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On a direct transcendental singularity of an inverse
function of a meromorphic function.

By Masatsugu Tsuj1
(Received Nov. 21, 1952)

Let 4 be an infinite domain on the z-plane, which may be infi-
nitely multiply connected and I’ be its boundary, which consists of at
most a countable number of analytic curves. We assume that I’ con-
tains at least one curve extending to infinity. Let w=w(z) be regular
in 4 and on I’, except at z=co, such that |w(z)|] <R in 4 and
|w(z) |=R on I" and w(?)==0 in 4. Let 4, be the part of 4, which
liesin |2|<7». We put

S(r; 4)= ;lr—SL, Efl%;lzil;;{dxdy, (wzw(z), z=x+1y), (1)

Tr; =[S 4) gy, (2)
1 4

Now 4, consists of a finite number of connected domains. Let 4%
(r = 7,) be the one, which contains a fixed point z, of 4 and 6, be the
part of | z|=7, which belongs to the boundary of 4%. 6, consists of a
finite number of arcs 6% (i=1,2, -+, »(»)) and »8,(») be its arc length
and put (»)=316;(»). 6(») is continuous except at most a countable

number of isolated points 0 <7, <7,<--- <7, — «, where 6(z,—0)
=8(r,) < 6(»,+0). '
In the former paper,”’ I have proved the following theorem.
THEOREM. For any 0 < a <1,

dar _

T(»; 4) = const. eisro D (p > 1)

1) M. Tsuji: On a regular function which is of constant absolute value on the
boundary of an infinite domaif. Tohoku Math. Journ. 3 (1951).
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In the proof of the theorem on the number of direct trans-
cendental singularities of an inverse function of a meromorphic func-
tion of finite order, Ahlfors®? proved a similar relation :

ﬂ “r  dy
T(#) > const. e Sro 76 (3)

’

where w(z) is meromorphic for |z| < « and T'(») is its characteristic
function and 6(») is defined for a simply connected domain, which is
bounded by the outermost boundary curve of 4. Our theorem is an

extension of (3). In this paper, I shall give a somewhat simpler proof
than the former one.

Proof. Let
R+ | w
u(z)=lo =0, w=w), 4
(2)=log SR |w| = ) (4)
then
Au:gz—zi+ Fu_ AR W' P ou 4 O =7r4u >0, (5)

02 0yr (RE+|wpr= " ologrt o6 =
(z=x+1y=re')
so that u(z) is subharmonic in 4.

) Ry |wi (R—|wly
S Tl =14 , S that
1nce ZRIwI Zlel we Sce a
u=0, %% =0 on 1', (6)

1 4

where » is the outer normal of 7'.
Let A, be the part of | zj=», which lies in 4, so that 6, = a,.
We put

,u(r):L u(rei®)de . (7)

We denote I, the part of /7, which belongs to the boundary of 4,, so
that 7I',+4, is the whole boundary of 4,.

endlicher Ordnung. Acta Acad. Aboensis. Math. et Phys. 6, Nr. 9 (1932).
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Since #=0 at the end points of A, we have by (6) and Green’s formula,

m’(r)=j o rd():rr:f Ot g “ A1 dxdy =

A)_ 0[’ N l"_+/\ ()Il
A | 20 2 -
413-\[ Tl geay -0,
g, (R 4| w Py
so that
' dr [ 20’ | <
u(ret®)dO == pu(r)=4R" dxdy--const. <<
jk (rei®)do == () = \” (R%Iz‘-)L vdy <
const.jr dr [ |w Ii . dxdy+-const.==const. T(»; 4)-+const. (9)
v JIa (14| wizy

Following Carleman®, we put
(10)

m(r ) == 21 \0 L rei®) ) o .
T 0,

We denote /') the part of 7°, which belongs to the boundary of 4%, so
that /') +6, is the whole boundary of 4% Since #==0 at tho end

points of 6, by (6) and Green’s formula, we have for », <r<_r,.,
dm(r) _ ou 1 o 1 ou
do = 2t rd0 == u - -ds=
dlog 1’ ‘ o log » \ . OF T jlg 10 ov
1 ( ou ou 19 .
7;-4”40 (ux ) + ( o ) >dxdy+ _ ”nguu dxdy >0, 11)

so that m(») increases at » (s}=7,). At 7,, we see that m(s, —0)=m(r,)

<m(7,+0). Hence m(r) is an increasing function of 7.
By (5), we have

d*m(r) _1 s‘o <( o )2+z/z o u ,,\)dH-—

d log »* o log » o log »=

ar
1 [ ( _on_ ) Furtdu—u o \(IH
T Jo, \" Glogr 89

Y

3) T. Carleman: Sur une inegalité différentielle dans la théorie des fonctions

analytiques. C. R. 196 (1936).
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S«alogr2 gzozgd‘_s <(alogr) ( )) ’ (12)

by the integration by parts.

Now

(g?g(él ) = izj w df j (a log 7 >2 2m<r) j (a log r) a6,

_71;59’( p) ﬁ)l; r >2 6 = 2 ni(r) ( ?;:)s(gr) R (13)

Since #=0 at the end pints of 6, we have by Wirtinger’s inequality,

Vg ™ [ pag>__m [ 4
Li(ae) P = o) L;-“ 9= Gy S“ »
Summing up for 7,
1( (ouy ™ 2 do—= L )
Jo, ae)de <GP y” 6= 2(9( ))’"(’) (14
Hence by (12),(13), (14),

Zzi’:é’;l = Zml(r) (3’1'3;'3) (e( )> m(r)

am(r) . 2w
= dlogr 6(r) (n<<r<n.a), (15)

since 977 ~ o by (11).
dlogr»

From (11), we see that at »,,
dam(r) ( am(r) ) am(r)
dlogr/r,-0 \dlogr \dlogr/r,+0"
so that integrating [(15), we have

dm(r) '—log dm(ro) > %0 y’ dr

1 ,
g dlogr» dlogr, ro 76(7)
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or
2n T odr _ )
ym/(r)= dm(r) > const. e -{r. e - (16)
dlogr» ‘
Since m(r) is an increasing function of 7, we have for any 0 _B <_1,

dat

’ g 2| A
m(r) > m(r)—m(r,) zZ( m/(r)dr = const.\ _ ‘i’ e Y s

Tt . BTy
?» - 2n e ? - 2x - ‘.
const.‘~ ar . -\n 1o ZCOnSt.‘ ar, \ o
JBr ¥y JBr oy
2| o :
const. ¢ “»o a7

Let #»(2) attain its maximum at z=7»¢® on 6,, then

Ry 1 (7, P 2 (™
(u(rei®)) > ‘ [u(w"’)]dﬂ:mmhconst. e et
) 271- . 9’_ - -
so that
o\
u(re®) > const. e '\"o AR (18)
Let
) 1 . S
U(z)=U(re* =_~-S 0y P dp, (19
(2) (re®) 27 A,u(Pe )p2—2prCOS(qI—H)+7’2 7 (19)
(r < p)

then U(z)=u(z) on A, and U(z) > 0=u(z) on I’, and since u(z) is
subharmonic in 4,, we have u(z) < U(z) in 4,. Hence if we put
p=kr(k > 1), then by (19) and (9),

k+1 1

u(re’®) < U(rei®) << P tr 1 u(pc®)dyp = b

L . kre™)d.
p—r  2mdr, 1 2g Ny ey

< const. T(kr; 4)+const.,
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so that by

- (ﬁr_,dt_
kr: 4) > const.e - 7"’ —const.
T(kr;

Hence if we put 7 instead of k7 and a=~B- -, then

ﬂ‘-ari dr
T(r; 4) > const.e *» "°”’ —const.
From this we have easily,

Y dy

T(r: 4) > const. e"5 ro 707 (> 50) .

Since « is any number, such that 0 <« < 1, our theorem is proved.
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