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- Generalized /* spaces and the Schur property.

By I. HALPERIN and H. NAKANO

(Recetved Nov. 12, 1952)

1.—The following situation (essentially) was considered by H.
Nakano [3]  This problem was considered by W. Orlicz in a
restricted form. Let J be a collection, not necessarily countable, of
marks «. For given J-sequences p={p(a)}, w={w(a)} with Pa) =1
and w(a) >0 for all «, let /=I(p, w) denote the space of all real or
complex valued J-sequences x={x(a)} for which || x || is finite; here,
by definition,

(1.1) |l x ll=inf » for all >0 with zw(a)‘!‘_(ﬂ)_
i

()

<. 1 the symbol

>lindicating that the non-zero addends are denumerable and have an
absolutely convergent sum in the usual sense (if there are no such 7
then || x || is defined to be «). The notation /(p, w) may be replaced
by X(p) if w(a)=1 for all «, and by /7, if, in addition, p(a)=p (a
constant) for all «.

If R, S are two collections of J-sequences, R 2~ S shall mean that
numbers m(a) exist such that the relations y(a)=m(a)x(a) set up a
(1,1) correspondence between all x in R and all y in S.

A Banach space is said to have the Schur property if every
weakly convergent sequence of its elements is necessarily convergent
in norm (as shown by J. Schur /', with J the set of all positive
integers, has this property).

2.—The arguments used in show :

(I) : Every {p,w) is a Banach (i. e, linear, normed and complete) space.
(D) : Xp, wy)221(q, w,) if and only if

(2,1)29‘Tf<%)‘-qq(&)77‘< oo for some 0< 6 <1, the sum to be taken over
all « for which p(a) == gla).

(III) : X(p, w) has the Schur property if

(2.2) for every e >0 the a for which p(a) > 1+e are finite in number.

(IV): There are /(p, w) with the Schur property for which (D, w1
is false.
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The proofs given in depend on results from the theory of
modulared semi-ordered linear spaces. In the present note this depen-
dence will be avoided by a simplification in the proofs. It will also
be shown that the condition (2.2) is necessary as well as sufficient for
(III) and some generalizations of (I), (II) and (III) will be given.

3.—

LemmAa 1. If k=1,05t<1 and u, v =0, then (Fu+(1—tw)*
< tuk+ (1—1t)v*.

PROOF. See [2, page 77, Example (3)].

LEMMA 2. If B >1, 1/k+1/k'=1 and u, v =0, then

min(«*, v¥") < wv < max (u*, v*) .

PrOOF. Suppose u#* << v¥. Then u < v*/% so that uy < p*/P+1=y¥
Similarly v = «** implies uv = u*.
LeEMMA 3. If p(n) > qn) =1 for n=1,2, -

D) q(n)

and if S35, 0 Pmw-am” = oo for all 0 <8 <1, then there are numbers
r(n) and x(n) with »(n) — 0 as n — o such that
S o1 L x(m) |2 < oo but 37 5.1 | #(n)x(n) |*7 = co.

Proor. We need only show that for any » >0 and any 0 e <2
there is an integer N and numbers x(1), x(2), ---, x(N) such that

N o lx(n) |2 <e but 12| 7x(n) |2? 2= 1. (Repetition of this step

w1th e=r=2"" then proves the lemma.) Now choose 6 with 0 <8 <
min(e»/2, 1), choose N so that

D(n) q(n)

1 n= 6 pm-am < 2

D
and set x(n)=r"10?m-am for n < N. Then

D(n) q(s>
STV | x(n) [P0 =STN. =2 9 PPt 50n gl

»n) q(n)

__g: 2 (5/2)'1’(”) 2] P(n) an)

7)) q(m

< (e/2) SN, g rmdr < e,

and
) q(»)

b
S rx(n) [P0 =37, 0 Fuw=ay > 1.
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COROLLARY. For the x(n) of Lemma 1,351 x(n) |9 < o but
Sl #x(n) |%P = oo for every » >0.

THEOREM 1. Suppose pla) > qgla) > 1 for all «. In order that
S x(a) |2 < oo should imply that S| ra(a) 1% < oo for some »> 0,

the condz'tion

) q(e)
3.1)>6 paras < co for some 060 <1 is necessary and sufficient.

PROOF. The necessity follows casily from the Corollary to Lemma
1. On the other hand, if € is a number for which (3.1) holds, then,
using Lemma 2 with k=p(«x)/q(x),

20 6x(a) |7 =3767" | x(c) |7

0y, P b(a)
_\i Z (0 ) nf)«'-m)—wq'(b) + I x(a) |‘I(a’«) {1(:/-)

Dla) g(n)

<36 e 3| () [

COROLLARY 1. Suppose p(ct) > 1,q(x) >1 for all «. In order
that 33| x(a) |7® < co showuld imply that>|rx(a)|%® < co for some
r >0 the condition

D) gl )
3O tw-aw < oo for some 0 << 0 <1

(the sum to be taken over all « for which p(x) > q(a)) is necessary
and sufficient.

Proor. This follows from the fact that | x(«) | >> 1 for at most a
finite number of «, and for other «, if g(«) > p(«) then |Ox(a) (9™ <
| x(a) |7 <| x(x) |#*® for all 0 <6 < 1.

CoROLLARY 2. [(p) and [(q) contain the same J-sequences if and

only if (2.1) holds.

4. Proof of (I).

4.1. The identity ||cx||=|c||| x| is clear. Moreover if || x| <9
and ||y || <& for some 5, § > 0, then using Lemma 1,
Ix(“)ﬂ’(a) 7 < | &) P y(a) M 8
Zw(a) n+d 2w<a)< ”n l 7n+5 l 7+
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implying the triangle inequality ||x+y || <|lx|i+lly]|l for all X, y.
Thus /(p, w) is a linear, normed space and || x |[|=0 implies x(a)=0 for
all « since we assume w(«) >0 for all «.

42, If 0= uy(a) <wufa) < - and w(a)=1lim, . #,(c) <. oo then
Il % [|=1im,, {| #, || . For clearly > holds and on the other hand if

| 25 || <X & for all # then for every ¢ >>0,S) w(a){tg’ia) e <1 for all
€
}u<a) I(a)

n which impliesZw(a)g 5 =<1 and hence |l u#]|| <<&+e. From

€
this follows || % || <& and hence j| # || <lim,,. || %, ||. A
43. I35l %, 11 < then x(a)=37. , x,(«) is absolutely con-

vergent for each w and || x || <> . il x,, 1. For §4.2 and the triangle
inequality apply to wu,(«)=3"% | x,(x)| and w(a)=3"5., | x,.(«) | show
that ||z« || <33 (Il x.,1l. The relations | x(«) | < w(«) now gives the

statement of §4.3.

4.4. To show that / is complcte we may suppose x, to be a
sequence with || x,—x,, || -0 as #, m — o and need only show that
for some x, [|x—x,|l— 0 as #— . (The triangle inequality will
then show that x is in Z) We need only obtain this with some
infinite subsequence in place of the given sequence since the triangle
inequality will extend this result to the original sequence. Thus, by
suitable selection of subsequence, we may assume that Sl xpey—2x, ||
<. §4.3 then implies that x(a)=x(a)+ S (Xui(a)—x.(a)) is
defined for each o and || x—x, || < S5, 1| Xppe1— % |l and — 0 as 7 — oo,

5. Proof of (II).

9.1. Suppose p(x) defined for every x in / and satisfying (i) 0 <
p(x) <o, (ii) plcx)=|c|p(x), and (iii) p(x) << p(¥) whenever |x(a)]
< I|y(a)]| for all «. Then, for some M <o, p(x) M| x|l for all
x. For otherwise there would be a sequence x, with x| <277
and p(x,) > n; then by §4.3, x(a)=3"5.,| x.(a)| is in 7 but p(x) >n
for every n contradicting (i).

9.2. The relations x(a)=w(a)V?* y(a) set up a (1,1) correspondence
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between all x in Z(p) and all ¥y in /(pw) (the mapping is actually
isometric) so that I(p,w)=</(p). Since the relation 2¢is transitive,
I(p, wy) =2 I(q, w,) if and only if Z(p)22I(q). :

5.3. Suppose the relations y(a)=m(«a) x(ax) do set up a (1,1) cor-
respondence between all x in /(p) and all y in /{g). Then §5.1 applies
to the function p(x)=|{]y || showing that {|y || < M || x || for some finite
M. Choosing | x(a) | to have the value 1 for a particular « and the
value O for all other « yields | m(«a)| <X M for all «. Similarly 0 <m
< |m(a)| < M < o for all . This means that /(p)=<2I(q) if and
only if /(p) and I(g) contain the same J-sequences (/(p) and I(g) will
then be norm isomorphic although not necessarily norm equivalent as

defined in [1, page 180]). [Corollary 2 to completes the
proof of (II).

6. Proof of (III).

6.1. Clearly, if two Banach spaces are norm isomorphic then both
or neither have the Schur property. In particular, /(p, w) has the
Schur property if and only if /(p) has it.

6.2. Let (1/p(a))+(1/p'(x))=1 for each a for which p(a)>1. If
|a(a) | <1 for every « and 37 |a(a) {#“*=A < (the sum to be taken
over all « for which p(a) > 1) then the linear functional

P(x)=2] a(a) x(a)
is bounded on /(p) with || < A+1. For, using
| a(a) 2(a) | < | x(a) 7 +] a(a) |27 if pla)>1,
<l xla) |** if pla)=1,
and so, for all [|x|| <1, |e(x) | Z1+A.

6.3. We suppose now that (2.2) holds, that x, is weakly conver-
gent, but not norm convergent, to 0 and we derive a contradiction.
We may suppose 0 <e <|]x, ]| <1 for all » (and hence |x,(a)| <1
for all « and all ») since weak convergence implies norm boundedness
(see [1, page 80, Théoreme 6]). §6.2, with | a(«a)|=1 for a particular
« and=0 for all other, «, shows that x,(a) — 0 for every fixed a.
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Since (2.2) implies that p(a) < K for all « for some finite K, it follows
that for all #,

5| 2@ "2 <1, 12 350 o) o0 =
€

(ﬂ(w

with 0 <<p=e¥<{1. By induction on m we may choose I(m) as
disjoint finite collections of the «, and an x,,,, from the given sequence,
so that

pla)y<<—"" _for all @ in I(m),
m—1

E @ e I(m) l xn(m) ((X) Ipm)> _g“ ’

K
S a e zimr | Ty (@) 120 << <i%)

and so

Zw eI'm)

K () 2
7n/16 '

Now for ae I(m) with x,,,, (@) == 0 set

a(a)’: ‘21_ X nm) (a)l Xnim> (a) ’p(w)—z,

and for all other « set a(a)=0. Then |a(a)| <1 for all « and

(@) 1 < S5t S cxom(-L)" 1 (@) 199

3 m-127m=1

so that, by §6.2, 37 a(a) x,(a) » 0 as # — . But this is contradicted
by :

| 35 a(a) Xpem () | 2%‘% — 2 e érom | ala) Xugm (@) | g—Z——(1+1)T”§

for all ma.
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6.4. Suppose for some countable subset of J, which we may
denote as 1,2, ..., that contrary to (2.2), p{n) >1+e¢ for all » for
some ¢ > 0. For every bounded linear functional ¢(x) on / let ¢(eg)
=a,, where |ega)|=1 if «a=8 and=0 if as=B. Then |les|l=1 and
for any finite sum || 3]gscpepll <X1 implies|>lpgcsas] <|@|. But
ISz 1cnenll <1 whenever 35 | ¢, |#? < 1, in particular, whenever
Stz lel I <1. Hence, by the converse to Holder’s inequality [1,
page 26, Theorem 15]

-1 _ 1-- -1
Sivalasl e el 1] e
implying that ¢(e,)=a,— 0 as » — <. Hence e, is weakly convergent
to 0 but |je,l|=1 for all ». Thus / does not have the property of
Schur if (2.2) fails to hold.

7. Proof of (IV). We need only find a sequence p(n)=1+¢(n)
with ¢ >0 for all #» and ¢(n#) — 0 as #» — o and such that

1 N1+l

s ;;:1<_n7) WD = oo

for all m=1,2, ....

We may take e()=m"1 for all N(m) < n << N(m+1) where N(0)=0
and N(m) is defined by induction so that

Y N +1) 1 1+
>_s n-=’1’vg(m)+1<_1;‘z“) _>~ 1

i.e., so that N(m+1) = N(m)+m™*! .

8. Generalization to the /(p, w, B) spaces. With J,p and as
before, let B be a family of Banach spaces {B(a)} and let /(p,w, B)
denote the space of J-sequences x with finite || x || and with the value
of x(«) an element of B(«) in place of a real or complex number.
The preceding §§ may be read as they stand for this more general
situation except for the following minor adjustments.

In §4.2 the u,(«) and u#(«a) continue to be real-valued J-sequences.

In §5.1 the x, should be selected so that for every fixed «a all
x4(ct) are of the form c,e, with e, a fixed element in B(a); ()
should then be taken to be (3] 5.1 ¢, De..

(III) should be read: !(p, w, B) has the property of Schur if and
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only if every B(«) has it and (2.2) holds.

In §6.2, a(a) should be taken as an element of the conjugate
Banach space B(a)*.

In §6.3 application of the adjusted §6.2 shows that for fixed «,
xn(a) — 0 weakly (in B(x)) and hence — 0 in norm in B(«) since B(«)
is assumed to have the Schur property. The I(m), x,..,(«@) are defined
as before but for each .xe I(m) with x,,, (a)=0, a(a) should be
taken as

-; | iy (@) £ ()

with z(a) in B(a)*, |u(a) =1, and 2(@)x,u (@) =] Xpm () | (Such z(a)
exist as shown in [1, page 55, Théoréme 3]).

In 564 the eg(a) should be elements in B(a) and as should be the
element in B(B)* obtained from ¢ by restricting x to have x(a)=0

for « &= 8. The argument of § 6.4 then shows that for finite sums,
Seleellas]l < || whenever || STacpesl]l =<1 for all such e¢;. Hence

Z“,’,“=1|an|1—"f+lé‘<oo and so |a@,|—0 as n— c. Thus for any such
en we have a sequence which is weakly convergent but not convergent
in norm. ’

It is clear that if v, were a sequence of element in a particular
B(«) which converged weakly, but not in norm, to 0 then the same
would be true in /(p,w,B) for x, which have =x,(«)=v, for the
particular « and=0 for all other «. Thus in order that Z(p,w, B)
should have the property of Schur it is necessary that each B(x)
have it.

9. Generalization to the /(P,W,B) spaces. We mention
briefly another possible generalization. Let the pair p, w be replaced
by a family of pairs P={p,}, W={w,} where A varies over an
arbitrary set A, py(a)=>>1 for all «, A, wy(«) >0 for all @, » and for
each «, wy(a) >0 for at least one A. Define || x|l, for each pair p,,
wy as in (1.1) and define | x ||=sup || x |lx for all A e A.

The arguments of §4 extend easily to show that each (P, W, B)
is a Banach space. We propose to discuss these spaces more fully in
a later note.

Queen’s University and Hokkaido University.
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