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On Killing vector fields in a Kaehlerian space.

By Kentaro YANO
(Received Dec. 19, 1952)

§ 0. Introduction.

S. Bochner [1,2]® has shown a remarkable contrast between
harmonic vectors and Killing vectors in a real compact Riemannian
space by proving the following thcorems :

THEOREM 1. In a compact Riemannian space, there exists no
harmonic (Killing) vector ficld, other than zero vector, which satisfies
the relation

Rt =0, (R’ < 0)

unless we have &;,=0. If the space has positive (negative) Ricci

curvature throughout, then the exceptional case cannol arise.
TueoreM 1I. If, in a compact Riemannian space, there exist a

harmonic vector field &; and a Killing vector field o', then we have

&,n7' =constant.

S. Bochner has shown also a remarkable contrast between
covariant analytic vectors and contravariant analytic vectors in a
compact Kaehlerian space by proving the following theorems :

TueoreM 1II. In a compact Kaehlerian space, there exists mno
self-adjoint covariant (contravariant) vector field, other than zero vector,
the components of which are analytic functions of coordinates and
which satisfies the relation

Rt >0, (R.pE"E% < 0)

unless the vector field has vanishing covariant derivative. If R,,;;{-“{-B
is positive (negative) definite throughout, then the exceptional case can-
not arise.

1) See the Bibliography at the end of the paper.
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THEOREM 1V. If, in a compact Kaehlerian space, therve exist a
covariant analytic vector field &, and a contravariant analytic vector
Sield n®, then we have

&.,n” =constant.

On the other hand, following theorem is well known.

THEOREM V. In a compact Kaehlerian space, a harmonic vector
JSield has covariant components &, which are analytic functions of
coordinates z* and &; which arve analytic functions of coordinates z*.
The converse is also true.

The purpose of the present paper is to study properties of a
Killing vector field in a compact Kaehlerian space and to obtain a
theorem corresponding to V.

To show clearly the contrast between harmonic and Killing vec-
tors, we shall give, in §1, a sketch of the proof of V by a
method which can be used, in §2, for the proof of the corresponding
theorem in the case of Killing vectors.

§ 1. Harmonic vectors in a compact Kaehlerian space.

We consider a compact Kaehlerian space with positive definite
metric

dst=gy,; ;dz'dz’
or
(1.1) ds’=2g.s dz" dz?,
the coefficients g;; satisfying

9ii=9Y9ji» g,,p=9';5=0, gaB=Fﬁ

and

09up __ 0Yuy
1.2 ‘ 9Jap — OJay
(1.2) ‘ 8Z" 0z"
where the indices ¢, 7, %,--- take the values 1, 2,------ , n, 1, Q,._._..._., n, the
indices «, B, v, the wvalues 1, 2,------ , # and the indices «, B, v, --***
the values 1,2, , n and
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the bar on a central letter denoting its complex conjugate.
On account of [1.2), the only non-zero Christoffel symbols formed
with ¢;; are

1 .- ov - 1 - 89
1.3 @ o gae 9B gnd  [Te = - gee TR
(13) T2 a2 oY gz
where ¢i/ are defined by ¢i/y;,=8%, and consequently, the only non-
zero components of the curvature tensor Ri;,, are

" w. __ 0l'fy P __ E___al'z;;
(14) R 5{5:'—12 BSYT g and R BYS— —R Bsy™ 5 -
0z 02
From [1.4), we can see that the only non-zero components of the
Ricci tensor R;; are

(1.5) Ryy=Rjp=R":, .

The quantities 1'%, Ri;,, and R, are all self-adjoint, that is to
say, they satisfy
]Tﬁv: =B Rwﬂv’é:REB'&a ’ EB?:RB)’-
Now, we know that, in a real compact orientable Riemannian

space, the necessary and sufficient condition that a vector &; be har-
monic is that it satisfy

(1~6) .(/'jkéi; j;k—gak’ai": ’

where the semi-colon denotes covariant differentiation with respect to
Christoffel symbols formed with ¢ ;.

This theorem is truc also in a compact (orientable) Kaehlerian
space, because if we consider a real representation of the Kaehlerian
space, then equation takes the form

(1.7) G'IRE . iow— EWR'4 =0,

where ¢';;: 9'7%, 1'%, and R's; are all real and consequently equation
shows that the real and imaginary parts of &; are both harmonic
vectors.

Now, we suppose that there exists a harmonic vector §&;,=(&.,&;)
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in a compact Kaehlerian space, then &; satisfies or
97k Ea; i = ERW=0,
97k Eg: & =0
Thus, if & =(&,, &) is a harmonic vector, then the vectors
£i=(,8), m=(.,0), =(008)
are also all harmonic vectors and consequently we have
Ni; 5= i

from which, putting i=«, j=8&, we find

7 S
Na; p=— aZB ——-O .
Also we have
Ci; j :Cj;i ’
from which, putting i=«, =28, we find
. 085 _
&z =

Thus, &, are analytic functions of z* and §; analytic functions of
zr. :
Conversely, if the covariant components &, are analytic functions
of the coordinates z* and &; those of z*, then we have

7=0, &;+y=0.
On the other hand, we have the Ricci identities
Euvis— w5y =& Ravs,
Eavis—Eais = —& R%%

=l

ot

from which
gjkg'a; 7: k"'&aRam=0 ’
97%EG, ;i r—E.R2;=0,
or
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97%E;; j; w—EaR% =0,
which shows that £; is a harmonic vector. Thus V is proved.

§ 2. Killing vectors in a compact Kaehlerian space.

We know that, in a real compact orientable Riemannian space,
the necessary and sufficient condition that a vector & be a Killing
vector is that it satistfy

(21) iR, p+ RIE7=0 and &,,=0.

This theorem is true also in a compact Kaehlerian space.

Now, we suppose that there exists a Killing vector Ei=(&" &%) such
that &% ,=0, and consequently

(2.2) £ .=8%4=0
in a Kaehlerian space, then & satisfies or
GIRE®, j a+ R7EP =0, £, =0
and
gIRE®, sk REEP=0,  £5:=0.
Thus we have

THEOREM 2.1. If & =(%2, &%) is a Killing vector satisfying (2.2) in
a compact Kaehlerian space, then the vectors

=), 7=%0), £=(0,¢)
are also all Killing vectors.
Consequently, if &=(&", £*) is a Killing vector satisfying [2.2), then

77:':(09 él;) ' Ciz({'w » O)
satisfy
(2.3) n; ;+95i=0, i i+85::=0,

where
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(2-4) &c;:g;ﬂ éﬁ’ §m=g¢xﬁ E‘E.
Putting i=«, j=4 in [2.3), we find

= :_8_5:53‘-__—0 ‘:iéa_’-:o
78; o 52° ’ gw, B 93P .

These equations show that &, are analytic functions of coordinates
z* and &; those of z*. Thus, from V, we have

THEOREM 2.2. If E=(&*, &%) is a Killing vector satisfying (2.2),
then it is necessarily a harmonic vector.

Thus, if &#=(& £ is a Killing vector satisfying [2.2), .then it
being necessarily a harmonic vector, we have

&, i+¢&;,:=0, &, i—&;,:=0,
from which
&,; j=0 .
Thus we have
THEOREM 2.3. If & =(¢ &%) is a Killing vector satisfying (2.2),
then it is a parallel vector field.

Thus, if &=(& ¢*) is a Killing vector satisfying it being a
parallel vector field, we should have

from which

&w;égg’é‘;: ’ {';;B:’—: 05‘ =

0zP
and consequently, we have

THEOREM 2.4. If &=(&, &% is a Killing vector satisfying (2.2),
then its contravariant components £ are analytic functions of coordi-

nates z* and £ those of 7.

Conversely, we suppose that a vector & =(¢&%, £%) has contravariant
components which satisfy (2.2) and &* are analytic functions of coordi-

nates z* and £&* those of z*.
Then, from the Ricci identities

&m; 'Y;S“'&aﬁ;_'o‘; 1=§B Rwﬁv_s »



we have
!jjk E’;: R k+ Rwﬂ Eﬂ:O ’ Em: @

YIRE i at ROE=0, .=
or
.(]jkgi;j;k-"Rij&j:O; éi;i:O’

which shows that the vector & is a Killing vector. Thus we have

THEOREM 2.5. If a vector &=(£*¢%) in a compact Kaehlerian
space has contravariant components which satisfy (2.2) and & are
analytic functions of coordinates z* and &* those of z*, then it is a
Killing vector.

University of Tokyo.
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