t) dt \right). \tag{1}$$

By condition (ii),

$$\int_{1}^{n} g'(t)dt = o(n). \tag{2}$$

Since by condition (ii) 1/g'(t) is monotone,

$$2\pi m i \int_{1}^{n} e^{2\pi m g(t)i} dt = 2\pi m i \int_{1}^{n} e^{2\pi m g(t)i} \frac{g'(t)}{g'(t)} dt$$

$$= \left[\frac{e^{2\pi m g(t)i}}{g'(t)} \right]_{1}^{n} - \int_{1}^{n} e^{2\pi m g(t)i} \frac{d}{dt} \left(\frac{1}{g'(t)} \right) dt$$

$$= O\left(\frac{1}{g'(n)} \right) + O\left(\int_{1}^{n} \frac{d}{dt} \left(\frac{1}{g'(t)} \right) dt \right)$$

$$= O\left(\frac{1}{g'(n)} \right) + O\left(\frac{1}{g'(n)} \right) = O\left(\frac{1}{g'(n)} \right) = o(n)$$

$$(3)$$

by condition (iii).

Hence by (1), (2) and (3)

$$\sum_{\nu=1}^{n} e^{2\pi mg(\nu)i} = o(n), q. e. d.$$

REMARK. Hence $\{an^{\sigma}\}$ $(a>0, 0<\sigma<1)$ and $\{a(\log n)^{\sigma}\}$ $(a>0, \sigma>1)$ are uniformly distributed mod. 1.

⁴⁾ Pôlya-Szegö: Aufgaben u. Lehrsätze, I, S. 72, Berlin (1926).

Let $g(t)=at^{\sigma}$ $(a>0, \sigma>0)$ and $\Delta_h g=g_h(t)=g(t+h)-g(t)$. If σ is not an integer, then if we apply the operation Δ_h $[\sigma]$ -times, then σ can be reduced to $0<\sigma<1$. Hence by Theorem 3, $\{an^{\sigma}\}$ $(a>0, \sigma>0)$ is uniformly distributed mod. 1, if σ is not an integer. If σ is an integer and a is irrational, then as is well known, $\{an^{\sigma}\}$ is uniformly distributed mod. 1.

 $\{\log n\}$ is not uniformly distributed mod. 1 as is seen as follows. We put $g(t) = \log t$, then as before,

$$\sum_{\nu=1}^{n} e^{2\pi mg(\nu)i} = \int_{1}^{n} e^{2\pi mg(t)i} dt + o(n) = \frac{n^{2\pi mi+1}}{2\pi mi+1} + o(n) + o(n).$$

Concerning the distribution of $\{\log n\}$, cf. Theorem 9.

2. We generalize the notion of uniform distribution mod. 1 as follows. Let $\lambda_n > 0$ be a sequence, which satisfies the following

condition (A): (i)
$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n > 0$$
, (ii) $\sum_{n=1}^{\infty} \lambda_n = \infty$. (1)

Let I be an interval in [0, 1] and $\varphi(x)$ be its characteristic function, such that $\varphi(x)=1$ for $x \in I$ and $\varphi(x)=0$ elsewhere. If for any I

$$\lim_{n\to\infty} \frac{\lambda_1 \varphi(\bar{x}_1) + \dots + \lambda_n \varphi(\bar{x}_n)}{\lambda_1 + \dots + \lambda_n} = |I|, \qquad (2)$$

then we say that $\{x_n\}$ is $\{\lambda_n\}$ -uniformly distributed mod. 1. The uniform distribution mod. 1 is a special case, where $\lambda_n=1$ $(n=1, 2, \cdots)$.

Similarly as Weyl, we can prove the following theorems.

THEOREM 5. The necessary and sufficient condition that $\{x_n\}$ is $\{\lambda_n\}$ -uniformly distributed mod. 1 is that, for any R-integrable function f(x) in [0, 1],

$$\lim_{n\to\infty}\frac{\lambda_1 f(\bar{x}_1)+\cdots+\lambda_n f(\bar{x}_n)}{\lambda_1+\cdots+\lambda_n}=\int_0^1 f(x)dx.$$

THEOREM 6. The necessary and sufficient condition that $\{x_n\}$ is $\{x_n\}$ -uniformly distributed mod. 1 is that for $m=0, \pm 1, \pm 2, \cdots$

$$\sum_{\nu=1}^{n} \lambda_{\nu} e^{2\pi m x_{\nu} i} = o\left(\sum_{\nu=1}^{n} \lambda_{\nu}\right).$$

We shall prove

THEOREM 7. Let $\{x_n\}$ be uniformly distributed mod. 1. If $\{\lambda_n\}$ satisfies the condition (A), then $\{x_n\}$ is $\{\lambda_n\}$ -uniformly distributed mod. 1. More generally, let $\{\lambda_n\}$ and $\{\mu_n\}$ satisfy the condition (A) and $\lambda_n=a_n\mu_n$, where $a_1\geq a_2\geq \cdots \geq a_n>0$. If $\{x_n\}$ is $\{\mu_n\}$ -uniformly distributed mod. 1, then $\{x_n\}$ is $\{\lambda_n\}$ -uniformly distributed mod. 1.

PROOF. Let
$$\sigma_{n} = \sum_{\mu=1}^{n} \mu_{\nu} e^{2\pi m x_{\nu} i}$$
, then $\sigma_{n} = o\left(\sum_{\nu=1}^{n} \mu_{\nu}\right)$.

$$\left|\sum_{\nu=1}^{n} \lambda_{\nu} e^{2\pi m x_{\nu} i}\right| = \left|\sum_{\nu=1}^{n} a_{\nu} \mu_{\nu} e^{2\pi m x_{\nu} i}\right| = |a_{1}\sigma_{1} + a_{2}(\sigma_{2} - \sigma_{1}) + \dots + a_{n}(\sigma_{n} - \sigma_{n-1})|$$

$$= |\sigma_{1}(a_{1} - a_{2}) + \dots + \sigma_{n-1}(a_{n-1} - a_{n}) + \sigma_{n} a_{n}|$$

$$\leq |\sigma_{1}|(a_{1} - a_{2}) + \dots + |\sigma_{n-1}|(a_{n-1} - a_{n}) + |\sigma_{n}| a_{n}$$

$$= o[(\mu_{1}(a_{1} - a_{2}) + (\mu_{1} + \mu_{2})(a_{2} - a_{3}) + \dots + (\mu_{1} + \dots + \mu_{n-1})(a_{n-1} - a_{n}) + (\mu_{1} + \dots + \mu_{n})a_{n})] = o\left(\sum_{\nu=1}^{n} a_{\nu} \mu_{\nu}\right) = o\left(\sum_{\nu=1}^{n} \lambda_{\nu}\right), \text{ q. e. d.}$$

3. Let $\lambda_n = \lambda(n)$, where $\lambda(t) > 0$ is a continuous decreasing function with a continuous derivative $\lambda'(t)$ for $1 \le t < \infty$, such that

$$\sum_{\nu=1}^{n} \lambda_{\nu} \sim \int_{1}^{n} \lambda(t) dt \to \infty \qquad (n \to \infty). \tag{1}$$

We shall prove an analogue of Theorem 4.

THEOREM 8. Let g(t) > 0 be a continuous increasing function with a continuous derivative g'(t) for $1 \le t < \infty$ and satisfy the following conditions:

- (i) $g(t) \rightarrow \infty$, as $t \rightarrow \infty$.
- (ii) $g'(t) \rightarrow 0$ monotonically, as $t \rightarrow \infty$.
- (iii) $g'(t)/\lambda(t)$ is monotone for $t \ge t_0$,
- (iv) $\frac{g'(t)}{\lambda(t)} \int_{1}^{t} \lambda(t)dt \to \infty$, as $t \to \infty$.

Then $\{g(n)\}\ is\ \{\lambda_n\}$ -uniformly distributed mod. 1.

PROOF. As in the proof of Theorem 4,

$$\sum_{\nu=1}^{n} \lambda(\nu) e^{2\pi mg(\nu)i} = \int_{1}^{n} \lambda(t) e^{2\pi mg(t)i} dt + \frac{1}{2} [(\lambda(n) e^{2\pi mg(n)i} + \lambda(1) e^{2\pi mg(1)i})]$$

$$\begin{split} &-\int_{1}^{n}P_{1}(t)\frac{d}{dt}(\lambda(t)e^{2\pi m\mathcal{B}(t)i})dt\\ =&\int_{1}^{n}\lambda(t)e^{2\pi m\mathcal{B}(t)i}dt+O(1)+O\Big(\int_{1}^{n}(|\lambda'(t)|+\lambda(t)\mathcal{B}'(t))dt\Big)\\ =&\int_{1}^{n}\lambda(t)e^{2\pi m\mathcal{B}(t)i}dt+O(1)+o\Big(\int_{1}^{n}\lambda(t)dt\Big)\\ =&\int_{1}^{n}\lambda(t)e^{2\pi m\mathcal{B}(t)i}dt+o\Big(\int_{1}^{n}\lambda(t)dt\Big)\,. \end{split}$$

$$\begin{split} 2\pi m i \int_{1}^{n} \lambda(t) e^{2\pi m g(t)i} dt &= 2\pi m i \int_{1}^{n} \frac{\lambda(t)}{g'(t)} e^{2\pi m g(t)i} g'(t) dt \\ &= \left[\frac{\lambda(t)}{g'(t)} e^{2\pi m g(t)i} \right]_{1}^{n} - \int_{1}^{n} e^{2\pi m g(t)i} \frac{d}{dt} \left(\frac{\lambda(t)}{g'(t)} \right) dt \\ &= O\left(\frac{\lambda(n)}{g'(t)} \right) + O\left(\int_{1}^{n} \frac{d}{dt} \left(\frac{\lambda(t)}{g'(t)} \right) dt \right) \\ &= O\left(\frac{\lambda(n)}{g'(n)} \right) + O\left(\frac{\lambda(n)}{g'(n)} \right) + O(1) = O\left(\frac{\lambda(n)}{g'(n)} \right) + O(1) = o\left(\int_{1}^{n} \lambda(t) dt \right). \end{split}$$

Hence

$$\sum_{\nu=1}^{n} \lambda(\nu) e^{2\pi m g(\nu)i} = o\left(\int_{1}^{n} \lambda(t) dt\right) = o\left(\sum_{\nu=1}^{n} \lambda_{\nu}\right), \quad \text{q. e. d.}$$

4. As a special case, we take

$$\lambda(t) = \frac{1}{t}, \quad \int_{1}^{t} \lambda(t)dt = \log t, \tag{1}$$

then conditions (iii), (iv) become:

- (iii) tg'(t) is monotone for $t \ge t_0$,
- (iv) $t \log t \ g'(t) \rightarrow \infty$, as $t \rightarrow \infty$.

Next we take

$$\lambda(t) = \frac{1}{t \log t \log_2 t \cdots \log_{k-1} t}, \quad \int_0^t \lambda(t) dt = \log_k t, \quad (2)$$

where $\log_k t = \log(\log_{k-1} t)$. Then conditions (iii), (iv) become:

(iii) $t \log t \cdots \log_{k-1} t \ g'(t)$ is monotone for $t \ge t_0$,

(iv) $t \log t \cdots \log_k t \ g'(t) \to \infty$, as $t \to \infty$.

Hence we have

THEOREM 9. Let g(t) > 0 be a continuous increasing function with a continuous derivative g'(t) for $1 \le t < \infty$ and satisfy the following conditions:

- (i) $g(t) \rightarrow \infty$, as $t \rightarrow \infty$,
- (ii) $g'(t) \rightarrow 0$ monotonically, as $t \rightarrow \infty$,
- (iii) tg'(t) is monotone for $t \ge t_0$,
- (iv) $t \log t \ g'(t) \rightarrow \infty$, as $t \rightarrow \infty$.

Then $\{g(n)\}\$ is $\left\{\frac{1}{n}\right\}$ -uniformly distributed mod. 1.

If conditions (iii), (iv) be replaced by

- (iii) $t \log t \cdots \log_{k-1} t \ g'(t)$ is monotone for $t \ge t_0$,

(iv) $t \log t \cdots \log_k t \ g'(t) \to \infty$, as $t \to \infty$, then $\{g(n)\}$ is $\left\{\frac{1}{n \log n \cdots \log_{k-1} n}\right\}$ -uniformly distributed mod. 1.

Hence if $g(t)=at^{\sigma}(\log t)^{\sigma_1}(a>0, 0\leq \sigma<1)\to \infty$ as $t\to\infty$, i.e. the first one of σ , σ_1 , which is not zero, is positive, then $\{g(n)\}$ is $\{\frac{1}{n}\}$ -uniformly distributed mod. 1.

If $g(t) = at^{\sigma}(\log t)^{\sigma_1} \cdots (\log_k t)^{\sigma_k} (a > 0, 0 \le \sigma < 1) \to \infty$ as $t \to \infty$, i. e. the first one of σ , σ_1 , ..., σ_k , which is not zero, is positive and other σ_i may be $\geqq 0$, then $\{g(n)\}$ is $\{\frac{1}{n \log n \cdots \log_{k-1} n}\}$ -uniformly distributed mod. 1. In Theorem 11, we shall prove that σ may be ≥ 1 .

5. In order to prove an analogue of Theorem 3, we shall first prove an extension of van der Corput's lemma by modifying his proof.

LEMMA. Let u(x) be defined for $x=1, 2, \dots, n$ and $\overline{u}(x)$ be its conjugate complex and $\lambda_{\nu} > 0 \ (\nu = 1, 2, \cdots)$. Then for $q = 1, 2, \cdots$

$$\begin{aligned} q^2 \bigg| \sum_{\nu=1}^n \lambda_{\nu} u(\nu) \bigg|^2 \Big/ \sum_{\nu=1}^{n+q-1} \lambda_{\nu} & \leq \sum_{\nu=1}^n \left(\frac{1}{\lambda_{\nu}} + \dots + \frac{1}{\lambda_{\nu+q-1}} \right) \lambda_{\nu}^2 |u(\nu)|^2 \\ & + 2 \Re \bigg[\sum_{h=1}^{q-1} \sum_{\nu=1}^{n-h} \lambda_{\nu} \lambda_{\nu+h} \left(\frac{1}{\lambda_{\nu+h}} + \dots + \frac{1}{\lambda_{\nu+q-1}} \right) u(\nu) \overline{u}(\nu+h) \bigg]. \end{aligned}$$

PROOF. We extend the domain of definition of u(x) outside [1, n]

by putting u(x)=0 for x<1 and x>n. Then

$$q\sum_{\nu=1}^{n}\lambda_{\nu}u(\nu)=\sum_{\sigma=1}^{n+q-1}\sum_{\mu=0}^{q-1}\lambda_{\sigma-\mu}u(\sigma-\mu), \qquad (1)$$

so that

$$q^{2} \left| \sum_{\nu=1}^{n} \lambda_{\nu} u(\nu) \right|^{2} \leq \left(\sum_{\sigma=1}^{n+q-1} \left| \sum_{\mu=0}^{q-1} \lambda_{\sigma-\mu} u(\sigma-\mu) \right| \right)^{2} \leq \sum_{\sigma=1}^{n+q-1} \lambda_{\sigma} \left(\sum_{\sigma=1}^{n+q-1} \frac{1}{\lambda_{\sigma}} \left| \sum_{\mu=0}^{q-1} \lambda_{\sigma-\mu} u(\sigma-\mu) \right|^{2} \right). \tag{2}$$

Hence

$$q^{2} \left| \sum_{\nu=1}^{n} \lambda_{\nu} u(\nu) \right|^{2} / \sum_{\nu=1}^{n+q-1} \lambda_{\nu} \leq \sum_{\sigma=1}^{n+q-1} \frac{1}{\lambda_{\sigma}} \left(\sum_{\mu=0}^{q-1} \lambda_{\sigma-\mu} u(\sigma-\mu) \sum_{\nu=0}^{q-1} \lambda_{\sigma-\nu} \overline{u}(\sigma-\nu) \right)$$

$$= \sum_{\sigma=1}^{n+q-1} \frac{1}{\lambda_{\sigma}} \left(\sum_{\mu=0}^{q-1} \sum_{\nu=0}^{q-1} \lambda_{\sigma-\mu} \lambda_{\sigma-\nu} u(\sigma-\mu) \overline{u}(\sigma-\nu) \right) = \sum_{\sigma=1}^{n+q-1} \frac{1}{\lambda_{\sigma}} \left(\sum_{\mu=0}^{q-1} \sum_{\nu=0}^{q-1} \right)$$

$$+ \sum_{\sigma=1}^{n+q-1} \frac{1}{\lambda_{\sigma}} \left(\sum_{\mu=0}^{q-1} \sum_{\nu=0}^{q-1} \right) + \sum_{\sigma=1}^{n+q-1} \frac{1}{\lambda_{\sigma}} \left(\sum_{\mu=0}^{q-1} \sum_{\nu=0}^{q-1} \right) = \sum_{1} + \sum_{2} + \sum_{3}$$

$$= \sum_{1} + 2\Re(\sum_{2}). \tag{3}$$

$$\sum_{1} = \sum_{\sigma=1}^{n+q-1} \frac{1}{\lambda_{\sigma}} \left(\sum_{\mu=0}^{q-1} \lambda_{\sigma-\mu}^{2} |u(\sigma-\mu)|^{2} \right) = \sum_{\sigma=1}^{n+q-1} \frac{1}{\lambda_{\sigma}} \left(\sum_{x=\sigma-q+1}^{\sigma} \lambda_{x}^{2} |u(x)|^{2} \right)$$

$$= \sum_{x=1}^{n} \left(\frac{1}{\lambda_{x}} + \dots + \frac{1}{\lambda_{x+q-1}} \right) \lambda_{x}^{2} |u(x)|^{2}. \tag{4}$$

If we put $\sigma-\mu=x$, $\sigma-\nu=x+h$, $h=\mu-\nu$ $(h=1, 2, \dots, q-1)$ in

$$\sum_{2} = \sum_{\sigma=1}^{n+q-1} \frac{1}{\lambda_{\sigma}} \left(\sum_{\substack{\mu=0 \ \nu=0 \ (\nu < \mu)}}^{q-1} \sum_{\nu=0}^{q-1} \lambda_{\sigma-\mu} \lambda_{\sigma-\nu} u(\sigma-\mu) \overline{u}(\sigma-\nu) \right),$$

then

$$\sum_{2} = \sum_{h=1}^{q-1} \left(\sum_{\sigma=1}^{n+q-1} \frac{1}{\lambda_{\sigma}} \left(\sum_{x=\sigma-q+1}^{\sigma-h} \lambda_{x} \lambda_{x+h} u(x) \overline{u}(x+h) \right) \right)$$

$$= \sum_{h=1}^{q-1} \sum_{x=1}^{n-h} \lambda_{x} \lambda_{x+h} \left(\frac{1}{\lambda_{x+h}} + \dots + \frac{1}{\lambda_{x+q-1}} \right) u(x) \overline{u}(x+h). \tag{5}$$

By (3), (4) and (5), the lemma is proved.

6. Now we shall prove an analogue of Theorem 3.

THEOREM 10. Let $\{\lambda_n\}$ satisfy the condition (A) and further the condition that $\frac{\lambda_n}{\lambda_{n+k}}$ is a decreasing function of n for $k=1, 2, \cdots$. Let $g_h(t)=g(t+h)-g(t)$ $(h=1, 2, \cdots)$. If $\{g_h(n)\}$ is $\{\lambda_n\}$ -uniformly distributed mod. 1 for any h, then $\{g(n)\}$ is $\{\lambda_n\}$ -uniformly distributed mod. 1.

PROOF. We put $u(x)=e^{-2\pi mg(x)i}$, then $u(x)\overline{u}(x+h)=e^{2\pi mg}h^{(x)i}$. Hence by the lemma, since |u(x)|=1,

$$q^{2} \left| \sum_{\nu=1}^{n} \lambda_{\nu} u(\nu) \right|^{2} \left| \sum_{\nu=1}^{n+q-1} \lambda_{\nu} \leq \sum_{\nu=1}^{n} \left(\frac{1}{\lambda_{\nu}} + \dots + \frac{1}{\lambda_{\nu+q-1}} \right) \lambda_{\nu}^{2} + 2 \Re \left[\sum_{h=1}^{q-1} \sum_{\nu=1}^{n-h} \lambda_{\nu} \lambda_{\nu+h} \left(\frac{1}{\lambda_{\nu+h}} + \dots + \frac{1}{\lambda_{\nu+q-1}} \right) e^{2\pi m g} h^{(\nu)i} \right] = \sum_{1} + 2 \Re \left(\sum_{2} \right).$$
 (1)

Since $\frac{\lambda_{\nu}}{\lambda_{\nu+k}}$ is a decreasing function of ν ,

$$\sum_{1} \leq q O\left(\sum_{\nu=1}^{n} \lambda_{\nu}\right). \tag{2}$$

By the hypothesis,

$$s_n = \sum_{\nu=1}^n \lambda_{\nu} e^{2\pi m g_{h(\nu)i}} = o\left(\sum_{\nu=1}^n \lambda_{\nu}\right). \tag{3}$$

If we put

$$a_{\nu} = \lambda_{\nu+h} \left(\frac{1}{\lambda_{\nu+h}} + \dots + \frac{1}{\lambda_{\nu+a-1}} \right), \tag{4}$$

then since $\frac{\lambda_{\nu}}{\lambda_{\nu+k}}$ is a decreasing function of ν , a_{ν} is a decreasing function of ν , so that

$$\begin{split} \left| \sum_{\nu=1}^{n-h} \lambda_{\nu} \lambda_{\nu+h} \left(\frac{1}{\lambda_{\nu+h}} + \dots + \frac{1}{\lambda_{\nu+q-1}} \right) e^{2\pi m g_{h}(\nu)i} \right| &= \left| \sum_{\nu=1}^{n-h} a_{\nu} \lambda_{\nu} e^{2\pi m g_{h}(\nu)i} \right| \\ &= \left| a_{1} s_{1} + a_{2} (s_{2} - s_{1}) + \dots + a_{n-h} (s_{n-h} - s_{n-h-1}) \right| \\ &= \left| s_{1} (a_{1} - a_{2}) + \dots + s_{n-h-1} (a_{n-h-1} - a_{n-h}) + s_{n-h} a_{n-h} \right| \\ &\leq \left| s_{1} \left| (a_{1} - a_{2}) + \dots + a_{n-h-1} \right| (a_{n-h-1} - a_{n-h}) + \left| s_{n-h} \right| a_{n-h} \end{split}$$

$$= o[(\lambda_{1}(a_{1}-a_{2})+(\lambda_{1}+\lambda_{2})(a_{2}-a_{3})+\cdots + (\lambda_{1}+\cdots+\lambda_{n-h-1})(a_{n-h-1}-a_{n-h})+(\lambda_{1}+\cdots+\lambda_{n-h})a_{n-h})]$$

$$= o(\sum_{\nu=1}^{n-h}a_{\nu}\lambda_{\nu}) = o(\sum_{\nu=1}^{n}\lambda_{\nu}).$$
(5)

Hence by (1), (2) and (5)

$$q^2 \Big(\Big| \sum_{\nu=1}^n \lambda_{\nu} u(\nu) \Big| \Big/ \sum_{\nu=1}^n \lambda_{\nu} \Big)^2 \le O(q) + o(1)$$
 as $n \to \infty$,

so that

$$q^2 \overline{\lim}_{n \to \infty} \left(\left| \sum_{\nu=1}^n \lambda_{\nu} u(\nu) \right| / \sum_{\nu=1}^n \lambda_{\nu} \right)^2 \le O(q)$$
.

Hence, for $q \to \infty$, we have

$$\sum_{\nu=1}^{n} \lambda_{\nu} u(\nu) = o\left(\sum_{\nu=1}^{n} \lambda_{\nu}\right), \quad \text{q. e. d.}$$

7. As an application of Theorem 10, we shall prove

THEOREM 11. Let $g(t) = at^{\sigma}(\log t)^{\sigma_1}(a > 0, |\sigma_1| \neq 0) \to \infty$ as $t \to \infty$, i.e., the first one of σ , σ_1 , which is not zero, is positive. Then $\{g(n)\}$ is $\{\frac{1}{n}\}$ -uniformly distributed mod. 1.

Let $g(t)=at^{\sigma}(\log t)^{\sigma_1}\cdots(\log_k t)^{\sigma_k}$ $(a>0, |\sigma_1|+\cdots+|\sigma_k|\neq 0)\to\infty$ as $t\to\infty$, i.e., the first one of σ , σ_1 , \cdots , σ_k , which is not zero, is positive and other σ_i may $be\geq 0$. Then $\{g(n)\}$ is $\{\frac{1}{n\log n\cdots\log_{k-1} n}\}$ -uniformly distributed mod. 1.

PROOF. We have already proved the case $0 \le \sigma < 1$, hence we assume that $\sigma \ge 1$. Let

$$\lambda(t) = \frac{1}{t \log t \cdots \log_{k-1} t}, \qquad (1)$$

then, for $a=1, 2, \dots$,

$$\frac{\lambda(t)}{\lambda(t+a)} = \frac{t+a}{t} \frac{\log(t+a)}{\log t} \cdots \frac{\log_{k-1}(t+a)}{\log_{k-1} t}.$$
 (2)

Since each factor of (2) is a decreasing function of t, $\frac{\lambda(t)}{\lambda(t+a)}$ is a

decreasing function of t, so that $\lambda_n = \lambda(n)$ satisfies the condition of Theorem 10.

$$\Delta_h g(t) = g_h(t) = g(t+h) - g(t) = \sum a' t^{\sigma'} (\log t)^{\sigma'_1} \cdots (\log_k t)^{\sigma'_k} + o(1), \quad (3)$$

where $0 \le \sigma' \le \sigma - 1$ and $o(1) \to 0$ as $t \to \infty$.

We put $\Delta_{h_1\cdots h_k}^k(g) = \Delta_{h_k}(\Delta_{h_1\cdots h_{k-1}}^{k-1}(g))$. We consider three cases:

- (i) σ is not an integer. Then for $k=[\sigma]$, $\Delta_{h_1\cdots h_k}^k$ becomes of the form (3), where each σ' is $0 \le \sigma' < 1$ and for one of σ' 's, $0 < \sigma' < 1$. Then, by Theorem 9, we see easily that the sequence $\sum a'n^{\sigma'}(\log n)^{\sigma'_1\cdots}(\log_k n)^{\sigma'_k}$ is $\{\lambda_n\}$ -uniformly distributed mod. 1. Since the term o(1) has no influence on the uniform distribution, $\{\Delta_{h_1\cdots h_k}^k g(n)\}$ is $\{\lambda_n\}$ -uniformly distributed mod. 1. Hence, by Theorem 10, $\{g(n)\}$ is $\{\lambda_n\}$ -uniformly distributed mod. 1.
- (ii) σ is an integer and the first one of σ_1 , ..., σ_k , which is not zero, is positive. In this case we see similarly $\{\Delta_{h_1\cdots h_k}^k g(n)\}$ $(k=\sigma)$ is $\{\lambda_n\}$ -uniformly distributed mod. 1. Hence $\{g(n)\}$ is $\{\lambda_n\}$ -uniformly distributed mod. 1.
- (iii) σ is an integer and the first one of σ_1 , \cdots , σ_k , which is not zero, is negative. Then, by Theorem 4, we see easily that $\{\Delta_{h_1\cdots h_{k-1}}^{k-1}g(n)\}$ $(k=\sigma)$ is uniformly distributed mod. 1, so that, by Theorem 3, $\{g(n)\}$ is uniformly distributed mod. 1, a fortiori, $\{g(n)\}$ is $\{\lambda_n\}$ -uniformly distributed mod. 1. Hence our theorem is proved.

Mathematical Institute,

Tokyo University.