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Betti numbers and exact differential forms.

By Yasur6 ToMONAGA

(Received September 19, 1951)

In this paper we consider an orientable compact positive definite
Riemannian space R,. The relations between exact differential forms
and Betti numbers are known as de Rham’s theorem. We shall give
some applications of this theorem.

In §1 and §2, we shall find the conditions that the Betti number
be greater than a certain number. In § 3, we consider the conditions
that the equations of harmonic tensors become some total differential
equations which enable us to evaluate the Betti numbers.

§1. LemMA 1. Let A;qy-ipy and CV¥ P pe skew-symmetric and
satisfy the conditions

(1'1) Ai(l)'"i(ﬁ)zB[i(l)"'i(ﬁ—l); (D]
and
(1.2) COD; =0,

where BiV{?2-V 45 g certain tensor. Then it follows that
(1.3) jA i-ipC' P Pdp=0 ,

whevre dv is the volume element and the integral extends over the
whole space.
Proor. By Green’s theorem we have

— i) 3( . i)
(1.4) O_X(Bi(l)wi(ﬁ—l)cm 1), i(p)dv_‘SBi(l)---i(p—l); W C O Py
(1)-d = (1)+i(2)
+ §Bi(l)"'i(P-l)Cl i ‘p); i(p)dv—- SB[i(l)...i(p -1 i(p)jcl ip d?)

= jA i-ipC P Pdy

THEOREM 1. Let H(A)i(l)"'i(ﬁ) (.A=1, 2, T S) and H(B)i(.ﬁ-!—])"'i(n)
(B=1, 2, ---, t) be exact and put
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_ i
(15) aAB_s‘H’(A)i(I)---i(P)ez(l) v II(B):'UH1)"'i(n)dv=JEA)vH(B) ’

then the p-th Betli number exceeds the rank of the matrix
(1.6) laasll.

PrROOF. By the assumption, H g s+p-i’S are exact. Hence their
dual tensors

(1) wi( D) — (D) iln)
Cs =€ H(B)i(ml)---i(n)

satisfy
1.7) CE P, ip,=0. (Hodge [1])
If any » tensors of Hs satisfy the relations of the form
A(r) '
(1.8) P =.42(1)P DH pri1>-icr=Bricr~ico-1; i1 5

where P4”s are certain constants and B is a certain tensor, it follows
from Lemma 1 that

AQ) . )
(1.9) 0=>] P(A)jH(A)i(l)'--i(ﬁ)cz(ll?))mz('ﬁ 'dv

ASam
_ ) iD)io )
=> P4 JII(A)i(l)-"i(.P)et( "WH Bricp+ ity AV

=> P45 .

Hence any minor determinant of degree » of the matrix || a4 || is
zero, i.e. the rank of the matrix |ja,pz || is less than 7.

Therefore, if the rank of ||az || is #, there exists at least one set
of tensors

H )iyt (A=AQ), -, A(7))

which does not satisfy any relation of the form (1.8).
Hence we have from de Rham’s theorem that

Bpgr

where B, denotes the p-th Betti number.
§2. By Bianchi’s identity we can prove that the tensors

(2.1) K,,,= R o 15ir R*Pa®icictr- - - RE™®avricom-ricamn (m=2)

are exact But we must remark that if the Riemannian space under
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consideration is of class 1, the tensor K,’s are identically zero, for,
in this case the curvature tensor takes the form

(22) RijkleikHjl—Hilij .
Next we can prove that K,,,.,’s (m =>1) are identically zero, for
example, as follows:

(2.3) K= RV 5 - 15i R*® a3)i@icty R*® a1

= — RV _ o 15 R¥® 22i@i» R*? 01)i i
=—K;
Hence we can find only the following exact tensors.
(2.4) K, (degree 4),

K, K;x K, (degree 8),
KIZ, KgXK4, K4XK4XK4 (degree 12) ’
etc., where the symbols x denote exterior products.
When =16 we take as sets of matrices of the type the
followings :

(2.5) (jK;i\/KIZ s&\/(l{s x Ky) §K4V(K:1 x Ky K4)) ,
{Lev:e [rx K)VE,

(2.6)
(ng\/(K,t x Kj) j(Kt: x K)V(Kyx Ky)/ °

Therefore, if the rank of the matrix is 1, we have
B=B,=>1.

If the rank of the matrix is » (1 or 2), we have
Bs=>7.

In special cases we can find exact tensors other than (2.4).
() The case in which R4 ;;, ,=0.
In this case it holds that
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(2.7) Rij.x— R, ;=0.
Hence we have the following exact tensors :
(2.8) Ky, Li=R,;R%; R, (degree 4),
(2.9) K, K;xK;, KyxL, LyxL,,
Li=R .y R*Vaiwic - R*® awiicnR*®;5y;  (degree 8),
210) Ky, Kix Ky, Kyx Kyx K, Lyx Ly, Lyx Lix L,
Kyx Ly, KyxLyx Ly, Kyx L, Lix Kyx Ky,
Liy=R ,1;iy R*? a2ii®" - R*® ae)i10ianR*® 33,  (degree 12),

etc., provided that » is greater than 4, 8 and 12 respectively.
(IL) The case in which a skew-symmetric tensor H;; satisfying

(2.11) Hi;j. 1a=0

exists.
In this case the following tensors are exact:

(2.12) H;;, ------ (degree 2),

(2.13) K, HxH, ------ (degree 4),

(2.14) HxHxH, K,xH, ------ (degree 6),

(2.15) K, K,xK,, K;xHxH, HxHx Hx H (degree 8),

etc., provided that » is greater than 2, 4, 6 and 8 respectively.
(IIL.) The case in which a tensor Si;;, satisfying

(216) Sijk; 1= Sijl; =0

exists.
In this case we get the following exact tensors:

(2.17) S2,; (degree 1),

(2.18) S2,.82.iSan1, R%;:;;S%r1 (degree 3),

(2.19) K,, S ;R%rSa1 (degree 4),

(2.20) SaD o 59 Pai@ -+ S*® awricn
Reay; i R 1SCan

R 1525 Pai®S*PawicvS™@awicsn  (degree 5),
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(2.21) RV i1y R aiirS*P i) S®Lorien,

R 4 oyri1)irS®2 a2iS*Pa)i v S®®airS*Pavicer
) ,
R i 13i0S* P aidS*Pp2i6SP2p2i5r S 2prie1  (degree 6),

etc., provided that » is greater than 3, 4, 5 and 6 respectively.
Generally, if there exists a tensor @%;q,..» Wwhich is skew-sym-
metric with respect to #(1), ---, #(p) and satisfies

(2.22) Q%icvicp; icp+03=0,
then we have the following exact tensors:
(2.23) @V 0ri1ymic R Ba®ict+ i@y QF ™ hitmp -+ Dicmpry (M=1,2, ---).

But in the following cases above tensors become identically zero.
(1) p is odd and m is even.
(2) @ is symmetric with respect to @ and & and p is odd and

m=3, 7, ---, 4k—1.

(3) @ is skew-symmetric with repect to ¢ and 4 and p is even and
m is odd.

(4) @ is skew-symmetric with respect to ¢ and & and p is odd and
m= 5,9, -, dk+1.

From these tensors and K,,’s we get many exact tensors as in
the case (III).
Let

H a)iqy-ic> (A=1, 2, -, s)
and
H p)iq+ it (B=1, 2, ---, #)

be these tensors. Then the rank of the matrix

H SH Wi VHmiqr Dmitn

gives us a lower bound of the g-th Betti number.
§ 3. Let a skew-symmetric tensor &;4,..is be harmonic, i. e. satisfy
the conditions

3.1) {é ticoiox 7170,

Dy —
Eivmicty; #9577 =0.
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It is known that the conditions are equivalent with
(3.2) AEi1yi0y= K550 Vi ZPE ey iy 5
where

K;yityjcv-icor=D(0— 1) Reiorjviiadiaia  Jiawiion

+ PR jGiicr Jiwaio -

In our previous paper ([2]) we have proved that

(3.4) 0= S d(f‘i (Dwi€ m{_i(lrni(ﬁ))dv: zj K‘i( Do B (D€ p)fi(1"""(1”&"(1"""(1’)610

+2{ i £ 7 dy

+ 2]5;‘(1)---;‘@); LV PRy

Hence, if the quadratic form

(3.5) {(p—1DRacpa+ 9acRea} f22f?  (fab=—fb2)
is everywhere positive semi-definite, it follows that

(3.6) EOiP5 7 = ()

The solution of the equation involves at most (Z) arbitrary con-

stants. On the other hand, we know from Hodge’s theorem that any
harmonic tensor is a linear combination (with constant coefficients) of
B, fundamental harmonic tensors. Hence we have the

THEOREM 2 (Bochner-Lichnerowicz). If the quadratic form (3.5)
is everywhere positive semi-definite, then it follows that

n< ()

Next we consider an harmonic vector §; satisfying
3.7) &=, &;; 7947=0
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and a certain tensor A, satisfying
(3.8) A;jp=Aji.

By Green’s theorem we have
B9 0=[a{(& s+ A e + A )}
=2[ 4(6s, j+ A& I+ AL )y

+2J(éi; j+Aijk§k); A&5 T+ AT Emy Ry |
If in this case the following relation is satisfied

(3.10) A&, j+ A jpER) =c(&; ;+ A; jubF) (c>0),

where ¢ is a certain positive constant, then becomes
BN 0=c|(; s+ Ainb)E S+ AP pem)dy

+ j(éi; J +Az’jk§k); f(g'i; 7 +Aijm€.m);rdv .
Hence we have in this case

(3.12) &; i+ A; nf%=0.

Since the solution of the equation involves at most 2 arbitrary
constants, we have in this case

(3.13) Blg n.

In order that the relation be satisfied by any harmonic vector, it
is sufficient that

(3.14) (a) 4A;jp+A;jmR™+ Ryi; j+ Ruj,i— Rije=cAijr (¢ > 0),

' Rpi91i+ Rii9in—C9ird 1 \—
(b) (kg(Aijk;l—Rkijl'*' k917 l; k, r9Jt )_0’

where >, denotes (%, )+, k)
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Thus we have the
THEOREM 3. If there exist a tensor A;;, and a positive constant c¢
satisfying the equations (3.14), it follows that

Blgn.

Next, if the relations (3.14) are satisfied by ¢=0 and a certain A
we have from that

(3'15) ({'i; J +Aijm‘f'm);r=0 .
The last equation and

'fi;j—’aé‘-_{z]}‘f'

ox?

constitute a system of differential equations for & and §&;. ;. Its solu-
tion involves at most

nw(n+1)

+n—1
2 n

arbitrary constants. Thus we have the
THEOREM 4. If the equations (3. 14) are satisfied by ¢=0 and a
certain A;;, it follows that

(3.16) B, < ﬁﬁzillmq.

Let &1-icpy be harmonic and A;q.ip),” Y "7® be a certain tensor. By
Green’s theorem we have

(3.17) 0= S A{Eivricorr F Aicricon’ D=IDE 1y i)

x ( {_i(l)mi(ﬁ); r 4 Ai( 1)<--i>1’)ramma( » {_a(l)---a(ﬁ))} dv

— (1) 7¢
= 25 A(E ity » + Aicr-icon” P IPE 1y i)

(D 1 (1) 3( -q(
x (Ez(l) i) r+A1 1) p)rd1)~--a(p)£a(1) a P))dv

(1) 3¢
+25(‘§i(1)~-i(ﬁ);r+Ai(1)~-i(ﬁ)r] DI DL i p)s s

(1) i( D) i(1)5( —a(D\;
X (E.l(l) i(D); r+Az(1) i ﬁ)ra(l)'--a(ﬁ)éa(l) a ﬁ)) sdo .
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We assume that |
(3.18) Arip-icpyy? VI P =0

Moreover, if the following relation is satisfied
(3.19) A(Eictymicry, » F Aicrmicon” P TPE jirmjpr)

=(&iy-ictr; » F+ Aicwr-icor” PV IPE 1y i 1))
provided that ¢ is a certain positive constant, then we have from
(3.17)

o _
(3.20) Eiv-iry; r F Aicricon VIPE 1y i =0.

The solution of the last equation involvs at most (Z) arbitrary const-
ants. Hence we have in this case

<(3)-
B, < b
The sufficient conditions that become (3.19) are as follows :

(1)-al(P)
@)  4Ai)-iowiwriorF Aipmicon® Kot -a )iy

+ Bi(l)'-'i(ﬁ)rj(l)---j(P)CAi(l)-'-i(.ﬁ)rj(l)'“i(ﬁ) ’

3.21
( ) < (b) . E Ai<1)~~i(.ﬂ)rj(1)~--j(.t')s+Ci(l)-"i(.ﬁ)rj(1)---1'(1’)8
G~ §(D)s)

c
*"2*'(;’!")?9[1(1[ T 'gi(mmﬁngrs) =0,

where
Bi(l)'--i(ﬁ)rj(l)‘"j(ﬁ) = Ki(l)---z'(ﬁ)j(l)"'j(ﬁ); 7 +pREz’(l)[j(l)rs;sgi(Z)j(Z)' . 'gi(ﬁ)]j(ﬁ):l ’

1 ,
Ci(l)-"z'(ﬁ)rj(1)~'-j(17)s - ""2“ i(1)<~~i(ﬁ)j(l)'-'j(ﬁ)grs +pREi(l)[j(Drsgi(Z)j(Z)' : 'gi(.ﬁ)lj(ﬁ)]

1
+ 59[1'(1){]'(1)' “Giconicoydrs

and Z(j(l)---j(ﬁ)s) denoteS

7(1)--7(D)s+ s5(2)---7(p)(1) +7(1)sj(3)---F(p)F(2) + --- - +7(1)F(2)--si(p).
Thus we have the
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THEOREM 5. If the equations (3.18) and (3.21) are satisfied by a
certain tensor A and a positive constant c, then we have B, < (g) .
If the equations are satisfied by c=0, then we have

8= (3)+n(5)-(521)~(s%1):
Utunomiya University.
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