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On the divisors of differential forms
on algebraic varieties.

By Yoshikazu NAKAI

(Received Feb. 23, 1953)

The theory of differential forms on compact kahlerian manifolds
has been much developed by the theory of harmonic integrals. But
in algebraic geometry it is desirable to construct the theory, following
A. Weil, independently of the characteristic of its universal domain in
purely algebro-geometric way. We study here the divisors of differenti-
al forms on algebraic varieties.

First, we define the divisors of differential form $\omega$ on an abstract
variety, reconstructing differential forms independently of its reference
field. Then we consider a generic hyperplane section $W$ of its ambient
projective model V with reference to the field of definition for $\omega$ . Our
interest lies in the relation between the divisors $(\omega)$ and (di), where di
is a differential form on $W$ induced by $\omega$ . We shall obtain the fol-
lowing theorem: Let $p$ be the degree of $\omega$ and $r$ the dimension of V.
Then, if $p\leqq r--2$ we have (bi) $=(\omega)\cdot W$, and if $p=r-1$ we have (b)
$=(\omega)\cdot W+X$, where $X$ is a positive W-divisor. In the proof, the notion
of generating subvariety of $V$ with reference to a field of definition for
V plays an essential r\^ole. Some relations might hold, as it seems to
me, between our theorem and Lefschetz‘s theorem concerning invariant
cycles and vanishing cycles on algebraic varieties.1)

I wish to express here my hearty gratitude to Professors Y. $Aki$ .
zuki and J. Igusa for their kind encouragements during this work and
for their interest shown for this paper.

1) Cf. Lefschetz [4]. Numbers in brackets refer to the bibliography at the $e$nd of

the paper.



On the divisors of differential forms on algebraic varieties 185

\S 1. Differential forms and the divisors
of differential forms.

1. Let V be a Variety2), $k$ a field of definition for V and $P$ a generic
Point of V over $k$ . Then the space of linear differential forms is de-
fined as the dual module of derivations of $k(P)$ over $k$ $($cf. W-F, IX, $2)^{3)}$ .
But in this definition the notion of differcntial forms are connected
closely with its reference field. To avoid this inconvenienoe we shall
define an equivalence relation of differential forms belonging to the
different fields as follows4).

(1) Let $P$ and $P^{\prime}$ be two generic Points of V over $k$ , then there
exists an isomorphism $\sigma$ of $k(P)$ onto $k(P$ ‘

$)$ leaving every element of
$k$ invariant, and the space of linear differential forms belonging to the
extension $k(P)$ over $k$ are mapped isomorphically onto the space of
linear differential forms belonging to the extension $k$ $(P$ ‘

$)$ over $k$, by
the isomorphism $\sigma^{*}$ induced by $\sigma$ . In this case we shall write $\sigma^{*}(\omega)$

$\approx\omega$ .
(2) Let $k$ and $P$ be as above, $K$ a field containing $k$ such that

$K$ and $k(P)$ are linearly disjoint over $k$ . Then there exists a unique
differential form 9 bclonging to the extension $K(P)$ over $K$ which is
an extension of $\omega$ . In this $cas_{\vee}^{\circ}$ we also write $\omega\approx s2$ .

Let $k$ be a field of definition for $V,$ $P$ a generic Point of V over
$k$ . We shall now consider all such pairs $(k, P)^{5)}$ and linear differential
forms $\omega_{k}(P)$ belonging to these pairs. Now we shall define an equi-
valence relation among $\omega_{k}(P)$ as follows.

Two differential forms $\omega_{k}(P)$ and $\Omega_{k},(P^{t})$ belonging respectively
to the pairs $(k, P)$ and $(k, P^{\prime})$ are said to be equivalent, if they can be
connected by a finite number of relations $\approx$ defined in (1) and (2).

This is clearly an equivalence relation and we shall call the class
thus defined “ lirtear differential forms on V”, and any member in
this class will be called its representative and denoted as $\omega_{k(P)}$ .
Differential forms of higher degree can then be defined in a natural
way. The justification of the above definition can be assured step by

2) In this paper we shall adopt the notation and terminology used in Weil [6].

3) This means Chapter IX, 2 of Weil $L6^{-}$].

4) This idea is due to a valuable suggestion by Prof. Igusa.
5) It is precisely the way to define a variety, cf. W-F, IV.
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step but we do not go into the details. A differential form is said to
be defined over $k$ if it has a representative belonging to some pair such
as $(k, P)$ .
2. Let us denote by $\Omega(V)$ the abstract field of functions on $V^{r}$ , where
$\Omega$ is the universal domain. Then since $\Omega(V)$ is a regular extension of
dimension $r$ over $\Omega$ , we can define differential forms in $\Omega(V)$ also
from the dual of the derivations in $\Omega(V)$ over $\Omega$ and they can be
expressed in the form
$(\alpha)$

$\omega^{=}\sum_{p2_{1}<\cdots<i}\varphi_{j_{1}\cdots;_{p}^{d}}\tau_{i_{1}}\cdot\cdot d_{\tau_{i_{p}}}.$ ’

where $\varphi_{i_{1}\cdots i_{p}}$ and $\tau_{i}$ are functions on V. Let $k$ be a common field of

definition for $\varphi_{i_{1}\cdots i_{p}}$ and $\tau_{i}$ , and $P$ a generic Point of $V$ over $k$ , then

the local expression of $\omega$

$\omega_{k(P)=}i_{1}<\cdots<i\sum_{p}\varphi_{i_{1}\cdots t_{p}}(P)d_{\tau_{i_{1}}}(P)\cdots d_{\tau_{t_{p}}}(P)$

determines uniquely a differential form belonging to the pair $(k, P)$ and
they are equivalent in the sense of $n^{o}1$ . Conversely, equivalent differ-
ential forms determine uniquely a differential form in $\Omega(V)$ such that
its local expressions are the representatives of a differential form defined
in $n^{o}1$ . Hence it is quite narural to identify these two notions. In
the following we shall adopt the expression $(\alpha)$ for differential form $\omega$ .

REMARK. From the definitions, the results stated in Koizumi $(2, 3)$

can then be applied directly to our differential forms.
For convenience we shall extend the notion of uniformizing para $\cdot$

meters at a simple Point on a Variety as follows.
DEFINITION 1. Let $\tau_{1},\cdots,$ $\tau_{r}$ be r-functions on $V^{r},$ $k$ a common

field of definition for $\tau_{j},$
$P$ a generic Point of V over $k$ and $P^{\prime}a$

simple Point of V. Then $(\tau)$ will be called uniformizing parameters
at $P^{\prime}$ on V if $(\tau_{i}(P))$ are uniformizing parameters at $P^{\prime}$ on V in the
sense of W-F, IX, 2.

As it can be seen easily the above definition does not depend on
the choice of $k$ and $P$, and our terminologies are reasonable. In the
following we shall always use the word uniformizing parameters in the
sense of DEF. 1. When we use it in the sense of Weil [6], $i.e$ . when
considered as quantities, we shall call them uniformizing Q-parameters.
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Thus using a uniformizing parameters at a simple Point of V, any
differenti\’al form can be expressed uniquely in the form

$\omega=\sum_{i_{1}<\cdots<:_{p}}\varphi_{i_{1}\cdots;_{pp}}d\tau_{i_{1}}\ldots d\sigma_{i}$ .

3. Let $\omega$ be a differential form on $V^{r}$ of degree $p,$ $A^{\gamma-1}$ any simple
Subvariety of V and $\tau_{1},\cdots,$ $\tau_{r}$ uniformizing parameters along $A$ on V
(it means that $(\tau)$ are uniformizing parameters at some Point of $A$ on
V, hence also at any generic Point of $A$ over its field of definition).
Then $\omega$ can be expressed uniquely in the form

$\omega=\sum_{i_{1}<\cdots<t_{p}}\varphi_{i_{1}\cdot\cdot\cdot;_{p}}d_{\mathcal{T}\oint_{1}}\ldots d\tau_{i_{p}}$

and $v_{\Lambda}((\omega))$ is defined as the minimum value of $v_{A}((\varphi_{i}, i_{p}))$ . To justify
this definition it is necessary and sufficient to show that the number
VA $((\omega))$ is independent of the choice of the uniformizing parameters $(\tau)$

used to define it. For that purpose we shall introduce the notion of
partial derivatives.

DEFINITION 2. Let $f$ be a function on V and $\tau_{1},\cdots,$ $\tau_{r}$ separating
transcendence basis of $\Omega(V)$ over $\Omega$ , then the differential $df$ can be
expressed uniquely in the form $df=\varphi_{1}d\tau_{1}+\cdots+\cdot\varphi_{r}d\tau_{r}$ . Then we shall
put $\partial f/\partial\tau_{j}=\varphi_{i}$ .

Now the proposition 2 of Koizumi [2] can be restated with a slight
modification as follows.

PROPOSITION 1. Let $f$ be a fundion on V, $P^{\prime}$ a simple Point of
V such that $f$ is defined and finite at $P$ ‘ and $\tau_{1},\cdots,$ $\tau_{r}$ umformizing
parameters on V at $P^{\prime}$. Then $\partial f/\partial\tau_{i}(1\leqq i\leqq r)$ are defined and finite
at $P^{\prime}$ .

Let $\tau_{1}^{\prime},\cdots,$ $\tau_{\acute{r}}$ be another set of uniformizing parameters on Valong
$A$ , then we have

$\omega=\sum_{j_{1}<\cdots<Jp}\varphi_{\acute{j}_{1}\cdot\cdot j}d\tau_{j_{1}}^{\prime}\cdots d\tau_{j}^{\prime}pp$

where $\varphi_{\acute{j}_{1}\cdots Jp}$ are linear combinations of $\varphi_{i_{1}\cdots t_{p}}$ with the coefficients of
the form $\partial\tau_{i_{1}}/\partial\tau_{j_{1}}^{\prime}\cdots\partial\tau_{i_{p}}/\partial\tau_{j_{p}}$ which are defined and finite along $A$ by
the above proposition. Hence we must have

VA $((\varphi_{j_{1}\cdots j}^{\prime}p))\geqq{\rm Min}_{(i}$ . $(v_{A}((\varphi_{i_{1}\cdots t_{p}})))_{2}$
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where $\{i_{1},\cdots, i_{p}\}s$ are sequences of indices such that they appeared in th $e$

expression of $\varphi_{j_{1}\cdots j_{p}}$ as the linear combinations of $\varphi_{i_{1}\cdots i_{p}}$ . Then

${\rm Min}_{(j}$ . $v_{A}((\varphi_{j_{1}\cdots j_{p}}^{\prime}))\geq{\rm Min}_{(i)}$ . $(v_{A}((\varphi_{i_{1}\cdots i_{p}})))$ .

where (i) and $(j)$ denote the sets of all sequences of indices such that
$i_{1}<\cdots<i_{p},$ $j_{1}<\cdots<j_{p}$ . In the same way we have the converse inequality
and our assertion is proved.

Now we can define the divisors of a differential form $\omega$ as
$(\omega)=\sum_{A}$ VA $((\omega))\cdot A$ ,

where $\sum denotes$ the sum over all simple Subvarieties of dimension
$r-1$ of $V^{r}$ . It is to be noted that any component of $(\omega)$ is algebraic
over the field of definition for $\omega$ .

REMARK. For the notion of partial derivativcs we see easily that
the usual rules hold also, $e$ . $g$ . $\partial/\partial\tau_{j}(\partial\varphi/\partial\tau_{j})=\partial/\partial_{Tj}(\partial\varphi/\partial\tau;)$ , hence $d^{2}=0$ .
4. The following propositions are immediate consequences of the de.
finition of $(\omega)$ and W-F, VIII, Th. 6, and the proofs will be omitted.

PROPOSITION 2. Let $\omega$ be a differential form and $f$ a function on
V, then we have

$(f_{\omega})=(f)+(\omega)$ .
PROPOSITION 3. Let $\omega_{1},$ $\omega_{2}$ be two differcntial forms of degree $p$

on $\nabla$, then we have

VA $((\omega_{1}+\omega_{l}))\geqq{\rm Min}$ . $(v_{A}((\omega_{1})), v_{A}((\omega_{2})))$

for any simple Svbvariety $A^{r-1}$ of $V^{r}$ , and the eqttality holds if we
have $v_{A}((\omega_{1}))\neq V_{A}((\omega_{2}))$ .

PROPOSITION 4. Let $\omega_{1},$ $\omega_{2}$ be two differential forms on V of
degrees $p$ and $q$ respectively such that $p+q\leqq r$, and $A^{\gamma- 1}$ any simple
Subvariety of $V^{r}$ , then we have

$v_{A}((\omega_{1}\cdot\omega_{2}))\geqq v_{A}((\omega_{!}))+v_{A}((\omega_{2}))$ .

THEOREM 1. Let V be a Variety, $\omega$ a differential form of the first
kind, then we have $(\omega)>0$ . When V is a complete non-singular
Variety the converse is also true



On the divisors of differential forms on algebraic varielies 189

This is an immediate consequence of the proposition 5 of Koizumi
[21 and the proof will be omitted.

5. Let V be a Variety, $U$ its simple Subvariety and $\omega$ a differential
form on V finite along $U$. Then using the uniformizing parameters
$\tau_{1},\cdots,$ $\tau_{r}$ along $U$ on V, $\omega$ can be expressed uniquely in the form

$\omega=\sum_{p}\varphi_{i_{1}\cdots;_{p}}d\tau_{j_{1}}i_{1}<\cdots<i$
$d\tau_{i_{p}}$ .

Then the differential form di on $U$ induced by $\omega$ can be defined as in
Koizumi [2] and has the expression

$\overline{\omega}=\sum_{i_{1}<\cdots<i_{p}}\overline{\varphi}_{i_{1}\cdot\cdot\cdot i_{p}}d_{\overline{\tau}_{i_{1}}}\cdots d_{\overline{\tau}_{i_{p}}}$
,

where $\overline{\varphi}_{i_{1}\cdot\cdot;_{p}}$ and $\overline{\tau}_{i}$ are functions on $U$ induced by
$\varphi_{i_{1}\cdot\cdot i_{p}}$ and $\tau_{i}$ re-

spectively. It is to be noted that this expression is not necessarily
reduced.

\S 2. Some lemmas on uniformizing parameters.

PROPOSITiON 5. Let $V$ be an algebraic variety in $S^{v}-,$ $P=(x_{1},\cdots, x_{\Lambda}\cdot)$

a generic point of $V$ over a $-\hslash eld$ of definition $k$ for $V$, and $P^{\prime}$ a simple
point of V. Then we can choose among $(x_{i})(1\leq i\leq N)$ umformizing
Q-parameters on $V$ at $P$ .

PROOF. Let $\mathfrak{P}$ be the defining ideal of V in $k[X]$ . Since $P^{\prime}$ is a
simple point of V, we can find $N-r$ polynomials $F_{j}(X)$ ( $1\leq j\leqq N$ r)
in $\mathfrak{P}$ such that the rank of the matrix

$(\partial F_{j}/\partial x_{i}^{\prime})$ $\left(\begin{array}{l}1\leqq j\leqq N-r\\1_{-\leq i_{-}<N}\end{array}\right)$

is $N-r$. $S_{J}\prime ppose$ that we have
$|\partial F_{j}/\partial x_{i}^{\prime}|\neq 0_{1}$ for $1\leq-j\leq_{-}N-r$ , $r+1\leq i_{-}<N$ ,

then r-polynomials $X_{i}(1\leqq i\leqq r)$ constitute a set of uniformizing linear
forms at $P$ on $V$, hence $x_{1},\cdots,$ $x_{r}$ are uniformizing Q-parameters on
$V$ at $P^{\prime}$ by W-F, IX, 2. Q. E. D.
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Let $V^{r}$ be a projective model of an algebraic variety immersed in
a projective space $L^{N}$ and $P=(\xi_{0},\cdots, \xi_{N})$ a generic Point of V over $k$ .
Set $x_{i}=\xi_{i}/\xi_{0}$ and let $u_{1},\cdots,$ $u_{N}$ be N.independent variables over $k(x)$ .
Then if we put

$u_{0}=-(u_{1}x_{1}+\cdots+u_{N}x_{N})$

and
$K=k(u_{0}, u_{1\prime}\cdots, u_{N})$

$K(x)$ is a regular extension of $K^{6)}$ of dimension $r-1$ and $P$ has a
locus $W$ over $K$. Then it is seen that we have

$W=V\cdot H$ ,

where $H$ is defined by the equation

$u_{0}X_{0}+u_{1}X_{1}+\cdots+u_{N}X_{N}=0$ .

We shall remark that any Point of $W$ which is simple on V is simple
on $W$ and vice versa. Hence if V has no singular Subvariety of
dimension $r-1$ , then $W$ has no singular Subvariety of dimension $r-2$ ,
especially when V has no singular Point, then $W$ is also a non-singular
Variety.7)

Let $P^{\prime}$ be any Point on $W$ and $(\xi_{0}^{\prime}, \xi_{1}^{\prime},\cdots, \xi_{N}^{\prime})$ be its homogeneous
coordinates and suppose that $\xi_{0}\neq 0$ , then from prop. 5 we can select
r-quantities among $x_{1},\cdots,$ $x_{N}$ such that $x_{i_{1}},\cdots,$ $x_{i_{r}}$ are uniformizing Q-

parameters on V at $P^{\prime}$ , and we have the following
PROPOSITION 6 There exist $(r-1)$ quantities $x_{j_{1}},\cdots,$ $x_{j_{r-1}}$ among

$ x_{i_{1}},\cdot$ $x_{i_{r}}$ such that lhe-v are uniformizing Q-parameters on $W$ at $P$ .
PROOF. Without loss of generalities we can suppose that $x_{1},\cdots,$ $x_{r}$

are uniformizing Q-parameters at $P^{\prime}$ on $V$. Then there exist $N-r$

polynomials $F_{j}(X)$ in $\backslash \downarrow\backslash \backslash (1\leq i\leq N-r)$ such that we have

6) Cf. J. Igusa $|1|$

7) Cf. Y. Nakai $\llcorner_{\backslash }5|$

8) This proposition can be generalized as follows;

Let $V^{r}$
’ be a Variety $T[s$ a simple Subvariety of $V,$ $P^{\prime}$ a Point of $U$ simple on

both of $U$ and $V$, and $- 1,$ $\cdot\cdot,$
$\tau$, uniformizing parameters on $V$ at $P^{\prime}$ . Then we

can choose among $(\overline{\tau}_{i})$ s.functions such that they form a set of uniformizing para.

meters on $\zeta$[ at $P^{\prime}$ , where $\overline{\tau}_{i}’ s$ are functions on $Tf$ induced by the functions -i.
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$|\partial F_{j}/\partial x_{i}^{\prime}|\neq 0$ $\left(\begin{array}{l}1-\leq j\leqq N-r\\r+1\leq- i-\leqq N\end{array}\right)$

where $x_{i}^{\prime}=\xi_{i}^{\prime}/\xi_{0}^{\prime}$ . Then the tangential linear variety to $W$ at $P^{\prime}$ is given
by the equations

$\sum_{i=1}^{N}\partial F_{j}/\partial x_{i}^{\prime}\cdot(X_{i}-x_{i}^{\prime}\cdot X_{0})=0$ $(1\underline{<_{-}}i\leqq N-r)$ ,

$i=\overline{0}\angle\nabla Nu_{i}X_{i}=0$ .

Then to prove the assertion it is necessary and sufficient to show that
at least one of the determinants

$\left|\begin{array}{lllll}(0F_{l}/(\prime)X_{/}^{/_{\prime}}’ & (?F_{1}/(\gamma_{X_{\acute{r}+1}},.. & ‘ & \ldots. & \partial F_{l}/\partial x_{\acute{N}}\\ & & & .\cdot & \cdots\\\cdots & \cdots & \cdots & \cdots & \cdots\\\partial F_{N- r}/\partial x_{\acute{j}}, & (?F_{N- r}/\partial X_{\acute{r}+1}, & & \ldots & (\gamma F_{N- r}/\partial x_{N}^{\prime}\\u_{j}, & u_{\gamma\dagger 1}, & & \ldots\cdot\cdot, & u_{N}\end{array}\right|(j=1,\cdots,r)$

is different from $0$ . But this is shown already in Nakai [5].

\S 3. Generating subvarieties.

7. DEFINITION 3. Let $V^{r}$ be a Variety defined over $k,$ $B^{s}$ be any
$Subvari_{\vee}\prime ty$ of V defined over a field $K$ containing $k$ . Then we shall
say that $B$ is a generating Subvariety of V with reference to $klfB$
contains a Point $P$ which is r.dimensional over $k$ .

Let V, $W,$ $k$ and $K$ be as in $n^{o}6$ and let $A$ be a Subvariety of
$V$ algebraic over $k$ , then we $\sec$ easily that any component of $A\cdot W$

is not a generating Subvariety of $V$ with reference to $k$ . Now we
have the

PROPOSITION 7. Let $\overline{A}^{r-2}$ be any simple Subvariety of $W^{-1}$ alge-
braic over $K$, and $Q$ a generic Point of $\overline{A}$ over $\overline{K}$, then we have
$\dim_{k(Q)}(u_{0}, u_{1},\cdots, u_{A})\backslash ,>N-1$ . The equality hold if and only $\iota f\overline{A}$ is a
generating Subvariety of V with reference to $k$ . Moreover when $\overline{A}$ is
not a generating Subvariety of V with reference to $k$ and $r>3$ , there
exists a unique Subvariety $A^{r-1}$ of V algebraic over $k$ such that we
have $\overline{A}=A\cdot W$.
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PROOF. Let $\eta_{0},$ $\eta\downarrow,\cdots,$ $\eta_{N}$ be the homogeneous coordinates of $Q$ and
suppose that $\eta_{0}\neq 0$, and put $K_{1}=k(u_{1},\cdots, u_{N})$ . Since $\overline{A}$ lies on $W$ we
have $K_{1}(Q)\supset K$, and hence $\dim_{Kl}(Q)=\dim_{K_{1}}(u_{0})+\dim_{K}(Q)=r-1$ , and
$r\geq\dim_{k}(Q)\geqq r-1$ . Moreover $\dim_{k}(Q)+\dim_{k(Q)}(u_{1},\cdots, u_{N})=\dim_{k}(u_{1},\cdots$ ,
$u_{V\sim})+\dim_{K\iota}(Q)=N+r-1$ , then we have $\dim_{k(Q)}(u_{1},\cdots, u_{N})\geq N+r-1-r$

$=N-1$ and we have the equality if and only if $\dim_{k}(Q)=r$. Hence
if $\overline{A}$ is not a generating Subvariety of V with reference to $k$ we have
$\dim_{k}(Q)=r-1$ , and the locus of $Q$ over $\overline{k}$ determines a Subvariety
$A$ of V algebraic over $k$ . Moreover if $r\geqq 3,$ $A\cdot W$ is irreducible and
clearly $A\sim W\supset\overline{A}$ , then we must have $\overline{A}=A\cdot W$. Since $[A\cdot W]_{V}$

$=[A\cdot H]_{L}$ and $H$ is a generic hyperplane with reference to $k$ , such a
Variety is determined uniquely.

When $r=2$ the last half of the above proof fails in showing the
existance of $A$ such that $\overline{A}=A\cdot W$. But in this case we can see
easily that we have $i(A\cdot W,\overline{A};V)=1$ for $A$ defined in the proof.
The existence and uniqueness of such a Variety will be used in the
next paragraph.

\S 4. Main theorem.

8. THEOREM 2. Let $V^{r}$ be a proiective model of an algebraic Variety,
$\omega$ a differential form of degree $p(\leq-r-1)$ on V, $k$ a field of definition
for $\omega$ and $W$ a generic hyperplane section of V with reference to $k$ .
Then $\omega$ induces on $W$ a non-zero differential form ZJ of the same
degree and we have

$(\overline{\omega})=(\omega)\cdot W$ for $p\leqq r-2$

and $(\overline{\omega})=(\omega)\cdot W+\overline{X}$ for $p=r-1$ ,

where $\overline{X}\succ 0$ and every component of $\overline{X}$ is a generating Subvariety of
V with reference to $k$ .

PROOF. Since the notions of a Variety and differential forms are
independent of its reference field, we can suppose without loss of
generalities that $k$ is algebraically closed. Let

$u_{0}X_{0}+u_{1}X_{1}+\cdots+u_{N}X_{N}=0$
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be the defining equation for a generic hyperplane in the ambient pro.
jective space with reference to $k$ , and put $K=k(u)$ . Then $W=V\cdot H$

is defined over $K$ Let $P$ be a generic Point of $W$ over $K$, then $P$ is
also a generic Point of V over $k$ and we have $\dim_{k(P)}(u)=N$. Let $A$

be a component of $(\omega)$ , then since $\omega$ is defined over $k,$ $A$ is also defined
over $k$ . Then $\overline{A}=A\cdot W$ is defined and irreducible for $r>3$ , prime
rational cycle for $r=2$ , over $K$. Put $a=v_{A}((\omega))$ . Let $A_{0}$ be a re-
presentative of $A,$ $V_{0}$ the representative of V on which $A_{0}$ lies and
$P_{0}=(1, x_{1},\cdots, x_{N})$ be the representative of $P$ in $V_{0}$ . Then we can suppose
from propositions 5 and 6 that $x_{1},\cdots,$ $x_{r}$ are uniformizing Q-parameters
on V along $\overline{A}$ and $x_{1},\cdots,$ $x_{r-1}$ are uniformizing Q-parameters on $W$

along $\overline{A}$ . Let $\tau_{i}$ be the functions on V defined over $k$ by $\tau_{i}(P)=x_{i}$

$(1\leq-i\leqq r)$, then $\omega$ can be expressed uniquely in the folm

(1)
$\omega=\sum_{i_{\iota}<\cdots<;_{p}}\varphi_{i_{1}\cdots ip}d\tau_{i_{1}}\cdot\cdot d_{\mathcal{T};_{p}}$

,

where $\varphi_{i_{1}\cdots;_{p}}$ are functions on V defined over $k$ . Then by the defini-
tion we have

$a={\rm Min}_{i)}(v_{A}((\varphi_{i_{1}\cdot\cdot;_{p}})))($

We shall denote $by-the$ functions on $W$ induced by the functions on
V, then di can be expressed in the form

(2)
$\overline{\omega}=i_{1}<\cdots<i\sum_{p}1\overline{\varphi}_{i\cdots i}d_{\overline{\tau}_{t\iota}}\cdot\cdots d_{\overline{\tau}_{j}}+\sum_{j_{p- 1}j_{1}<\cdots<^{2}}\overline{\varphi}_{j_{1}\cdots j}d\overline{\tau}_{j_{1}}\cdot d_{Tj_{p- 1}}^{-}d_{\overline{\tau}_{r}}$

,

where

(3) $d_{\overline{\tau}_{r}}=-1/\overline{\alpha}_{r}\cdot\sum_{j1}^{r- 1}\overline{\alpha}_{j}\cdot d_{\overline{\tau}_{j}}$ ,

(4) $\overline{\alpha}_{j}=u_{j}+\lambda_{+1}^{N}\urcorner u_{s}\cdot\overline{\psi}_{sj}S=$

’

$\Psi_{sj}=\partial\tau_{S^{/}}\partial\tau_{j}$ , $(1\leq j\leq r)$ ,

and $\sum_{1}$ denotes the sum over all sequences of indices $i_{1}<\cdot\cdot<i_{p}$, taken
from 1, $\cdots$ , $r,$ $\sum_{2}$ the sum over all sequences of indices $i_{1}<\cdots<j_{p- 1}$

taken from 1, $\cdots$ , $r-1$ respectively. Substituting (3) in (2) we have
the reduced expression
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(2)
$\overline{\omega}=\sum_{i_{1}<\cdots<;_{p}}(\overline{\varphi}_{i_{1}\cdot\cdot i_{p}}-\overline{\alpha}_{i_{p}}\Gamma\alpha_{r}\cdot\overline{\varphi}_{i_{1}\cdot\cdot i_{p- 1}r}+\cdots$

$...+(-1)^{p}\overline{\alpha}_{;_{1}}\Gamma\alpha,$
$\cdot\overline{\varphi}_{i_{2}\cdot\cdot i_{p}r}$ ) $d\overline{\tau}_{i_{1}}\cdots d\overline{\tau}_{t_{p}}$ .

From this expression of di and the fact that $u_{1},\cdots,$ $u_{N}$ are independent
variables over $k(P)$ we see at once $\overline{\omega}=0$ if and only if $\omega=0$ . Let $Q$

be a generic Point of $\overline{A}^{9)}$ over $\overline{K}$, then since V is defined over $k$ , the
quantities $\overline{\varphi}_{i_{1}}ifi(Q)$ and $\overline{\psi}_{sj}(Q)$ are contained in $k(Q)$ . By proposition
1, $\overline{\alpha}_{j}$ are finite along $\overline{A}$ ; moreover $\overline{\alpha}_{j}$ cannot be zero along $\overline{A}$ . In
fact, if it is not true we have $\overline{\alpha}_{j}(Q)=0$, and this is a non-identically
zero relation among $u_{1},\cdots,$ $u_{N}$ with coefficients in $k(Q)(u_{j}$ is contained
in $\overline{\alpha}_{j}(Q)$ with coefficient 1). But since $\overline{A}$ is not a generating Sub-
variety of V with reference to $k$ it is impossible by prop. 7. We shall
now show

(5) $v_{\overline{A}}((\overline{t/r}_{i_{1}\cdots;_{ppp- 1^{r}}}-\overline{\alpha}_{i}\Gamma_{r}\alpha\cdot\overline{\varphi}_{i_{1}\cdots j}+\cdots+(-1)^{p}\overline{\alpha}_{i_{1}}\Gamma\alpha_{r}\cdot\overline{\varphi}_{i_{2}\cdots;_{p^{r}}}))$

$={\rm Min}(v_{\overline{A}}((\overline{\varphi}_{i_{1}\cdot\cdot;_{p}}))_{*}\cdots,$ $v_{\overline{A}}((\overline{\varphi}_{i_{2}\cdot\cdot;_{p^{f}}})))$ .

In fact, let the right hand side be equal to $b$ and $f$ a function on V
defined over $k$ such that we have $V_{A}((f))=1$ . Then to prove the as-
sertion it is sufficient to show that the function

$\overline{\varphi}_{i\cdots i}\overline{f^{\iota_{b}p}}-\overline{\alpha_{i_{p}}\overline{\alpha}}_{r}$ . $\underline{\overline{\varphi}_{i_{1}i_{p- 1^{f}}}}\overline{f^{b^{-}}}+\cdots+(-1)_{p}\frac{\overline{\alpha}_{i_{1}}}{\overline{\alpha}_{r}}$ .
$\frac{\overline{\varphi}_{i_{2}\cdot\cdot i_{p^{f}}}}{\overline{f^{b}}}$

cannot be zero along $\overline{A}$ . But in the above expression there exists at
least one term which is not zero along $\overline{A}$ , hence it is impossible by
the same reasoning as above and we get the equality (5). Combining
the equality (5) and the fact $v_{A}((\varphi_{i_{1}\cdots;_{p}}))=v_{\overline{A}}((\overline{\varphi}_{i_{1}\cdot\cdot i_{p}}))$ we see at once
VA $((\overline{\omega}))=a$ . Finally we see that we have

(6) $(\overline{\omega})=(\omega)\cdot W+\overline{X}$ .

9) When $r=2$ it should be understood that $Q$ be any Point of $\overline{A}$, and in the following
$\overline{A}$ must be replaced by $Q$ .
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REMARK. The equality (5) holds for any Subvariety of $W$ which
is not a generating Subvariety of V with reference to $k$ , we shall use
this later.

Before going into the rest of the proof, we shall prove a
LEMMA. Using the same notations as above, let $\overline{B}^{r^{-2}}$ be any

Subvanety of $W,$ $\tau_{1},\cdots,$ $\tau_{r}$ umformizing parameters on V along $\overline{B}$ and
$\tau_{1},\cdots,$ $\tau_{r- 1}$ umformizing parameters on $W$ along $\overline{B},$ then $\overline{B}$ cannot be
a component of $(\overline{\alpha}_{r})_{0}$ , where $\alpha_{r}$ is defined as in the above proof.

PROOF. Let $M=(1,y_{1},\cdots,y_{N})$ be a generic Point of $\overline{B}$ over its field
of definition, then from prop. 5 and 6 our hypothesis tells us the
existence of polynomials $F_{j}(X)$ in $k[X]$ such that

$|\partial F_{j}/\partial y_{s}|\neq 0$ $(1\leq i\leq N-r, r+1\leq-s\leqq N)$ ,

$\left|\begin{array}{ll}\partial & F_{j}/\partial y_{t}\\ & u_{t}\end{array}\right|\neq 0$ $(1\leqq j\leq N-r, r\leqq t\leqq N)$ ,

$F_{j}(x)=0$ $(1\leqq i\leqq N-r)$ .
Multiplying the $(i+1)\cdot th$ column of the second determinant $\overline{\Psi}_{r+i.r}(M)$

$(1\leq i\leq N-r)$ and adding to the first column, we have

$\left|\begin{array}{lll}0, & \partial & F_{j}/\partial y_{s}\\\overline{\alpha}_{r}(M), & & l_{s}^{J}\end{array}\right|\neq 0$
$\left(\begin{array}{llll} & 1_{\frac{<}{\rightarrow}}j_{-<_{\rightarrow}}N- & r & ’\\r & s+1\leqq\leqq N & & \end{array}\right)$ ,

$i$ . $e$ .
$\overline{\alpha}_{r}(M)\cdot|\partial F_{j}/\partial y_{s}|\neq 0$ .

Thus we have $\overline{\alpha}_{r}(M)\neq 0$ . $Q$ . E. D.
We are now in the position to prove that $\overline{X}$ appeared in (6) is

positive. Let $\overline{B}$ be any component of $\overline{X}$ which is not contained in $(\omega)\cdot W$ ,
and suppose that $\tau_{1},\cdots,$ $\tau_{r}$ are uniformizing parameters on V along
$\overline{B}$ and $\overline{\tau}_{1},\cdots,$ $\overline{\tau}_{r-1}$ uniformizing parameters on $W$ along $\overline{B}$. Then we
can express $\omega$ and di in the form (1) and (2’) respectively. First we
shall show that $\overline{B}$ is a generating Subvariety of V with reference to
$k$ . For, in the contrary case there exists a Variety $B^{r-1}$ defined over
$k$ such that $i(B\cdot W,\overline{B};V)=1$ by prop. 7 and its remark, and it is
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unique. Hence $B$ must be a component of $(\omega)$ , which contradicts to
our assumption that $\overline{B}$ is not a component of $(\omega)\cdot W$. Thus $\overline{B}$ is a
generating Subvariety of V with reference to $k$ and is not a component
of $(\overline{\varphi};_{1}\ldots;_{p})=(\varphi_{i_{l}\cdot\cdot i_{1)}})\cdot W$ for any set of indices $i_{1},\cdots,$ $i_{p}$ . Now suppose

that we have $v,,$ $((\overline{\omega}))<0$ . By the previous lemma, $\overline{B}$ is not a com-
ponent of $(\overline{\alpha}_{r})_{0}$ and $\overline{\alpha}_{1},\cdots\overline{(t^{\prime}}_{r-1}$ are finite along $\overline{B}$, hence if we have
$v_{R}((\overline{\omega}))<0$ some of the functions $\overline{\varphi}_{i_{1}\cdots i_{p}}$ must be infinite along $\overline{B}$, but
it is impossible by the above considerations. Thus we must have
$v_{\prime},((\overline{\omega}))>0$, and the last assertion of our theorem is proved.

Now suppose that we have $p\leq r-2$ and $v,j((\overline{\omega}))>0$ , then the
functions

$\overline{\alpha}_{r}\cdot\overline{\varphi}_{j_{1}\cdot\cdot i_{1)}}-\overline{\alpha}_{;_{p}7^{J};_{1}\cdots;_{p-1^{r}}}-+$ $\cdot.+(-1)-’’\overline{\alpha}_{i_{1}}\cdot\cdot\overline{\varphi}_{i_{\underline{0}}\cdots t_{/)}r}$

vanish along $\overline{B}$ for all combinations of indices $i_{1},$
$\cdot\cdot,$

$i_{p}$ taken from
1, $\cdots$ , $r-1,$ $i.e$ .
(7) $\overline{\alpha}_{r}(M)\cdot\overline{\varphi}_{i_{1}\cdot\cdot i_{p}}(M)-\cdot\cdot+(-1)^{p_{Cl_{l_{1}}}^{-}}(M)\cdot\overline{\varphi}_{i_{2}\cdot\cdot t_{p^{r}}}(M)=0$ ,

where $M$ is a generic Point of $\overline{B}$ over its field of definition. But since
$p\leq r-2$ there exists at least one more relation of the form (7), $e$ . $g$ .
taking $i_{p\$ 1}(<r)$ different from $i_{1},\cdots,$ $i_{p},$ $r$, we have a relation

(8) $\overline{\alpha}_{r}(M)\cdot\overline{\varphi}_{i\underline{\cdot}\cdot\cdot;_{p+1}}(M)-\overline{\alpha}_{i_{p+1}}(M)\cdot\overline{7^{J}}_{\iota\cdot,..i,- p^{r}}(M)+\cdots$

$+(-1)^{p}\overline{\alpha}_{i_{2}}(M)\overline{\varphi}_{ia\cdots ifi+1^{\gamma}}(M)=0$ .

Since $u_{j}$ appeared only in $\overline{\alpha}_{j}$ , for $1\leq j\leq r,$
$u_{i_{1}}$ appears in (7) but not

in (8), $u_{i}p$
} $1$

appears in (8) but not in (7), therefore these two relations
are independent, hence we have

$\dim_{k(M)}(u_{1}, \cdot\cdot, u_{N})\leq N-2$ .
Since $u_{0}$ is contained in $k(M, u_{1},\cdots, u_{N})$ this contradicts to prop. 7.
Then we must have $v_{\overline{B}}((\overline{\omega}))=0$ , and $\overline{X}=0$ . Thus the theorem is com-
pletely proved.

It seems to be desirable that even when $p=r-1$ we have $\overline{X}=0$ .
But it is not true in general as will be shown in the following ex.
ample.
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EXAMPLE. Let V be a projective space $L^{2},$ $P=(1, x,y)$ be a generic
Point of $L^{2}$ over $\Pi$ (prime field of characteristic p) and $\omega$ a linear
differential form defined over $JI$ such as

$\omega=d\xi+\xi d\eta$ ,

where $\xi$ and $\eta$ are functions on $L$ defined over $II$ by $\xi(P)=x$ and
$\eta(P)=y$ respectively. Then we see easily that we have $(\omega)=-3A$ ,
where $A$ denotes the line at infinity. On the other hand let $uX+vY$
$+w=0$ be the defining equation for a generic line in $L$ with reference
to $\Pi$ , then we have

$\overline{\omega}=(1-\overline{\xi}\cdot u/v)\cdot d\overline{\xi}$ .

Hence we have (hi) $=-3_{\backslash }^{\backslash )}1+M$, where $\backslash _{\backslash }$

)$t=A\cdot W$ and $M$ is a Point
with inhomogeneous coordinates $(v/u, -(1+w/v))$ . $M$ is certainly a
generating Point of $L$ with reference to $\Pi$ .

Repeating the above process we obtain immediately the following
COROLLARY 1. Let $V^{r}$ be a projective model of an algebraic

Variety, $\omega$ a differential form of $de_{-\neg}^{\sigma}reep$ defined over $k$ and $W$ be
a generic s-section of $V,$ $i$ . $e$ . the interseclion product of $V$ with $(r-s)$
independent generic hyperplanes over $k$ . Then we havc

(hi) $=(\omega)\cdot W^{s}$ $lf$ $s\geq p+1$ ,

(di) $=(\omega)\cdot W^{p}+\overline{X}$ $\overline{X}\succ 0$ ,

where i1J is the differential form on $W$ induced by $\omega$ , and any $com$ .
ponent of $\overline{X}$ is a generating Subvaricty of $V$ with $referer\iota ce$ to $k$ .

COROLLARY 2. Let V be a non-singular projeclive model defined
over $k,$ $W$ a generic hyperplane section of $V$ with $ref_{C\gamma(}\prime nce$ to $k$ and
$\omega$ a differential form on $V^{-}$ defined over $k$ . Then $\omega$ is of the first kind
if and only $lf$ the induced differential form $d$ on $W$ is of the first
kind.

PROOF. By Theorem 1, $\omega$ is of the first kind if and only if
$(\omega)\succ 0$ on non-singular Variety. Moreover if $V$ has no singular
Point then $W$ is also a non.singular model. By Theorem 2 $(\omega)\succ 0$

implies $(\overline{\omega})\succ 0$ . Conversely let $(\overline{\omega})=(\omega)\cdot W+\overline{X}\succ 0$ . Then, since any
component of $(\omega)\cdot W$ is not in $\overline{X}$, we have $(\omega)\cdot W\succ O$ . Moreover
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any component of $(\omega)$ is algebraic over $k$ and $W$ is generic over $k$ ,
hence we must have $(\omega)\succ 0$ . This completes the proof.

9. As an application of the Theorem 2 we have the following pro-
position well known in the case of curves.

PROPOSITION 8. Let V be a projective model, $f$ a function on
$V$, and $A^{r- 1}$ any simple Subvariety of $V^{r}$ , such that $v_{A}((f))=a$.
Then we have

VA $((df))=a-1$ $lf$ $a\neq 0$ $(mod p)$ ,

VA $((df))_{-}>a-1$ $\iota f$ $a=0$ $(mod p)$ ,

where $p$ is the characteristic of $thc$ univcrsal domain.
PROOF. Let $k$ be a field of definition for $f$ and $C$ a generic

l-section of V with reference to $k$ , and put

$\sum P_{i}=A\cdot C$ .

Then any one of $P_{i}$ appears in $A\cdot C$ with coefficient 1 and not a

generating Point of $V$ with reference to $k$ . Hence we have $v_{p_{i}}((\overline{f}))=a$

and

$v_{1_{j}}\cdot((d\overline{f}))=a-1$ if $(a\neq 0$ $(mod p)$ ,

$v_{J}\cdot;((d\overline{f}))\geq a-1$ if $(a=0$ $(mod p)$

from the curve theory. But we have by Cor. 1 of Th. 2

$(d\overline{f})=(df)\cdot C+\overline{X}$

and any component of $\overline{X}$ is a generating Point of $V$ with reference
to $k$ , hence we must have the assertion. $Q$ . E. D.

We shall now add one remark. Let $V^{r}$ , and $W^{\gamma-1}$ be as in Th. 2,
and denote $by-the$ differential forms on $W$ induced by the differential
forms on $V$. Then we can easily see that $d\omega=d\overline{\omega}$ . Then by the first
part of the Th. 2, we have $d_{\omega}=0$ if and only if $d_{\overline{\omega}}=0$ . Hence to
show that every differential form of the first kind on $V$ is closed it is
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sufficient to treat only the case when the degree of $\omega$ is equal to $r-1$ .
This remark may be useful in the future investigations.

Mathematical Institute, Kyoto University.
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