## Betti numbers and exact differential forms.

## By Yasurô Tomonaga

(Received September 19, 1951)

In this paper we consider an orientable compact positive definite Riemannian space  $R_n$ . The relations between exact differential forms and Betti numbers are known as de Rham's theorem. We shall give some applications of this theorem.

In § 1 and § 2, we shall find the conditions that the Betti number be greater than a certain number. In § 3, we consider the conditions that the equations of harmonic tensors become some total differential equations which enable us to evaluate the Betti numbers.

§ 1. Lemma 1. Let  $A_{i(1)\cdots i(p)}$  and  $C^{i(1)\cdots i(p)}$  be skew-symmetric and satisfy the conditions

$$A_{i(1)\cdots i(p)} = B_{[i(1)\cdots i(p-1):\ i(p)]}$$

and

(1.2) 
$$C^{i(1)\cdots i(p)};_{i(p)}=0,$$

where  $B^{i(1)\cdots i(p-1)}$  is a certain tensor. Then it follows that

(1.3) 
$$\int A_{i(1)\cdots i(p)} C^{i(1)\cdots i(p)} dv = 0,$$

where dv is the volume element and the integral extends over the whole space.

PROOF. By Green's theorem we have

$$(1.4) 0 = \int (B_{i(1)\cdots i(p-1)}C^{i(1)\cdots i(p)})_{; i(p)}dv = \int B_{i(1)\cdots i(p-1); i(p)}C^{i(1)\cdots i(p)}dv + \int B_{i(1)\cdots i(p-1)}C^{i(1)\cdots i(p)}_{; i(p)}dv = \int B_{[i(1)\cdots i(p-1); i(p)]}C^{i(1)\cdots i(p)}dv = \int A_{i(1)\cdots i(p)}C^{i(1)\cdots i(p)}dv.$$

THEOREM 1. Let  $H_{(A)i(1)\cdots i(p)}$   $(A=1, 2, \cdots, s)$  and  $H_{(B)i(p+1)\cdots i(n)}$   $(B=1, 2, \cdots, t)$  be exact and put

(1.5) 
$$a_{AB} = \int H_{(A)i(1)\cdots i(p)} \varepsilon^{i(1)\cdots i n} H_{(B)i(p+1)\cdots i(n)} dv = \int H_{(A)} \vee H_{(B)},$$

then the p-th Betti number exceeds the rank of the matrix

$$(1.6) || a_{AB} ||.$$

PROOF. By the assumption,  $H_{(B)i(p+1)\cdots i(n)}$ 's are exact. Hence their dual tensors

$$C_{(B)}^{i(1)\cdots i(p)} = \epsilon^{i(i)\cdots i(n)} H_{(B)i(p+1)\cdots i(n)}$$

satisfy

(1.7) 
$$C_{(B)}^{i(1)\cdots i(p)}; i(p) = 0.$$
 (Hodge [1])

If any r tensors of  $H_{(A)}$ 's satisfy the relations of the form

(1.8) 
$$\sum_{A=A(1)}^{A(r)} P^{(A)} H_{(A)i(1)\cdots i(p)} = B_{[i(1)\cdots i(p-1); i(p)]},$$

where  $P^{(A)}$ 's are certain constants and B is a certain tensor, it follows from Lemma 1 that

(1.9) 
$$0 = \sum_{A=A(1)}^{A(r)} P^{(A)} \int H_{(A)i(1)\cdots i(p)} C^{i(1)\cdots i(p)}_{(B)} dv$$
$$= \sum P^{(A)} \int H_{(A)i(1)\cdots i(p)} e^{i(1)\cdots i(n)} H_{(B)i(p+1)\cdots i(n)} dv$$
$$= \sum P_{(A)} a_{AB}.$$

Hence any minor determinant of degree r of the matrix  $||a_{AB}||$  is zero, i. e. the rank of the matrix  $||a_{AB}||$  is less than r.

Therefore, if the rank of  $||a_{AB}||$  is r, there exists at least one set of tensors

$$H_{(A)i(1)\cdots i(p)}$$
  $(A=A(1),\cdots,A(r))$ 

which does not satisfy any relation of the form (1.8).

Hence we have from de Rham's theorem that

$$B_b \geq r$$

where  $B_p$  denotes the p-th Betti number.

§ 2. By Bianchi's identity we can prove that the tensors

$$(2.1) K_{2m} = R^{a(1)}{}_{a(2)[i(1)i(2)} R^{a(2)}{}_{a(3)i(3)i(4)} \cdots R^{\underline{a(m)}}{}_{a(1)i(2m-1)i(2m)]} (m \ge 2)$$

are exact But we must remark that if the Riemannian space under

consideration is of class 1, the tensor  $K_{2m}$ 's are identically zero, for, in this case the curvature tensor takes the form

(2.2) 
$$R^{i}_{jkl} = H^{i}_{k}H_{jl} - H^{i}_{l}H_{jk}$$
.

Next we can prove that  $K_{4m+2}$ 's  $(m \ge 1)$  are identically zero, for example, as follows:

$$(2.3) K_{6} = R^{a(1)}{}_{a(2) \vdash i(1)i(2)} R^{a(2)}{}_{a(3)i(3)i(4)} R^{a(3)}{}_{a(1)i(5)i(6)}$$

$$= R^{a(3)}{}_{a(1) \vdash i(5)i(6)} R^{a(2)}{}_{a(3)i(3)i(4)} R^{a(1)}{}_{a(2)i(1)i(2)}$$

$$= -R^{a(1)}{}_{a(3) \vdash i(5)i(6)} R^{a(3)}{}_{a(2)i(3)i(4)} R^{a(2)}{}_{a(1)i(5)i(6)}$$

$$= -R^{a(1)}{}_{a(3) \vdash i(1)i(2)} R^{a(3)}{}_{a(2)i(3)i(4)} R^{a(2)}{}_{a(1)i(5)i(6)}$$

$$= -K_{6}$$

Hence we can find only the following exact tensors.

(2.4) 
$$K_4$$
 (degree 4), 
$$K_8, K_4 \times K_4 \text{ (degree 8),}$$
 
$$K_{12}, K_8 \times K_4, K_4 \times K_4 \times K_4 \text{ (degree 12),}$$

etc., where the symbols × denote exterior products.

When n=16 we take as sets of matrices of the type (1.6) the followings:

$$(2.5) \qquad \left(\int K_4 \vee K_{12} \quad \int K_4 \vee (K_8 \times K_4) \quad \int K_4 \vee (K_4 \times K_4 \times K_4)\right),$$

(2.6) 
$$\left( \begin{cases} \int K_8 \vee K_8 & \int (K_4 \times K_4) \vee K_8 \\ \int K_8 \vee (K_4 \times K_4) & \int (K_4 \times K_4) \vee (K_4 \times K_4) \end{cases} \right).$$

Therefore, if the rank of the matrix (2.5) is 1, we have

$$B_4 = B_{12} \ge 1$$
.

If the rank of the matrix (2.6) is r (1 or 2), we have

$$B_8 \geq r$$
.

In special cases we can find exact tensors other than (2.4).

(I) The case in which  $R^{a}_{ijk;a}=0$ .

In this case it holds that

$$(2.7) R_{ij;k} - R_{ik;j} = 0.$$

Hence we have the following exact tensors:

$$(2.8) K_4, L_4 = R_{a[i}R^{\underline{a}}_{\underline{b}jk}R^{\underline{b}}_{l]} (degree 4),$$

(2.9) 
$$K_8$$
,  $K_4 \times K_4$ ,  $K_4 \times L_4$ ,  $L_4 \times L_4$ ,
$$L_8 = R_{a(1) \setminus i(1)} R^{a(1)}{}_{a(2)i(2)i(3)} \cdots R^{a(3)}{}_{a(4)i(6)i(7)} R^{a(4)}{}_{i(8)}$$
 (degree 8),

(2.10) 
$$K_{12}$$
,  $K_8 \times K_4$ ,  $K_4 \times K_4 \times K_4$ ,  $L_8 \times L_4$ ,  $L_4 \times L_4 \times L_4$ ,  $K_8 \times L_4$ ,  $K_4 \times L_4 \times L_4$ ,  $K_4 \times L_6$ ,  $L_4 \times K_4 \times K_4$ ,  $L_{12} = R_{\sigma(1) \lceil i(1)} R^{\sigma(1)} a^{\sigma(2) i(2) i(3)} \cdots R^{\sigma(5)} a^{\sigma(6) i(10) i(11)} R^{\sigma(6)} a^{\sigma(6) i(12)}$  (degree 12),

etc., provided that n is greater than 4, 8 and 12 respectively.

(II.) The case in which a skew-symmetric tensor  $H_{ij}$  satisfying

$$(2.11) H_{[ii:k]} = 0$$

exists.

In this case the following tensors are exact:

$$(2.12)$$
  $H_{ij}$ , ..... (degree 2),

(2.13) 
$$K_4$$
,  $H \times H$ , ..... (degree 4),

(2.14) 
$$H \times H \times H$$
,  $K_4 \times H$ , ..... (degree 6),

$$(2.15) K_8, K_4 \times K_4, K_4 \times H \times H, H \times H \times H \times H \text{ (degree 8)},$$

etc., provided that n is greater than 2, 4, 6 and 8 respectively. (III.) The case in which a tensor  $S^{i}_{jk}$  satisfying

$$(2.16) S^{i}_{ik: l} - S^{i}_{il: k} = 0$$

exists.

In this case we get the following exact tensors:

(2.17) 
$$S_{a_i}^a$$
 (degree 1),

$$(2.18) S^{\underline{a}}_{Ki} S^{\underline{b}}_{cj} S^{\underline{c}}_{\underline{a}\underline{k}}, R^{\underline{a}}_{b\underline{c}ij} S^{\underline{b}}_{\underline{a}\underline{k}} (degree 3),$$

$$(2.19) K_4, S^a_{b \bar{\iota}} R^{\underline{b}}_{\underline{c}jk} S^{\underline{c}}_{\underline{a}l} (degree 4),$$

$$(2.20) \qquad S^{a(1)}{}_{a(2)[i(1)} S^{\underline{a(2)}}{}_{\underline{a(3)}i(2)} \cdots S^{a(5)}{}_{\underline{a(1)}i(5)]},$$

$$R^{a}{}_{b[ij} R^{\underline{b}}{}_{\underline{c}kl} S^{\underline{c}}{}_{\underline{ah}]},$$

$$R^{a(1)}{}_{a(2)[i(1)i(2)} S^{a(2)}{}_{a(3)i(3)} S^{a(3)}{}_{\underline{a(4)}i(4)} S^{\underline{a(4)}}{}_{\underline{a(1)}i(5)]} \quad (\text{degree 5}),$$

$$(2.21) \qquad R^{a(1)}{}_{a(2)\lceil i(1)i(2)} R^{\underline{a(2)}}{}_{\underline{a(3)}i(3)i(4)} S^{\underline{a(3)}}{}_{\underline{a(4)}i(5)} S^{\underline{a(4)}}{}_{\underline{a(1)}i(6)},$$

$$R^{a(1)}{}_{a(2)\lceil i(1)i(2)} S^{\underline{a(2)}}{}_{\underline{a(3)}i(3)} S^{\underline{a(3)}}{}_{\underline{a(4)}i(4)} S^{\underline{a(4)}}{}_{\underline{a(5)}i(5)} S^{\underline{a(5)}}{}_{\underline{a(1)}i(6)},$$

$$R^{a(1)}{}_{a(2)\lceil i(1)i(2)} S^{\underline{a(2)}}{}_{\underline{a(1)}i(3)} S^{\underline{b(1)}}{}_{\underline{b(2)}i(4)} S^{\underline{b(2)}}{}_{\underline{b(3)}i(5)} S^{\underline{b(3)}}{}_{\underline{b(1)}i(6)}$$
(degree 6),

etc., provided that n is greater than 3, 4, 5 and 6 respectively.

Generally, if there exists a tensor  $Q^a_{bi(1)\cdots i(p)}$  which is skew-symmetric with respect to i(1), ..., i(p) and satisfies

(2.22) 
$$Q^{a}_{b[i(1)\cdots i(p);\ i(p+1)]} = 0$$
,

then we have the following exact tensors:

$$(2.23) \quad Q^{a(1)}{}_{a(2)[i(1)\cdots i(p)}Q^{\underline{a(2)}}{}_{\underline{a(3)}i(p+1)\cdots i(2p)}\cdots Q^{\underline{a(m)}}{}_{\underline{a(1)}i(mp-p+1)\cdots i(mp)]} \ (m=1,2,\cdots).$$

But in the following cases above tensors become identically zero.

- (1) p is odd and m is even.
- (2) Q is symmetric with respect to a and b and p is odd and

$$m=3, 7, \dots, 4k-1$$
.

- (3) Q is skew-symmetric with repect to a and b and p is even and m is odd.
- (4) Q is skew-symmetric with respect to a and b and p is odd and  $m = 5, 9, \dots, 4k+1$ .

From these tensors and  $K_{2m}$ 's we get many exact tensors as in the case (III).

Let

$$H_{(A)i(1)\cdots i(q)}$$
 (A=1, 2, ..., s)

and

$$H_{(B)i(q+1)\cdots i(n)}$$
 (B=1, 2, ..., t)

be these tensors. Then the rank of the matrix

$$\left\| \int H_{(A)i(1)\cdots i(q)} \vee H_{(B)i(q+1)\cdots i(n)} \right\|$$

gives us a lower bound of the q-th Betti number.

§ 3. Let a skew-symmetric tensor  $\xi_{i(1)\cdots i(p)}$  be harmonic, i. e. satisfy the conditions

(3.1) 
$$\begin{cases} \xi_{[i(1)\cdots i(p);\ r]} = 0, \\ \xi_{i(1)\cdots i(p);\ r} g^{i(p)r} = 0. \end{cases}$$

It is known that the conditions (3.1) are equivalent with

(3.2) 
$$\Delta \xi_{i(1)\cdots i(p)} = K_{i(1)\cdots i(p)}^{\cdots \cdots \cdots j}_{i(1)\cdots i(p)}^{j(1)\cdots j(p)} \xi_{i(1)\cdots i(p)},$$

where

$$K_{i(1)\cdots i(p)j(1)\cdots j(p)} = p(p-1)R_{[i(1)[j(1)i(2)j(2)}g_{i(3)j(3)}\cdots g_{i(n)]j(n)]} + pR_{[i(1)[j(1)}g_{i(2)j(2)}\cdots g_{i(n)]j(n)]}.$$

In our previous paper ([2]) we have proved that

$$(3.4) \qquad 0 = \int \Delta(\xi_{i(1)\cdots i(p)}\xi^{i(1)\cdots i(p)})dv = 2\int K_{i(1)\cdots i(p)j(1)\cdots i(p)}\xi^{i(1)\cdots i(p)}\xi^{i(1)\cdots i(p)}dv + 2\int \xi_{i(1)\cdots i(p); r}\xi^{i(1)\cdots i(p); r}dv$$

$$\begin{split} = & 2 \int \{ p(p-1) R_{a(1)b(1)a(2)b(2)} + p g_{a(1)b(1)} R_{a(2)b(2)} \} \xi^{a(1)a(2)a(3)\cdots a(p)} \xi^{b(1)b(2)}_{\cdots \cdots a(p)} dv \\ & + 2 \int \xi_{i(1)\cdots i(p); \ r} \xi^{i(1)\cdots i(p); \ r} dv \ . \end{split}$$

Hence, if the quadratic form

(3.5) 
$$\{ (p-1)R_{acbd} + g_{ac}R_{bd} \} f^{ab} f^{cd} \quad (f^{ab} = -f^{ba})$$

is everywhere positive semi-definite, it follows that

(3.6) 
$$\xi^{i(1)\cdots i(p); r} = 0.$$

The solution of the equation (3.6) involves at most  $\binom{n}{p}$  arbitrary constants. On the other hand, we know from Hodge's theorem that any harmonic tensor is a linear combination (with constant coefficients) of  $B_p$  fundamental harmonic tensors. Hence we have the

THEOREM 2 (Bochner-Lichnerowicz). If the quadratic form (3.5) is everywhere positive semi-definite, then it follows that

$$B_p \leq \binom{n}{p}$$
.

Next we consider an harmonic vector  $\xi_i$  satisfying

(3.7) 
$$\xi_{i;j} = \xi_{j;i}, \quad \xi_{i;j} g^{ij} = 0$$

and a certain tensor  $A_{ijk}$  satisfying

$$(3.8) A_{ijk} = A_{jik}.$$

By Green's theorem we have

(3.9) 
$$0 = \int \mathcal{A}\{(\xi_{i;j} + A_{ijk}\xi^{k})(\xi^{i;j} + A^{ij}_{m}\xi^{m})\}dv$$
$$= 2\int \mathcal{A}(\xi_{i;j} + A_{ijk}\xi^{k})(\xi^{i;j} + A^{ij}_{m}\xi^{m})dv$$
$$+ 2\int (\xi_{i;j} + A_{ijk}\xi^{k})_{;r}(\xi^{i;j} + A^{ij}_{m}\xi^{m})^{;k}dv.$$

If in this case the following relation is satisfied

(3.10) 
$$\Delta(\xi_{i:j} + A_{ijk}\xi^k) = c(\xi_{i:j} + A_{ijk}\xi^k) \qquad (c > 0),$$

where c is a certain positive constant, then (3.9) becomes

$$(3.11) 0 = c \int (\xi_{i;j} + A_{ijk}\xi)(\xi^{i;j} + A^{ij}_{m}\xi^{m})dv$$

$$+ \int (\xi_{i;j} + A_{ijk}\xi^{k})_{;r}(\xi^{i;j} + A^{ij}_{m}\xi^{m})^{;r}dv.$$

Hence we have in this case

(3.12) 
$$\xi_{i;j} + A_{ijk}\xi^{k} = 0.$$

Since the solution of the equation (3.12) involves at most n arbitrary constants, we have in this case

$$(3.13) B_1 \leq n.$$

In order that the relation (3.10) be satisfied by any harmonic vector, it is sufficient that

(3.14) (a) 
$$\Delta A_{ijk} + A_{ijm} R^{m}_{k} + R_{ki;j} + R_{kj;i} - R_{ij;k} = c A_{ijk}$$
 (c > 0),  
(b)  $\sum_{(k,l)} \left( A_{ijk;l} - R_{kijl} + \frac{R_{ki}g_{lj} + R_{lj}g_{ik} - cg_{ik}g_{jl}}{2} \right) = 0$ ,

where  $\sum_{(k, l)}$  denotes (k, l) + (l, k)

Thus we have the

THEOREM 3. If there exist a tensor  $A_{ijk}$  and a positive constant c satisfying the equations (3.14), it follows that

$$B_1 \leq n$$
.

Next, if the relations (3.14) are satisfied by c=0 and a certain A we have from (3.11) that

$$(3.15) (\xi_{i:j} + A_{ijm} \xi^m)_{:r} = 0.$$

The last equation and

$$\xi_{i;j} = \frac{\partial \xi_i}{\partial x^j} - \begin{Bmatrix} m \\ ij \end{Bmatrix} \xi_m$$

constitute a system of differential equations for  $\xi_i$  and  $\xi_{i;j}$ . Its solution involves at most

$$\frac{n(n+1)}{2}+n-1$$

arbitrary constants. Thus we have the

THEOREM 4. If the equations (3.14) are satisfied by c=0 and a certain  $A_{i,jk}$ , it follows that

$$(3.16) B_1 \leq \frac{n(n+1)}{2} + n - 1.$$

Let  $\xi_{i(1)\cdots i(p)}$  be harmonic and  $A_{i(1)\cdots i(p)r}{}^{j(1)\cdots j(p)}$  be a certain tensor. By Green's theorem we have

$$(3.17) \quad 0 = \int d\{\xi_{i(1)\cdots i(p); r} + A_{i(1)\cdots i(p)r}^{j(1)\cdots j(p)} \xi_{j(1)\cdots j(p)}) \\ \times (\xi^{i(1)\cdots i(p); r} + A^{i(1)\cdots i(p)r}_{a(1)\cdots a(p)} \xi^{a(1)\cdots a(p)}) \} dv$$

$$= 2\int d\{\xi_{i(1)\cdots i(p); r} + A_{i(1)\cdots i(p)r}^{j(1)\cdots j(p)} \xi_{j(1)\cdots j(p)}) \\ \times (\xi^{i(1)\cdots i(p); r} + A^{i(1)\cdots i(p)r}_{a(1)\cdots a(p)} \xi^{a(1)\cdots a(p)}) dv$$

$$+ 2\int (\xi_{i(1)\cdots i(p); r} + A_{i(1)\cdots i(p)r}^{j(1)\cdots j(p)} \xi_{j(1)\cdots j(p)}); s$$

$$\times (\xi^{i(1)\cdots i(p); r} + A^{i(1)\cdots i(p)r}_{a(1)\cdots a(p)} \xi^{a(1)\cdots a(p)}) s dv.$$

We assume that

(3.18) 
$$A_{[i(1)\cdots i(p)r]}^{j(1)\cdots j(p)} = 0.$$

Moreover, if the following relation is satisfied

(3.19) 
$$\Delta(\xi_{i(1)\cdots i(p); r} + A_{i(1)\cdots i(p)r}^{j(1)\cdots j(p)} \xi_{j(1)\cdots j(p)})$$

$$= c(\xi_{i(1)\cdots i(p); r} + A_{i(1)\cdots i(p)r}^{j(1)\cdots j(p)} \xi_{j(1)\cdots j(p)})$$

provided that c is a certain positive constant, then we have from (3.17)

(3.20) 
$$\xi_{i(1)\cdots i(p); r} + A_{i(1)\cdots i(p)r}^{j(1)\cdots j(p)} \xi_{j(1)\cdots j(p)} = 0.$$

The solution of the last equation involvs at most  $\binom{n}{p}$  arbitrary constants. Hence we have in this case

$$B_p \leq \binom{n}{p}$$
.

The sufficient conditions that (3.16) become (3.19) are as follows:

$$(3.21) \begin{cases} (a) & \Delta A_{i(1)\cdots i(p)rj(1)\cdots j(p)} + A_{i(1)\cdots i(p)r}{}^{a(1)\cdots a(p)} K_{a(1)\cdots a(p)j(1)\cdots j(p)} \\ & + B_{i(1)\cdots i(p)rj(1)\cdots j(p)} c A_{i(1)\cdots i(p)rj(1)\cdots j(p)} , \\ (b) & \sum\limits_{(j(1)\cdots j(p)s)} \left( A_{i(1)\cdots i(p)rj(1)\cdots j(p)s} + C_{i(1)\cdots i(p)rj(1)\cdots j(p)s} \\ & - \frac{c}{2(p!)^2} g_{[i(1)[j(1)}\cdots g_{i(p)]j(p)]} g_{rs} \right) = 0 , \end{cases}$$

where

$$\begin{split} B_{i(1)\cdots i(p)rj(1)\cdots j(p)} = & K_{i(1)\cdots i(p)j(1)\cdots j(p);\ r} + pR_{\mathbb{I}i(1)\mathbb{I}j(1)rs} {}^{\mathrm{is}}g_{i(2)j(2)}\cdots g_{i(p)\mathbb{I}j(p)\mathbb{I}}, \\ C_{i(1)\cdots i(p)rj(1)\cdots j(p)s} = & \frac{1}{2}K_{i(1)\cdots i(p)j(1)\cdots j(p)}g_{rs} + pR_{\mathbb{I}i(1)\mathbb{I}j(1)rs}g_{i(2)j(2)}\cdots g_{i(p)\mathbb{I}j(p)\mathbb{I}} \\ & + \frac{1}{2}g_{\mathbb{I}i(1)\mathbb{I}j(1)}\cdots g_{i(p)\mathbb{I}j(p)\mathbb{I}}R_{rs} \end{split}$$

and  $\sum_{(j(1)\cdots j(p)s)}$  denotes

$$j(1)\cdots j(p)s+sj(2)\cdots j(p)j(1)+j(1)sj(3)\cdots j(p)j(2)+\cdots +j(1)j(2)\cdots sj(p).$$

Thus we have the

THEOREM 5. If the equations (3.18) and (3.21) are satisfied by a certain tensor A and a positive constant c, then we have  $B_p \leq \binom{n}{p}$ . If the equations are satisfied by c=0, then we have

$$B_{p} \leq \binom{n}{p} + n\binom{n}{p} - \binom{n}{p-1} - \binom{n}{p+1}.$$

Utunomiya University.

## References.

- [1] Hodge: The theory and applications of harmonic integrals, 1940.
- [2] Tomonaga, Y: On Betti numbers of Riemannian spaces. Journ. Math. Soc. Japan, Vol. 2 (1950), pp. 93-104.