Principal ruled surfaces of a rectilinear congruence.

By Kusuo Takeda

(Recieved July 20, 1952)

Introduction.

Let $p^{i j}$ be the Plücker coordinates of a line p in projective three dimensional space \boldsymbol{R}_{3}. If p ($p^{11}, p^{2,}, p^{13}, p^{12}, p^{13}, p^{23}$) is a function of two parameters u^{1} and u^{2}, the line p describes a rectilinear congruence K when u^{1} and u^{2} vary. Now put ${ }^{1)}$

$$
p^{i}=\frac{\partial p}{\partial u^{i}}(i=1,2),--\left(\left(p_{i} p_{j}\right)\right)=H_{i j}(i, j=1,2) .
$$

If the determinant determined by the elements $H_{i j}(i, j=1,2)$ does not vanish identically, the congruence K has two focal surfaces S_{0} and S_{1}. We restrict ourselves in this case.

Let us consider the image of a line p in the projective five dimensional space \boldsymbol{R}_{5}, the plane \boldsymbol{S}_{2} determined by the three points p, p_{1} and p_{2} is the tangential plane of the image V of K at p, and the plane \boldsymbol{S}_{4} determined by \boldsymbol{S}_{2} and its conjugate $\boldsymbol{S}_{2}^{\prime}$ with respect to the quadric of Plücker Q_{4} is the polar plane of \boldsymbol{Q}_{4} at p, that is, the tangential plane of Q_{4} at p. Let p_{5} be a point which does not lie in this tangential hyperplane S_{4}, the plane $p p_{1} p_{2} p_{5}$ has no common point with the conjugate $\boldsymbol{S}_{1}^{\prime}$ with respect to $\boldsymbol{Q}_{4}, \boldsymbol{S}_{1}^{\prime}$ intersects with \boldsymbol{Q}_{4} at two different points p_{3} and p_{4}. Then p_{3} and p_{4} lie on the tangential hyperplane $p p_{1} p_{2} p_{3} p_{4}$, and the lines $p p_{k}, p_{k} p_{5}(k=3,4)$ are not conjugate to each other. Moreover, to determine uniquely the point p_{5}, we select p_{5} as the intersection of Q_{4} and the line joining the point p and $\frac{1}{2} H^{\sigma \tau} \frac{\bar{\partial}^{2} p}{\partial u^{\sigma} \partial u^{\tau}}(\bar{d}$ denotes absolute differentiation). Then we have the fundamental equations for the given congruence K as follows ${ }^{2}$:

$$
\left\{\begin{array}{l}
d p=d u^{\sigma} p_{\sigma} \tag{I}\\
\bar{d} p_{i}=E_{i \sigma} d u^{\sigma} p+F_{i \sigma} d u^{\sigma} p_{3}+G_{i \sigma} d u^{\sigma} p_{4}+H_{i \sigma} d u^{\sigma} p_{5} \quad(i=1,2), \\
d p_{3}=M_{\sigma} d u^{\sigma} p+G_{\sigma}^{\rho} d u^{\sigma} p_{\rho}+L_{\sigma} d u^{\sigma} p_{3} \\
d p_{4}=N_{\sigma} d u^{\sigma} p+F_{\sigma}^{\rho} d u^{\sigma} p_{\rho}-L_{\sigma} d u^{\sigma} p_{4} \\
d p_{5}=E_{\sigma}^{\rho} d u^{\sigma} p_{\rho}-N_{\sigma} d u^{\sigma} p_{3}-M_{\sigma} d u^{\sigma} p_{4}
\end{array}\right.
$$

The frame of tetrahedron thus constructed by $p, p_{1}, p_{2}, p_{3}, p_{4}$ and p_{5} in \boldsymbol{R}_{5} is called the fundamental coordinate tetrahedron \boldsymbol{R}_{0}.

Now let the curves $u^{1}=$ const. and $u^{2}=$ const. on the image V in \boldsymbol{R}_{5} represent the developable surfaces of K in \boldsymbol{R}_{3}, then the equations (I) become ${ }^{3 \text {) }}$

$$
\left\{\begin{array}{l}
d p=d u p_{u}+d v p_{v}, \\
d p_{u}=\left(E_{11} d u+E_{12} d v\right) p+\theta_{u} d u p_{u}+F_{11} d u p_{3}+G_{11} d u p_{4}+H_{12} d v p_{5}, \\
d p_{v}=\left(E_{12} d u+E_{22} d v\right) p+\theta_{v} d v p_{v}+F_{22} d v p_{3}+G_{22} d v p_{4}+H_{12} d u p_{5}, \\
d p_{3}=\left(M_{1} d u+M_{2} d v\right) p+G_{2}^{1} d v p_{u}+G_{1}^{2} d u p_{v}+\left(L_{1} d u+L_{2} d v\right) p_{3}, \\
d p_{4}=\left(N_{1} d u+N_{2} d v\right) p+F_{2}^{1} d v p_{u}+F_{1}^{2} d u p_{v}-\left(L_{1} d u+L_{2} d v\right) p_{4}, \\
d p_{5}=\left(E_{1}^{1} d u+E_{2}^{1} d v\right) p_{u}+\left(E_{1}^{2} d u+E_{2}^{2} d v\right) p_{v}-\left(N_{1} d u+N_{2} d v\right) p_{3} \\
\quad-\left(M_{1} d u+M_{2} d v\right) p_{4 .} .
\end{array}\right.
$$

Such a specialization of the frame of coordinate tetrahedron R_{0} to R_{a} enables us to obtain one of the suitable methods for the interpretation of the relation between \boldsymbol{R}_{5} and \boldsymbol{R}_{3}, consequently the properties of a rectilinear congruence K in \boldsymbol{R}_{3} is easily considered and calculated as the special variety in $^{2)} \boldsymbol{R}_{5}$.

The conditions of integrability are given by

$$
\left\{\begin{array}{l}
E_{11 v}-E_{12 u}+E_{12} \theta_{u}+F_{1}^{2} G_{22} m_{1}+F_{2}^{1} G_{11} n_{1}=0, \tag{II}\\
E_{22 u}-E_{12 v}+E_{12} \theta_{v}+F_{2}^{1} G_{11} m_{2}+F_{1}^{2} G_{22} n_{2}=0,
\end{array}\right.
$$

$$
E_{12}=\frac{1}{2}\left(F_{1}^{2} G_{22}+F_{z}^{1} G_{11}+\theta_{u v}\right),
$$

(IV) $\quad n_{1}=-\left(\log F_{22}\right)_{u}-L_{1}, \quad n_{2}=-\left(\log F_{11}\right)_{v}-L_{2}$,

$$
\begin{equation*}
\frac{a_{11}}{F_{11}}=\frac{a_{22}}{F_{22}} \tag{V}
\end{equation*}
$$

(VII) $\frac{b_{11}}{G_{11}}=\frac{b_{22}}{G_{22}}$,
(VIII) $\quad L_{1 v}-L_{2 u}=w \quad\left(w=H_{12} W=H_{12}\left(F_{1}^{2} G_{2}^{1}-F_{2}^{1} G_{1}^{2}\right)\right)$,
with respect to R_{a}, where

$$
\left\{\begin{array}{l}
a_{11}=E_{11}+n_{1 u}-n_{1} \theta_{u}-\left(n_{1}\right)^{2}, \quad a_{22}=E_{22}+n_{2 v}-n_{2} \theta_{v}-\left(n_{2}\right)^{2}, \tag{IX}\\
b_{11}=E_{11}+m_{1 u}-m_{1} \theta_{u}-\left(m_{1}\right)^{2}, \quad b_{22}=E_{22}+m_{2 v}-m_{2} \theta_{v}-\left(m_{2}\right)^{2} .
\end{array}\right.
$$

The congruence K in question is also expressed by the form${ }^{2)}$

$$
\left\{\begin{array}{l}
z^{3}=\frac{1}{2} F_{\sigma \tau} z^{\sigma} z^{\tau}+\frac{1}{6}\left(\begin{array}{l}
\left.\bar{\partial} F_{\sigma \tau}+F_{\sigma \tau} L_{\rho}-H_{\sigma \tau} N_{\rho}\right) z^{\sigma} z^{\tau} z^{\rho}+\cdots \cdots, \\
\partial u^{\rho}
\end{array}\right. \tag{X}\\
z^{4}=\frac{1}{2} G_{\sigma \tau} z^{\sigma} z^{\tau}+\frac{1}{6}\left(\begin{array}{c}
\left.\bar{\partial} G_{\sigma \tau}-G_{\sigma \tau} L_{\rho}-H_{\sigma \tau} M_{\rho}\right) z^{\sigma} z^{\tau} z^{\rho}+\cdots \cdots, \\
\partial u^{\rho}
\end{array},\right.
\end{array}\right.
$$

with respect to R_{0} which is also written in the form

$$
\left\{\begin{align*}
z^{3}= & \frac{1}{2}\left[F_{11} f_{1}\left(z^{1}\right)^{2}+F_{22}\left(z^{2}\right)^{2}\right] \\
& +\frac{1}{6}\left[2 F_{11} f_{1}\left(z_{1}\right)^{3}-3 F_{11} n_{2}\left(z^{1}\right)^{2} z^{2}-3 F_{22} n_{1} z^{1}\left(z^{2}\right)^{2}+2 F_{22} f_{2}\left(z^{2}\right)^{3}\right]+\cdots, \\
z^{4}= & \frac{1}{2}\left[G_{11}\left(z^{1}\right)^{2}+G_{22}\left(z^{2}\right)^{2}\right] \\
& +\frac{1}{6}\left[2 G_{11} g_{1}\left(z^{1}\right)^{3}-3 G_{11} m_{2}\left(z^{1}\right)^{2} z^{2}-3 G_{22} m_{1} 1^{1}\left(z^{2}\right)^{2}+2 G_{22} g_{2}\left(z^{2}\right)^{3}\right]+\cdots,
\end{align*}\right.
$$

with respect to $\boldsymbol{R}_{\boldsymbol{a}}$.

1. Principal ruled surfaces of a rectilinear congruence. The tangential plane of the image V (of a rectilinear congruence K) in \boldsymbol{R}_{5} is determined by three points p, p_{1} and p_{2}. The intersection of this tangential plane and Q_{4} is the two generators $p p_{u}, p p_{v}$ on \boldsymbol{Q}_{4} with respect to R_{a}, which represent the focal pencils of the congruence K in \boldsymbol{R}_{3}. Now consider the space $S(2)$ determined by $p, p_{i}, p_{i j}$ ($i, j=1,2$), where $p_{i j}=\frac{\partial^{2} p}{\partial u^{i} \partial u^{j}}$. If these six points are independent $\left[S(2)=S_{5}\right]$, that is, if

$$
\begin{equation*}
\Delta=\left|p p_{1} p_{2} p_{11} p_{12} p_{22}\right| \neq 0 \tag{1.1}
\end{equation*}
$$

is satisfied, the image V (consequently the congruence K) is called normal. This equation can be also written, by means of (I), in the form

$$
\Delta=\left|\begin{array}{lll}
F_{11} & G_{11} & H_{11} \\
F_{12} & G_{12} & H_{12} \\
F_{22} & G_{22} & H_{22}
\end{array}\right| \neq 0
$$

with respect to R_{0}. It can be also rewritten

$$
\begin{equation*}
w \neq 0 \tag{1.1'}
\end{equation*}
$$

with respect to R_{a}, where w is given by (VIII). It is easy to see ${ }^{2)}$ that $w=0$ is the necessary and sufficient condition that the congruence K is reduced to w congruence, hence we have the

Theorem 1. A rectilinear congruence K is a congruence if and only if K is not normal ${ }^{4}$.

In this sense, the theory of W congruence is trivial in the general theory of a rectilinear congruence, consequently we exclude hereafter the W congruence, and consider the normal congruence only.

The quadric complex \mathcal{C}_{2} having the contact of fourth order with K along p is given, by means of (IX'), by the form

$$
G_{11} G_{22}\left(z^{3}\right)^{2}-\left(F_{11} G_{22}+F_{22} G_{11}\right) z^{3} z^{4}+F_{11} F_{22}\left(z^{4}\right)^{2}+\frac{1}{4}\left(F_{1}^{2} G_{22}-F_{2}^{1} G_{11}\right)^{2}\left(z^{5}\right)^{2}=0
$$

with respect to R_{a}. Hence we have the
THEOREM 2. Consider the osculating quadric complex \mathcal{C}_{2} having the contact of fourth order with a rectilinear congruence K along a line p of K. Then K has the five ruled surfaces having the contact of fith order with \mathcal{C}_{2} along p, defined by the equation

$$
\begin{equation*}
a k_{1} d u^{5}-\frac{3}{2} a s_{2} d u^{4} d v-\pi_{1} d u^{3} d v^{2}+\pi_{2} d u^{2} d v^{3}+\frac{3}{2} b s_{1} d u d v^{4}-b k_{2} d v^{5}=0 \tag{1.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& a=F_{1}^{2} G_{11}, b=F_{2}^{1} G_{22}, \\
& k_{1}=f_{1}-g_{1}=\frac{1}{2}\left(\log F_{11}: G_{11}\right)_{a}+L_{1},
\end{aligned}
$$

$$
\begin{aligned}
& k_{2}=f_{2}-g_{2}=\frac{1}{2}\left(\log F_{22}: G_{22}\right)_{v}+L_{2}, \\
& s_{1}=n_{1}-m_{1}=-\left(\log F_{22}: G_{22}\right)_{u}-2 L_{1}, \\
& s_{2}=n_{2}-m_{2}=-\left(\log F_{11}: G_{11}\right)_{v}-2 L_{2}, \\
& \pi_{1}=F_{1}^{2} G_{22}\left(f_{1}-\frac{3}{2} m_{1}\right)-F_{2}^{1} G_{11}\left(g_{1}-\frac{3}{2} n_{1}\right), \\
& \pi_{2}=F_{2}^{1} G_{11}\left(f_{2}-\frac{3}{2} m_{2}\right)-F_{1}^{2} G_{22}\left(g_{2}-\frac{3}{2} n_{2}\right) .
\end{aligned}
$$

These five ruled surfaces are called the principal ruled surfaces of the congruene K. The principal ruled surfaces play the fundamental rôle on the general theory of a rectilinear congruence.

Now we introduce the relation between the principal line, which is the well known curve on the hypersurface in \boldsymbol{R}_{5}, and the principal ruled surface given above.

THEOREM 3. The images of the principal ruled surfaces of a rectilinear congruence K defined by Theorem 2 coincide with the principal lines of the image V of the congruence.

Proof. The principal line of V at a point p is defined by

$$
\left|p p_{1} p_{2} p_{1 \sigma} d u^{\sigma} \quad p_{2 \sigma} d u^{\sigma} \quad p_{\sigma \tau \rho} d u^{\sigma} d u^{\tau} d u^{\rho}\right|=0 \quad\left(p_{i j k}=\frac{\partial^{3} p}{\partial u^{i} \partial u^{j} \partial u^{k}}\right)
$$

which is also written, by means of $\left(\mathrm{X}^{\prime}\right)$, in the form

$$
\left|\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \tag{1.3}\\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
* & * & * & F_{11} d u & G_{11} d u & H_{12} d v \\
* & * & * & F_{22} d v & G_{22} d u & H_{12} d u \\
* & * & * & \frac{\tau^{3}}{\tau^{4}} & \frac{\tau^{5}}{5}
\end{array}\right|=0
$$

with respect to R_{a}, where

$$
\left\{\begin{array}{l}
\overline{\tau^{3}}=F_{11}\left(2 f_{1}+3 \theta_{u}\right) d u^{3}-3 F_{11} n_{2} d u^{2} d v-3 F_{22} n_{1} d u d v^{2}+F_{22}\left(2 f_{2}+3 \theta_{v}\right) d v^{3}, \\
\overline{\tau^{4}}=G_{11}\left(2 g_{1}+3 \theta_{u}\right) d u^{3}-3 G_{11} m_{2} d u^{2} d v-3 G_{22} m_{1} d u d v^{2}+G_{22}\left(2 g_{2}+3 \theta_{v}\right) d v^{3}, \\
\overline{\tau^{5}}=3 H_{12}\left(\theta_{u} d u^{2} d v+\theta_{v} d u d v^{2}\right)
\end{array}\right.
$$

It is easy to see that the equation (1.3) is equivalent to (1.2), which proves the theorem.

Now we introduce two important special rectilinear congruences k and s obtained directly from the principal ruled surfaces and state several properties on them.

2. s congruence.

Definition. A rectilinear congruence K whose principal ruled surfaces along a line p have the directions:

1. Two of them are harmonic with respect to the directions of developable surfaces of K along p;
2. The remaining three are apolar to the two directions of developable surfaces of K,
is called s congruence, which is characterized by the conditions

$$
\begin{equation*}
s_{1}=s_{2}=0 \tag{2.1}
\end{equation*}
$$

Theorem 4. The characteristic property of s congruence is that it has the sequence of Laplace of period four.

To demonstrate this property, we shall give some preliminary notes.

Consider the sequence of Laplace of a given congruence K. 'The first sequence of Laplace is given by the congruence $\left\{p_{4}\right\}$ or $\left\{p_{3}\right\}$. Let the second sequences of K be
$\left\{p_{6}\right\}$: (in the direction of p_{4}),
$\left\{p_{7}\right\}$: (in the direction of p_{3}),
and let the focal surface of $\left\{p_{4}\right\}$ (different from S_{0}) be S_{4} (cf. fig) and

Fig. the focal point of p_{4} on S_{4} be P_{1}. The tangential plane of S_{4} at P_{1} is given by $A_{0} P_{1} P_{2}$, where P_{2} is the intersection of this tangential plane and the line p_{3}. The point of Laplace P_{1} has the coordinates $\left(-n_{2}, 0,0, H_{12}\right)$, while the asymptotic tangents of S_{4} at P_{1} are given by

$$
\begin{equation*}
F_{11} n_{21} d u^{2}-F_{22} n_{12} d v^{2}=0 \tag{2.2}
\end{equation*}
$$

where $n_{21}=E_{12}+n_{2 u}, \quad n_{12}=E_{12}+n_{1 v}$. And the generator p_{6} has the form

$$
\begin{equation*}
F_{2}^{1} n_{1} n_{2} p+F_{2}^{1} n_{2} p_{u}+F_{2}^{1} n_{1} p_{v}-a_{22} p_{4}+F_{22} p_{5}, \tag{2.3}
\end{equation*}
$$

Then we have the
Lemma. The generator p_{6} coincides with the line $P_{1} P_{2}$ if and only if

$$
\begin{equation*}
a_{22}=0 . \tag{2.4}
\end{equation*}
$$

This condition is equivalent to $a_{11}=0$, owing to the existence of the condition of integrability (VI).

Similarly, let S_{3} be the focal surface of $\left\{p_{3}\right\}$ (different from S_{1}), and the focal point of p_{3} on S_{3} be Q_{2}. Then the tangential plane of the focal surface S_{3} at Q_{2} is given by $A_{1} Q_{1} Q_{2}$, where Q_{1} is the intersection of this tangential plane and the line p_{4}, and the asymptotic curves on S_{3} are determined by

$$
\begin{equation*}
G_{11} m_{21} d u^{2}-G_{22} m_{12} d v^{2}=0, \tag{2.5}
\end{equation*}
$$

where $m_{21}=E_{12}+m_{2 u}, m_{12}=E_{12}+m_{1 v}$. The generator p_{7} has the form

$$
\begin{equation*}
G_{1}^{2} m_{1} m_{2} p+G_{1}^{2} m_{2} p_{u}+G_{1}^{2} m_{1} p_{v}-b_{11} p_{3}+G_{11} p_{5}, \tag{2.6}
\end{equation*}
$$

and it coincides with the line $Q_{1} Q_{2}$ if and only if

$$
\begin{equation*}
b_{11}=0 \tag{2.7}
\end{equation*}
$$

or

$$
b_{22}=0 .
$$

Proof of Theorem 4. If p_{6} and p_{7} coincide with $P_{1} P_{2}$ and $Q_{1} Q_{2}$ simultaneously, we have

$$
\begin{equation*}
a_{11}=a_{22}=b_{11}=b_{22}=0, \tag{2.8}
\end{equation*}
$$

and then P_{1} and Q_{2} coincide with Q_{1} and P_{2} respectively. Then by the conditions [2.2), (2.5) and the conditions of integrability, we see that the congruence K has the Laplace sequence of period four. On the other hand, the conditions of s congruence (2.1) we obtain at once the equations (2.8), which demonstrates the theorem.

Note:-we state without demonstration the fact that the s congruence satisfying the condition $(U / a)_{u}=(V / b)_{v}$ permits the projective deformation of a rectilinear congruence, where U and V are functions of u and v respectively.

3. \boldsymbol{k} congruence.

Definition. If two directions of the principal ruled surfaces of a rectilinear congruence coincide with those of the developable surfaces, the congruence is called k congruence. This condition is given by the equations

$$
\begin{equation*}
k_{1}=k_{2}=0 \tag{3.1}
\end{equation*}
$$

From the definitions of (2.1) and (3.1), we have immediately the
Theorem 5. If a rectilinear congruence K has the property of k and s congruence, then K is not normal, that is, K is reduced to W congruence.

Among the several properties concerning to k congruence, we introduce the most simple one in this paper.

Theorem 6. A rectilinear congruence is reduced to k congruence if and only if a pair of the osculating linear complexes of the developable surfaces along a line p is reduced to a pair of satellite complexes.

Proof. The image of the osculating linear complex b_{1} of the developable surface $\Omega_{1}: u=$ const. ($u^{1}=$ const.) is determined by the intersection of \boldsymbol{Q}_{4} and the hyperplane determined by the five points

$$
p, p_{u}, \quad F_{11} p_{3}+G_{11} p_{4}, \quad F_{11} k_{1} p_{3}+a p_{v}, \quad k_{1} p_{3}+G_{1}^{2} p_{v} .
$$

Consequently the pole of b_{1} is given by

$$
\begin{equation*}
k_{1} \Phi_{1 u} p-k_{1} p_{u}+F_{11} p_{3}-G_{11} p_{4}, \tag{3.2}
\end{equation*}
$$

where $\Phi_{1}=\left[\log \left(k_{1} \sqrt{ } F_{1}^{2} G_{1}^{2}\right)\right]_{u}$. Similarly the pole of the osculating linear complex b_{2} of the developable surface $\Omega_{2}: v=$ const. ($u^{2}=$ const.) is determined by

$$
\begin{equation*}
k_{2} \Phi_{2 v} p-k_{2} p_{v}+F_{22} p_{3}-G_{22} p_{4}, \tag{3.3}
\end{equation*}
$$

where $\Phi_{2}=\left[\log \left(k_{2} / \sqrt{ } F_{2}^{1} G_{2}^{1}\right)\right]_{v}$. On the other hand, the poles of the satellite complexes K of are given by $F_{11} p_{3}-G_{11} p_{4}, F_{22} p_{3}-G_{22} p_{4}$, which demonstrates the theorem.
4. Quasi asymptotic ruled surfaces of a congrence. Now we use the concept of quasi asymptotic γ_{13} introduced by E. Bompiani ${ }^{\text {² }}$, which is defined by the matrix

$$
\begin{equation*}
\left\|p p_{1} p_{2} p_{\sigma \tau \rho} d u^{\sigma} d u^{\tau} p_{\sigma \tau \rho} d u^{\sigma} d u^{\tau} d u^{\rho}+3 p_{\sigma \tau} d u^{\sigma} d^{2} u^{\tau}\right\|=0 \tag{4.1}
\end{equation*}
$$ where $p_{i j l}$ is given in $\S 1$. The equation (4.1) is equivalent to

$$
\begin{equation*}
\phi^{3}=0, \quad \varphi^{4}=0, \tag{4.2}
\end{equation*}
$$

where

$$
\begin{aligned}
\phi^{3}= & \frac{3}{2}\left(d v d^{2} u-d u d^{2} v\right)\left(F_{11} d u^{2}-F_{22} d v^{2}\right)+F_{11}\left(2 f_{1}+\frac{3}{2} \theta_{u}\right) d u^{3} \\
& -3 F_{11}\left(n_{2}+\frac{1}{2} \theta_{v}\right) d u^{2} d v-3 F_{22}\left(n_{1}+\frac{1}{2} \theta_{u}\right) d u d v^{2}+F_{22}\left(2 f_{2}+\frac{3}{2} \theta_{v}\right) d v^{3}, \\
\phi^{4}= & \frac{3}{2}\left(d v d^{2} u-d u d^{2} v\right)\left(G_{11} d u^{2}-G_{22} d v^{2}\right)+G_{11}\left(2 g_{1}+\frac{3}{2} \theta_{v}\right) d u^{3} \\
& -3 G_{11}\left(m_{2}+\frac{1}{2} \theta_{v}\right) d u^{2} d v-3 G_{22}\left(m_{1}+\frac{1}{2} \theta_{u}\right) d u d v^{2}+G_{22}\left(2 g_{2}+\frac{3}{2} \theta_{v}\right) d v^{3},
\end{aligned}
$$

and the condition of compatibility of these two equations is represented by (1.2). Hence if we define the ruled surface of a given congruence K, whose image is the quasi asymptotic curve in R_{5}, the quasi asymptotic ruled surface of K, then the quasi asymptotic ruled surface has the direction defined by the principal ruled surfaces of K.

Now we know, by the equations (I^{\prime}), that the osculating linear congruence Ω of the asymptotic ruled surface is determined by the intersection of Q_{4} and the plane determined by p, p_{u}, p_{v} and

$$
\left(F_{11} d u^{2}+F_{22} d v^{2}\right) p_{3}+\left(G_{11} d u^{2}+G_{22} d v^{2}\right) p_{4}+2 H_{12} d u d v,
$$

hence Ω contains the focal pencils $p p_{u}$ and $p p_{v}$ of K along p. And this property holds only when (4.2) are satisfied. Hence we have the

Theorem 7. The quasi asymptotic ruled surface of a congruence K is characterized by the fact that its osculating linear congruence contains the focal pencils of K.

In this paper we eliminate further considerations concerning to this item.

I dedicate my hearty thanks to Prof. Sasaki (Tôhoku Univerșity) for his kind advices for the publication of this paper.

Nihon University.

Notes.

1) $((p q))=p^{01} q^{23}-p^{02} q^{13}+p^{03} q^{12}+p^{12} q^{03}-p^{13} q^{02}+p^{23} q^{01}$.
2) As for the details, reference is to be made to our paper: Takeda, K., On line congruence, I, Tôhoku, 44 (1938), 356-69.
3) As for the details and notations, references are to be made to our paper: Takeda, K., On line congruence, II, Tôhoku, 45 (1938), 103-110.
4) Here we exclude the trivial cases, where the focal surfaces are reduced to special forms, that is, the cases $F_{11}=G_{11}=0, F_{11} F_{22}=0$ and $G_{11}=G_{22}=0$.
5) Bompiani, E., Proprietà differenziale caratteristica delle superficie che rappresentano la totalità delle curve piane algebriche di dato ordine, Lincei, 30 (1921), 248-51.
