On a direct transcendental singularity of an inverse function of a meromorphic function.

By Masatsugu Tsuji

(Received Nov. 21, 1952)

Let Δ be an infinite domain on the z-plane, which may be infinitely multiply connected and I' be its boundary, which consists of at most a countable number of analytic curves. We assume that I' contains at least one curve extending to infinity. Let w=w(z) be regular in Δ and on I', except at $z=\infty$, such that |w(z)| < R in Δ and |w(z)|=R on Γ and $w(z) \neq 0$ in Δ . Let Δ_r be the part of Δ , which lies in |z| < r. We put

$$S(r;\Delta) = \frac{1}{\pi} \iint_{\Delta_r} \frac{|w'|^2}{(1+|w|^2)^2} dxdy, \ (w=w(z), \ z=x+iy), \ \ (1)$$

$$T(r; \Delta) = \int_{1}^{r} \frac{S(r; \Delta)}{r} dr. \qquad (2)$$

Now Δ_r consists of a finite number of connected domains. Let Δ_r^0 $(r \ge r_0)$ be the one, which contains a fixed point z_0 of Δ and θ_r be the part of |z|=r, which belongs to the boundary of Δ_r^0 . θ_r consists of a finite number of arcs θ_r^i $(i=1,2,\cdots,\nu(r))$ and $r\theta_i(r)$ be its arc length and put $\theta(r)=\sum \theta_i(r)$. $\theta(r)$ is continuous except at most a countable number of isolated points $0 < r_1 < r_2 < \cdots < r_{\nu} \to \infty$, where $\theta(r_{\nu}-0) = \theta(r_{\nu}) < \theta(r_{\nu}+0)$.

In the former paper, 10 I have proved the following theorem.

THEOREM. For any $0 < \alpha < 1$,

$$T(r; \Delta) \ge \text{const. } e^{\pi \int_{r_0}^{\alpha r} \frac{dr}{r\theta(r)}} (r \ge r_0).$$

¹⁾ M. Tsuji: On a regular function which is of constant absolute value on the boundary of an infinite domain. Tohoku Math. Journ. 3 (1951).

In the proof of the theorem on the number of direct transcendental singularities of an inverse function of a meromorphic function of finite order, Ahlfors²⁾ proved a similar relation:

$$T(r) \ge \text{const. } e^{\pi \int_{r_0}^{\alpha_r} \frac{dr}{r\theta(r)}},$$
 (3)

where w(z) is meromorphic for $|z| < \infty$ and T(r) is its characteristic function and $\theta(r)$ is defined for a simply connected domain, which is bounded by the outermost boundary curve of Δ . Our theorem is an extension of (3). In this paper, I shall give a somewhat simpler proof than the former one.

Proof. Let

$$u(z) = \log \frac{R^2 + |w|^2}{2R|w|} \ge 0, \quad w = w(z),$$
 (4)

then

$$\Delta u = \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial y^2} = \frac{4R^2 |w'|^2}{(R^2 + |w|^2)^2} \ge 0, \quad \frac{\partial^2 u}{\partial \log r^2} + \frac{\partial^2 u}{\partial \theta^2} = r^2 \Delta u \ge 0, \quad (5)$$

$$(z = x + iy = re^{i\theta})$$

so that u(z) is subharmonic in Δ .

Since $\frac{R^2 + |w|^2}{2R|w|} = 1 + \frac{(R - |w|)^2}{2R|w|}$, we see that

$$u=0$$
, $\frac{\partial u}{\partial \nu}=0$ on I' , (6)

where ν is the outer normal of I'.

Let λ_r be the part of |z|=r, which lies in Δ , so that $\theta_r \subset \lambda_r$. We put

$$\mu(r) = \int_{\lambda_r} u(re^{i\theta}) d\theta . \tag{7}$$

We denote I'_r the part of I', which belongs to the boundary of Δ_r , so that $I'_r + \lambda_r$ is the whole boundary of Δ_r .

²⁾ L. Ahlfors: Über die asymptotischen Werte der meromorphen Funktionen endlicher Ordnung. Acta Acad. Aboensis. Math. et Phys. 6, Nr. 9 (1932).

Since u=0 at the end points of λ_r we have by (6) and Green's formula,

$$r\mu'(r) = \int_{\lambda_r}^{\partial u} r d\theta = \int_{\Gamma_r + \lambda_r}^{\partial u} ds = \iint_{A_r} \Delta u \, dx dy =$$

$$4R^2 \iint_{A_r} \frac{|uv'|^2}{(R^2 + |uv|^2)^2} \, dx dy > 0,$$

so that

$$\int_{\lambda_{r}} u(re^{i\theta}) d\theta = \mu(r) = 4R^{2} \int_{r_{0}}^{r} \frac{dr}{r} \iint_{J_{r}(R^{2} + |w|^{2})^{2}} dx dy + \text{const.} \leq
\text{const.} \int_{r_{0}}^{r} \frac{dr}{r} \iint_{J_{r}(1 + |w|^{2})^{2}} dx dy + \text{const.} = \text{const.} T(r; \Delta) + \text{const.} \quad (9)$$

Following Carleman³⁾, we put

$$m(r) = \frac{1}{2\pi} \int_{\theta_r} [u(re^{i\theta})]' d\theta . \tag{10}$$

We denote I_r^0 the part of I, which belongs to the boundary of Δ_r^0 , so that $I_r^0 + \theta_r$ is the whole boundary of Δ_r^0 . Since u = 0 at the end points of θ_r by (6) and Green's formula, we have for $r_{\nu} < r < r_{\nu+1}$,

$$\frac{dm(r)}{d\log r} = \frac{1}{\pi} \int_{\theta_r} u \frac{\partial u}{\partial \log r} d\theta = \frac{1}{\pi} \int_{\theta_r} u \frac{\partial u}{\partial r} r d\theta = \frac{1}{\pi} \int_{\mathbb{T}_r^0 + \theta_r} u \frac{\partial u}{\partial \nu} ds = \frac{1}{\pi} \iint_{\Delta_r^0} \left(\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right) dx dy + \frac{1}{\pi} \iint_{\Delta_r^0} u \Delta u \ dx dy > 0 ,$$
(11)

so that m(r) increases at $r (\pm r_{\nu})$. At r_{ν} , we see that $m(r_{\nu} - 0) = m(r_{\nu}) < m(r_{\nu} + 0)$. Hence m(r) is an increasing function of r. By (5), we have

$$\frac{d^{2}m(r)}{d\log r^{2}} = \frac{1}{\pi} \int_{\theta_{r}} \left(\left(\frac{\partial u}{\partial \log r} \right)^{2} + u \frac{\partial^{2}u}{\partial \log r^{2}} \right) d\theta = \frac{1}{\pi} \int_{\theta_{r}} \left(\left(\frac{\partial u}{\partial \log r} \right)^{2} + u r^{2} \Delta u - u \frac{\partial^{2}u}{\partial \theta^{2}} \right) d\theta \geq \frac{1}{\pi} \int_{\theta_{r}} \left(\left(\frac{\partial u}{\partial \log r} \right)^{2} + u r^{2} \Delta u - u \frac{\partial^{2}u}{\partial \theta^{2}} \right) d\theta \geq \frac{1}{\pi} \int_{\theta_{r}} \left(\left(\frac{\partial u}{\partial \log r} \right)^{2} + u r^{2} \Delta u - u \frac{\partial^{2}u}{\partial \theta^{2}} \right) d\theta \geq \frac{1}{\pi} \int_{\theta_{r}} \left(\left(\frac{\partial u}{\partial \log r} \right)^{2} + u r^{2} \Delta u - u \frac{\partial^{2}u}{\partial \theta^{2}} \right) d\theta = \frac{1}{\pi} \int_{\theta_{r}} \left(\left(\frac{\partial u}{\partial \log r} \right)^{2} + u r^{2} \Delta u - u \frac{\partial^{2}u}{\partial \theta^{2}} \right) d\theta = \frac{1}{\pi} \int_{\theta_{r}} \left(\left(\frac{\partial u}{\partial \log r} \right)^{2} + u r^{2} \Delta u - u \frac{\partial^{2}u}{\partial \theta^{2}} \right) d\theta = \frac{1}{\pi} \int_{\theta_{r}} \left(\left(\frac{\partial u}{\partial \log r} \right)^{2} + u r^{2} \Delta u - u \frac{\partial^{2}u}{\partial \theta^{2}} \right) d\theta = \frac{1}{\pi} \int_{\theta_{r}} \left(\left(\frac{\partial u}{\partial \log r} \right)^{2} + u r^{2} \Delta u - u \frac{\partial^{2}u}{\partial \theta^{2}} \right) d\theta = \frac{1}{\pi} \int_{\theta_{r}} \left(\left(\frac{\partial u}{\partial \log r} \right)^{2} + u r^{2} \Delta u - u \frac{\partial^{2}u}{\partial \theta^{2}} \right) d\theta = \frac{1}{\pi} \int_{\theta_{r}} \left(\left(\frac{\partial u}{\partial \log r} \right)^{2} + u r^{2} \Delta u - u \frac{\partial^{2}u}{\partial \theta^{2}} \right) d\theta = \frac{1}{\pi} \int_{\theta_{r}} \left(\left(\frac{\partial u}{\partial \log r} \right)^{2} + u r^{2} \Delta u - u \frac{\partial^{2}u}{\partial \theta^{2}} \right) d\theta = \frac{1}{\pi} \int_{\theta_{r}} \left(\left(\frac{\partial u}{\partial \log r} \right)^{2} + u r^{2} \Delta u - u \frac{\partial^{2}u}{\partial \theta^{2}} \right) d\theta = \frac{1}{\pi} \int_{\theta_{r}} \left(\left(\frac{\partial u}{\partial \log r} \right)^{2} + u r^{2} \Delta u - u \frac{\partial^{2}u}{\partial \theta^{2}} \right) d\theta = \frac{1}{\pi} \int_{\theta_{r}} \left(\left(\frac{\partial u}{\partial \log r} \right)^{2} + u r^{2} \Delta u - u \frac{\partial^{2}u}{\partial \theta^{2}} \right) d\theta = \frac{1}{\pi} \int_{\theta_{r}} \left(\left(\frac{\partial u}{\partial \log r} \right)^{2} + u r^{2} \Delta u - u \frac{\partial^{2}u}{\partial \theta^{2}} \right) d\theta = \frac{1}{\pi} \int_{\theta_{r}} \left(\left(\frac{\partial u}{\partial \log r} \right)^{2} + u r^{2} \Delta u - u \frac{\partial^{2}u}{\partial \theta^{2}} \right) d\theta = \frac{1}{\pi} \int_{\theta_{r}} \left(\left(\frac{\partial u}{\partial \log r} \right)^{2} + u r^{2} \Delta u - u \frac{\partial^{2}u}{\partial \theta^{2}} \right) d\theta = \frac{1}{\pi} \int_{\theta_{r}} \left(\left(\frac{\partial u}{\partial \log r} \right)^{2} + u r^{2} \Delta u - u \frac{\partial^{2}u}{\partial \theta^{2}} \right) d\theta = \frac{1}{\pi} \int_{\theta_{r}} \left(\left(\frac{\partial u}{\partial \log r} \right)^{2} + u r^{2} \Delta u - u \frac{\partial^{2}u}{\partial \theta^{2}} \right) d\theta = \frac{1}{\pi} \int_{\theta_{r}} \left(\left(\frac{\partial u}{\partial \log r} \right)^{2} + u r^{2} \Delta u - u \frac{\partial^{2}u}{\partial \theta^{2}} \right) d\theta = \frac{1}{\pi} \int_{\theta_{r}} \left(\left(\frac{\partial u}{\partial \log r} \right)^{2} + u r^{2} \Delta u - u \frac{\partial^{2}u}{\partial \theta^{2}} \right) d\theta = \frac{1}{\pi} \int_{\theta_{r}} \left(\left(\frac{\partial u}{\partial \log r} \right)^{2} + u r^$$

³⁾ T. Carleman: Sur une inegalité différentielle dans la théorie des fonctions analytiques. C. R. 196 (1936).

M. Tsuji

$$\frac{1}{\pi} \int_{\theta_r} \left(\left(\frac{\partial u}{\partial \log r} \right)^2 - u \frac{\partial^2 u}{\partial \theta^2} \right) d\theta = \frac{1}{\pi} \int_{\theta_r} \left(\left(\frac{\partial u}{\partial \log r} \right)^2 + \left(\frac{\partial u}{\partial \theta} \right)^2 \right) d\theta , \qquad (12)$$

by the integration by parts.

Now

78

$$\left(\frac{dm(r)}{d\log r}\right)^2 \leq \frac{1}{\pi^2} \int_{\theta_r} u^2 d\theta \int_{\theta_r} \left(\frac{\partial u}{\partial \log r}\right)^2 d\theta = \frac{2m(r)}{\pi} \int_{\theta_r} \left(\frac{\partial u}{\partial \log r}\right)^2 d\theta,$$

so that

$$\frac{1}{\pi} \int_{\theta_r} \left(\frac{\partial u}{\partial \log r} \right)^2 d\theta \ge \frac{1}{2 m(r)} \left(\frac{dm(r)}{d \log r} \right)^2. \tag{13}$$

Since u=0 at the end pints of θ_r^i , we have by Wirtinger's inequality,

$$\int_{\theta_r^i} \left(\frac{\partial u}{\partial \theta}\right)^2 d\theta \geq \frac{\pi^2}{(\theta_i(r))^2} \int_{\theta_r^i} u^2 d\theta \geq \frac{\pi^2}{(\theta(r))^2} \int_{\theta_r^i} u^2 d\theta.$$

Summing up for i,

$$\frac{1}{\pi} \int_{\theta_{m}} \left(\frac{\partial u}{\partial \theta} \right)^{2} d\theta \geq \frac{\pi}{(\theta(r))^{2}} \int_{\theta_{m}} u^{2} d\theta = \frac{1}{2} \left(\frac{2\pi}{\theta(r)} \right)^{2} m(r) . \tag{14}$$

Hence by (12), (13), (14),

$$\frac{d^2 m(r)}{d \log r^2} \ge \frac{1}{2m(r)} \left(\frac{dm(r)}{d \log r}\right)^2 + \frac{1}{2} \left(\frac{2\pi}{\theta(r)}\right)^2 m(r)$$

$$\ge \frac{dm(r)}{d \log r} \cdot \frac{2\pi}{\theta(r)} \left(r_{\nu} < r < r_{\nu+1}\right), \tag{15}$$

since $\frac{dm(r)}{d \log r} > 0$ by (11).

From (11), we see that at r_{ν} ,

$$\left(\frac{dm(r)}{d\log r}\right)_{r_{\nu}=0} = \left(\frac{dm(r)}{d\log r}\right)_{r_{\nu}} < \left(\frac{dm(r)}{d\log r}\right)_{r_{\nu}+0},$$

so that integrating (15), we have

$$\log \frac{dm(r)}{d\log r} - \log \frac{dm(r_0)}{d\log r_0} \ge 2\pi \int_{r_0}^{r} \frac{dr}{r\theta(r)} ,$$

or

$$r \, m'(r) = \frac{dm(r)}{d \log r} \ge \text{const. } e^{2\pi \int_{r_0}^r \frac{dr}{r\theta \, r}}. \tag{16}$$

Since m(r) is an increasing function of r, we have for any $0 < \beta < 1$,

$$m(r) > m(r) - m(r_0) \ge \int_{r_0}^{r} m'(r) dr \ge \text{const.} \int_{r_0}^{r} \frac{dr}{r} e^{2\pi \int_{r_0}^{r} \frac{dt}{t\theta(t)}} \ge \text{const.} \int_{\beta r}^{r} \frac{dr}{r} e^{2\pi \int_{r_0}^{\beta r} \frac{dt}{t\theta(t)}} = \text{const.} \left[e^{2\pi \int_{r_0}^{\beta r} \frac{dr}{r\theta(r)}} \right] \ge \text{const.} \left[e^{2\pi \int_{r_0}^{\beta r} \frac{dr}{r\theta(r)}} \right]$$

$$= \text{const.} \left[e^{2\pi \int_{r_0}^{\beta r} \frac{dr}{r\theta(r)}} \right]$$

Let u(z) attain its maximum at $z=re^{i\theta_0}$ on θ_r , then

$$\left(u(re^{i\theta_0})\right)^2 \geq \frac{1}{2\pi} \int_{\theta_r} \left[u(re^{i\theta})\right]^2 d\theta = m(r) \geq \text{const. } e^{2\pi \int_{r_0}^{\beta r} \frac{dr}{r\theta(r)}},$$

so that

$$u(re^{i\theta_0}) \ge \text{const. } e^{\pi \int_{r_0}^{\beta r} \frac{dr}{r\theta(r)}}$$
 (18)

Let

$$U(z) = U(re^{i\theta}) = \frac{1}{2\pi} \int_{\lambda_{\rho}} u(\rho e^{i\varphi}) \frac{\rho^2 - r^2}{\rho^2 - 2\rho r \cos(\varphi - \theta) + r^2} d\varphi, \qquad (19)$$

$$(r < \rho)$$

then U(z)=u(z) on λ_{ρ} and U(z)>0=u(z) on I'_{ρ} and since u(z) is subharmonic in Δ_{ρ} , we have u(z) < U(z) in Δ_{ρ} . Hence if we put $\rho=kr(k>1)$, then by (19) and (9),

$$u(re^{i\theta_0}) < U(re^{i\theta_0}) \le \frac{\rho + r}{\rho - r} \cdot \frac{1}{2\pi} \int_{\lambda_{\rho}} u(\rho e^{i\varphi}) d\varphi = \frac{k+1}{k-1} \cdot \frac{1}{2\pi} \int_{\lambda_{kr}} u(kre^{i\varphi}) d\varphi$$

$$\le \text{const. } T(kr; \Delta) + \text{const.,}$$

so that by (18),

$$T(kr; \Delta) \ge \text{const. } e^{\pi \int_{r_0}^{\beta r} \frac{dr}{r^{\theta(r)}}} - \text{const.}$$

Hence if we put r instead of kr and $\alpha = \frac{\beta}{k}$, then

$$T(r; \Delta) \geq \text{const. } e^{\pi \int_{r_0}^{\alpha r} \frac{dr}{r_0 r}} - \text{const.}$$

From this we have easily,

$$T(r; \Delta) \geq \text{const. } e^{\pi \int_{r_0}^{\alpha r} \frac{dr}{r^{0(r)}}} (r \geq r_0).$$

Since α is any number, such that $0 < \alpha < 1$, our theorem is proved.

Mathematical Institute,
Tokyo University.