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Some problems of minima concerning the oval.*)

By Tadahiko KUBOTA (Tokyo) and

Denzaburo HEMMI (Yamagata)

\S 1. As is well known, the maximum area of those ovals which
carry in every direction an assigned breadth has been found by use
of the method of ccntral symmetrization; this method transforms any

oval into a central oval having greater area and the $sa\iota nc$ breadth with
the given oval in every.direction. But, $\cdot the$ methoci to lnake the area
smaller is not yet known. We think this is the main difficulty in
minimum problems of ovals under some conditions on the breadth.

However, some special cases in this direction were studied by
Hayashi, P\’al and others, as an analogue to the isoperimetric problem

or as a solution of Kakeya’s problem. The main inequalities which
have been got are the following:

(1) $F\underline{>_{-}}-\Delta\sqrt f3^{-}$ $(P\acute{a}1)^{1)}$ ;

(2) $2F_{-}\grave{>}\Delta D$ $(Kub0ta)^{-)})$ ;

(3) $ 4F\geqq\Delta L-b\Delta$ when $2\sqrt 3\Delta\leq L$ ,

where $b$ is a positive root smaller than $2\Delta/1^{\prime}3$ of the equation

$2Lx^{3}-(L^{\underline{}}-\Delta^{o}\vee)x-)-2L\Delta^{2}x+L^{2}\Delta^{\underline{9}}=0$ $(Yamanouchi)^{3)}$ ;

(4) $4F\geq(L-2D)1^{/4LD-L^{\underline{J}}}$ , when $2D<L\leq 3D$ $(Kubota)^{2)}$ ;

(5) $ 2F\geqq(\pi-\sqrt 3)B^{q}\cdot$ , when $ B=D=\Delta=L/\pi$

(Lebesgue4)5) and Blaschke $)$ ;

(6) $4F\geqq(L-2D)_{1^{/}}3D$ , when $3D\leqq L\leqq\pi D$ (Kubota)7).

In these inequalities we denote by $F$ the area, by $L$ the perimeter, by
$D$ the diameter which is the length of the greatest chord and at the
same time the length of the greatest breadth, and by $\Delta$ the length of
the smallest breadth. The minimum ovals in the cases (1)$\sim(5)$ are
respectively the following:

(1) a regular triangle whose height is $\Delta$ when $\Delta$ is given;
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(2) a triangle whose largest side is of length $D$ and smallest height
is $\Delta$ , when $D$ and $\Delta$ are so given that $\Delta\leqq 1//3D/2$ ;

(3) an isosceles triangle whose heights corresponding to equal sides
are $\Delta$ and whose perimeter is equal to $L$ , when $\Delta$ and $L$ are so
given that $2_{i}/3\Delta\leqq L$ ;

(4) an isosceles triangle whose two equal sides are of length $D$ and
whose perimeter is equal to $L$ , when $D$ and $L$ are so given that
$2D<L\leqq 3D$ ;

(5) the Reuleaux triangle when the constant breadth $B$ is given.
The equality of (6) does not occur unless $L=3D$ and the minimum oval
is a regular triangle.

As can easily be seen by considering the above.mentioned inequal $\cdot$

ities, the problems of minimum figures for the following cases remain
unsolved: (1) $\sqrt 3D/2<\Delta<D,$ (2) $\pi\Delta<L<2\sqrt 3\Delta,$ (3) $3D<L<\pi D$ .

These problems, as Dr. Fujiwara said in his paper, lie beyond the
scope of the elementary theory of maxima and minima in the in-
finitesimal calculus as well as the classical theory of calculus of
variations.

The object of this note is to give a method which transforms any
oval into an oval having smaller area and the same breadth in every
direction by extending Lebesgue’s treatment for the curves of constant
breadth, and also to give a minimum figure for the cases $\sqrt 3D/2\leqq\Delta\leqq D$

and $\pi\Delta\leqq L\leqq 2\sqrt 3\Delta^{10)}$

\S 2. Let $\mathfrak{E}$ be an oval and $\acute{C}^{V^{\prime}}$ be a Central symmetrization of $C^{\check{v}}$ , in
other words, $\mathfrak{E}^{\prime}$ is a central convex curve which has the same breadth
with $\mathfrak{E}$ in every direction; the oval, which is similar to $\mathfrak{E}$

‘ with the
ratio 2: 1, is called a breadth curve of $\mathfrak{E}$ . The following properties of
the breadth curve are to be mentioned.

PROPERTY 1. The breadth curve of (IS with its centre at $O$ is an
envelope of such a moving line $t$ that the distance from $O$ to $t$ is equal
to the breadth of a pair of supporting lines of $\mathfrak{E}$ parallel to $t$.

PROPERTY 2. Let $O$ be a fixed point, and $QQ^{\prime}$ be a moving chord
ioining two supporting points of parallel supporting lines of $\mathfrak{E}$ . Then,
the locus of such a moving point $P$ as $OP\underline{\perp}QQ^{\prime}$ is a breadth curve
of $C^{\vee}\sim$ whose centre is O. Moreover a supporting line at $P$ of the locus
is parallel to a supporting line at $Q$ of $\mathfrak{E}$ .
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PROOF. Using the polar tangential coordinates with its origin at
$O$ , we write the equation of $\mathfrak{E}$

(1) $P=P(\theta)$ ;

then the breadth curve of $C\backslash $ with its centre at $O$ will be given by

(2) $ P=H\theta$ ) $+H\theta+\pi$ ).

The envelope of $\mathfrak{E}$ will be represented parametrically by

(3) $Z=\{P^{\prime}(\theta)-iP(\theta)\}e^{i\theta}$

for any differentiable point $\theta$ of $ P\lambda\theta$),

(3) $Z=\{\lambda P_{+}^{\prime}(\theta)+(1-\lambda)P_{-}^{\prime}(\theta)-iP(\theta)\}e^{i\theta}$ $(0\leq\lambda\leqq 1)$

for any non.differentiable point $\theta$ of $ R\theta$) (that
is, a point at which $\mathfrak{E}$ has a rectilinear part
parallel to the direction $\theta$ ),

where $Z$ is the Gaussian coordinate of a point on $C,$ $i$ the imaginary
unit, and $P_{-}^{\prime}(\theta)$ and $P_{\vdash}^{\prime}(\theta)$ are the left-side and right-side differential
coefficients respectively.

The supporting lines at $Q$ and $Q^{\prime}$ are, parallel to each other.
Hence, if we put

$\overline{OQ}^{>}=\{\lambda_{0}P_{+}^{\prime}(\theta_{0})+(1-\lambda_{0})P_{-}^{\prime}(\theta_{0})-iP(\theta_{0})\}e^{i\theta}$ ,

$--OQ^{\prime^{>}}=\{\lambda_{1}P_{+}^{\prime}(\theta_{0+\pi})+(1-\lambda_{1})P_{-}^{\prime}(\theta_{0}+\pi)-i\mu_{\theta_{0}+\pi})\}e^{i(\theta+lt)}$ ,

we get

$-Q^{-}/Q=\overline{OQ}^{>}-\overline{OQ}^{\prime^{>}}=[P_{-}^{\prime}(\theta_{0})+P_{-}^{\prime}(\theta_{0}+\pi)+\lambda_{0}\{P_{+}^{\prime}(\theta_{0})-P_{-}^{\prime}(\theta_{0})\}$

$+\lambda_{1}\{P_{+}^{\prime}(\theta_{0}+\pi)-P_{-}^{\prime}(\theta_{0}+\pi)\}-i\{P(\theta_{0})+P(\theta_{0}+\pi)\}]e^{i\theta_{0}}$ .
Further, if we put

$\lambda_{0}\{P_{\vdash}^{\prime}(\theta_{1)})-P_{-}^{\prime}(\theta_{0})\}+\lambda_{1}\{P_{+}^{\prime}((|_{0}+\pi)-P_{-}^{\prime}(\theta_{0}+\pi)\}$

$=\mu_{0}\{P_{+}^{\prime}(\theta_{0})\dashv- P_{+}^{\prime}(\theta_{0}+\pi)-P_{-}^{\prime}(\theta_{0})-P_{-}^{\prime}(\theta_{0}+\pi)\}$

and $P(\theta)+P(\theta+\pi)=B(\theta)$ ,

then $\mu_{0}$ is a value in the interval from $\lambda_{0}$ to $\lambda_{1}$ , and

$Q^{\prime}Q^{>}=\{\mu_{\partial}B_{+}^{\prime}(\theta_{0})+(1-\mu_{0})B_{-}^{\prime}(\theta_{0})-iB(\theta_{0})\}e^{i\theta_{0}}$

$(0\leqq\mu_{0}\leqq 1)$ .
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Therefore, the locus of $P$ such that $\overline{OP}^{>}=Q^{\prime}Q--\succ is$ given by

(4) $Z=\{B^{\prime}(\theta)-iB(\theta)\}e^{i\theta}$

for any differentiable point $\theta$ of $B(\theta)$ ,

(4)2 $Z=\{\mu B_{+}^{\prime}(\theta)+(1-\mu)B_{-}^{\prime}(\theta)-\dot{i}B(\theta)\}e^{i0}$ $(0\backslash \mu\prime_{-}\nwarrow^{\prime},1)$

for any non.differentiable point $\theta$ of $B(\theta)$ .
Comparing (3) with (4), we see that (4) is represented by (2) in

the polar tangential equation. That is, the locus of $P$ is the breadth
curve (2). Thus, Property 2 is proved.

From this proof, we see
$\{B_{+}^{\prime}(\theta)-B_{-}^{\prime}(\theta)\}e^{i0}=\{P_{+}^{\prime}(\theta)-P_{-}^{\prime}(\theta)\}e^{i\theta}-\{P_{+}^{\prime}(\theta+\pi)-P_{-}^{\prime}(\theta+\pi)\}e^{j(\theta+lf)}$ .

Therefore, we get the following
PROPERTY 3. Let $\backslash )_{)^{\backslash }}\backslash $ be a breadth clrrve of $\tilde{c}$ . If $\backslash 1\backslash ^{\backslash ^{\backslash }}$ has a pair

of parallel rectilinear parts of length $l$ , then $C$ has tlvo $pa,$ allel recti-
linea/ parts (one of them may shrink to a point) and the sum of their
lengths is equal to $l$.

If $\backslash $ )
$\backslash ^{\backslash ^{\backslash }}0$ be a breadth curve whose centre is $O,$ $P_{1}$ be a point on $\backslash )^{\backslash }\backslash ^{\backslash }0$

and $\backslash )_{\backslash }\backslash ^{\backslash }1$ be the translation of $\backslash )^{\backslash }\backslash ^{\backslash }0byOP_{1^{>}}--$, then, since the breadth curve
is central, $\backslash $)

$\backslash ^{\backslash ^{t}}1$ passes through $O$ . Further, let us denote by $P\underline{)}$ one of
the intersection of $\backslash )^{1}\backslash ^{\urcorner}0$ and $\backslash $)

$\backslash ^{\backslash ^{\backslash }}1$ , by $P_{Q}.P_{3}$ a chord of $\backslash )^{\backslash }\backslash ^{\backslash }0$ parallel to $OP_{1}$

and by $P_{4},$ $P_{5}$ and $P_{6}$ symmetrical points of $P_{1},$ $P_{2}$ and $P_{3}$ with respect
to $O$ respectively. Then $P_{4},$ $P_{5}$ and $P_{b}$. lie on $\backslash )_{\backslash }\backslash ^{\backslash }0$

’ and

$\overline{P_{5}P}_{6^{=P_{3}P_{2}=\overline{O}P_{1}}}^{\succ->-\succ}$ .
Therefore $P_{6}$ is another in $\cdot$

tersection of $\backslash )^{\backslash }\backslash ^{\backslash _{0}}$ and $\backslash )_{\backslash }\backslash ^{\backslash }1$ .
Similarly, if we denote

by $\backslash $)$\backslash ^{\grave{\backslash }}’$

) the translation of $\backslash )_{\backslash }\backslash ^{\backslash }0$

by $\overline{OP}_{-}^{\succ}$

) then $\backslash )_{\urcorner}\backslash ^{\backslash }z$ is carried by

the translation $\overline{P_{2}P}_{1}^{>}$ into $\mathfrak{V}_{1}$ ;
hence $\backslash ^{\backslash ^{\backslash }}\backslash $)

$2$ passes through
each of $O_{J}P_{1}$ and $P_{3}$ . Thus
we get the congruent rela.

Fig. 1 tions
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(1) sector O $P_{2}^{\wedge}P_{3}\equiv sectorOP_{5}^{\wedge}P_{6}\equiv sectorP_{2}O^{\wedge}P_{1}$ ,

(2) sector O $P_{3}^{\wedge}P_{4}\equiv sectorP_{1}P_{2}^{\wedge}O$ ,

where the sector O $P_{2}^{\wedge}P_{3}$ represents a domain enclosed by two radii
$OP_{2},$ $OP_{3}$ and the minor arc $P_{2}^{\wedge}P_{3}$ of $\mathfrak{V}_{0}$.

By (1), (2) and Property 1, the common part of three convex
domains $\mathfrak{V}_{0},$ $\mathfrak{V}_{1}$ and $\backslash 1^{c_{2}}\backslash $ (the shaded domain in Fig. 1), is an oval having
the breadth assigned by $\mathfrak{V}_{0}$ in every direction. Similarly we get several
ovals using $\mathfrak{V}_{i}$ and $\mathfrak{V}_{i+1}$ where $\mathfrak{V}_{i}$ denotes the translation of $\mathfrak{V}_{0}$ by
$\overline{OP_{i^{\succ}}}$, but they are all congruent to each other. Therefore one of them
will be called “the asymmetric oval“ determined by a hexagon
$P_{1}P_{2}P_{3}P_{4}P_{5}P_{6}$ and $\mathfrak{V}_{0}$ , and $P_{1}P_{2}P_{3}P_{4}P_{5}P_{6}$

” the base hexagon”.
From the construction of $P_{1}P_{2}P_{3}P_{4}P_{5}P_{6}$ , we see that any convex

polygon $P_{1}P_{2}P_{3}P_{4}P_{5}P_{6}$ inscribed in a breadth curve $\mathfrak{V}$ can be taken as
the base hexagon when and only when it is symmetrical with respect
to the centre of $\mathfrak{V}$ and

$P_{2}P_{3}=\frac{1}{2}P_{1}P_{4}$ .
\S 3. We shall now proceed to prove the following
THEOREM 1. Let $\mathfrak{V}$ be a breadth curve and $\mathfrak{S}$ be a hexagon of

the largest area among all base hexagons inscribed in $\mathfrak{V}$ . Then, the
asymmetric oval determined by $\mathfrak{S}$ and $\mathfrak{V}$ is of the smallest area among
all ovals with the breadth assigned by $\backslash )_{)}\backslash ^{\backslash }$ in every direction.

PROOF. First we shall consider a case when the breadth curve
$\mathfrak{B}$ has no angular point and denote by $\mathfrak{E}$ an oval whose breadth curve
is $\mathfrak{V}$ .

If we put the equations of $\mathfrak{V}$ as
$x=X(s)$ , $y=Y(s)$ ,

where $x$ and $y$ are rectangular coordinates of a point on the curve
and the parameter $s$ is the curve length. Assume further that $P_{1},$ $P_{2}$

and $P_{3}$ are three vertices of a base hexagon corresponding to $s=s_{1}$ ,
$s=s_{2}$ and $s=s_{3}$ and denote by $\theta_{1},$ $\theta_{2}$ and $\theta_{3}$ three directions of supporting
lines of the breadth curve at the respective points such that $\theta_{I}\leqq\theta_{2}\leqq$

$\theta_{3}\leqq\theta_{1}+\pi$ . Then, from the conditions of base hexagon, we get
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$X(s_{I})=X(s_{2})-X(s_{3})$ , $Y(s_{1})=Y(s_{2})-Y(s_{3})$ ,

whose Jacobian is

(1) $\partial(X(s_{1}\underline{)},Y_{3}(s_{1})\underline{)}--=\partial(s_{2},s\overline{)}^{-}\left|\begin{array}{ll}cos\theta_{2} & -cos\theta_{3}\\sin\theta_{2} & -sin\theta_{3}\end{array}\right|=\sin(\theta_{2}-\theta_{3})$ .

Thus we get the following two cases:
1) whatever the base hexagon may be chosen, Jacobian (1) is not

equal to zero;
2) for a special base hexagon Jacobian (1) is equal to zero.

In the case 1), not only $\sin(\theta_{2}-\theta_{3})\neq 0$ but also $\sin(\theta_{3}-\theta_{1})\neq 0$ ,
$\sin(\theta_{1}-\theta_{2})\neq 0$, and $s_{2}$ and $s_{3}$ will be expressed by continuous functions
of $s_{1}$ . Therefore $\theta_{1},$ $\theta_{2}$ and $\theta_{3}$ vary continuously when a base hexagon
$\mathfrak{S}$ , inscribed in $\mathfrak{V}$, moves continuously.

We construct supporting lines of $\mathfrak{E}$ parallel to those of $\mathfrak{B}$ at
vertices of $\mathfrak{S}$ and denote by $\mathfrak{S}$ ‘ the convex hexagon surrounded by
these supporting lines of $C;$ . If we write the equation of $\mathfrak{E}$ as

$P=P(\theta)$ ,

then the rectangular coordinates of vertices of $\mathfrak{S}^{\prime}$ will be given by

$x=\{P(\theta_{2})\cos\theta_{3}-P(\theta_{3})\cos\theta_{2}\},/\sin(\theta_{2}-\theta_{3})$ ,
$y=\{P(\theta_{2})\sin\theta_{3}-fl\theta_{3})\sin\theta_{2}\}/\sin(\theta_{2}-\theta_{3})$ , etc.

Since $\sin(\theta_{2}-\theta_{3})\neq 0$ etc., $\mathfrak{S}^{\prime}$ is not a parallelogram and the vertices
of $\mathfrak{S}^{\prime}$ move continuously as $\mathfrak{S}$ rotates continuously.

If we denote by $A_{1},$ $A_{2},$ $A_{3},$ $A_{4},$ $A_{5},$ $A_{6}$ the vertices of $\mathfrak{S}^{\prime}$ and by $A_{l5}$,

the mid point of $A_{2}A_{5}$, then the oriented area of the triangle $A_{1}A_{4}A_{25}$

varies continuously as $\mathfrak{S}^{\prime}$ moves continuously. Moreover, if $\mathfrak{S}^{\prime}$ rotates
by $\pi$ around $\mathfrak{E},$ $A_{2}$ and $A_{5}$ interchange their positions and the sign of
the area $A_{1}A_{4}A_{25}$ changes. Therefore, there is at least one hexagon
$A_{1}A_{2}A_{3}A_{4}A_{5}A_{6}$ such that

the area of $A_{1}A_{4}A_{25}=0$ .
Hence $A_{1},$ $A_{4}$ and $A_{25}$ are collinear. In the hexagon thus obtained,
$A_{1}A_{2}A_{4}A_{5}$ is a parallelogram since $A_{1}A_{2}\underline{\lrcorner\llcorner}A_{4}A_{5}$. From $A_{6}A_{1}||A_{4}A_{3}$ ,
$A_{6}A_{5}||A_{2}A_{3}$ we see that $\Delta A_{6}A_{1}A_{5}\equiv\Delta A_{3}A_{4}A_{2}$ . Therefore $A_{1}A_{2}A_{3}A_{4}A_{5}A_{6}$

is a central hexagon. If we denote by $P_{1}P_{2}P_{3}P_{4}P_{5}P_{6}$ the base hexagon
corresponding to $A_{1}A_{2}A_{3}A_{4}A_{5}A_{6}$ in the construction of $\mathfrak{S}$‘, then, by
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Property 2, there are six supporting points $Q_{1},$ $Q,,\cdots,$ $Q_{6}$ such that
$Q_{i}(i=1,2,\cdots, 6)$ lies on $A_{i}A_{i+1}$ and

$\overline{Q_{1}Q}_{4}^{>}=\overline{P_{1}O}^{>}$ , $\overline{Q_{5}Q}_{2}^{>}=\overline{OP_{2^{\succ}}}$ , $\overline{Q_{3}Q}_{6}^{>}=\overline{OP_{6^{>}}}(=\overline{P_{-})P}_{1^{>}})$ .
Therefore

(2) $\overline{Q_{1}}Q_{4}+\overline{Q_{5}Q}_{2}^{>}+\overline{Q_{?}Q}^{>_{()}}=0$ .
Draw two lines $A_{1}A_{3}^{\prime},$ $A_{1}A_{5}^{\prime}$ parallel to $Q_{t)}Q_{?},$ $Q_{1}Q_{4}$ and let them cut
$A_{3}A_{4},$ $A_{4}A_{S}$ in $A_{3}^{\prime},$ $A_{5}^{\prime}$ respectively (see the left side in Fig. 2). Then we
have8)

(3) $A_{3}^{\prime}A_{1}^{>}=\overline{Q_{3}Q}_{6}^{>}--$ , (4) $A_{1}A_{5}=\overline{Q_{1}Q}_{4}^{>}-->,-$ ,
and

(5) $A_{3}^{\prime}A_{1}^{>}+\overline{A_{1}A}_{5}^{>,}+A_{\sigma}^{\prime}.A_{3}^{>,}=0$ .
By (2)$\sim(5)$ we get

(6) $\overline{Q_{\ulcorner_{)}}Q}_{2}^{>\cdot--}=A_{5}^{\prime}A_{3}^{>,}$ .

Fig. 2

Next draw $A_{3}^{\prime}A_{2}^{\prime}$ and $A_{5}^{\prime}A_{6}^{\prime}$ parallel to $A_{2}A_{3}$ , and let them meet
$A_{1}A_{2}$ and $A_{1}A_{6}$ in $A_{2}^{\prime},$ $A_{6}^{\prime}$ respectively. Then, by (6) two pairs of
parallels $A_{2}^{\prime}A_{3}^{\prime}$ , A’A $\frac{\prime}{\theta}$ and $A_{2}A_{3},$ $A_{6}A_{5}$ have the same breadth. Therefore,
using $A_{2}A_{3}=A_{6}A_{5}$, we get
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(7) area $A_{1}A_{2}A_{3}A_{4}A_{5}A_{6}\geq areaA_{1}A_{2}^{\prime}A_{3}^{\prime}A_{4}A_{5}^{\prime}A_{6}^{\prime}$ .
On the other hand, by (3), (4) and Property 2, the breadth curve

of $\mathfrak{E}$ whose centre is $A_{1}$ passes through $A_{3}^{\prime}$ and $A_{5}$ . Similarly $A_{5}^{\prime}$ and
$A_{1}$ (or $A_{1}$ and $A_{3}^{\prime}$ ) lie on the breadth curve having its centre at $A_{3}^{\prime}$

(or $A_{5}^{\prime}$ ). We denote by $(A_{1}A_{3}^{\bigwedge_{/}}A_{\iota}^{\prime_{\overline{)}}})$ the area bounded by two segments
$A_{1}A_{3}^{\prime},$ $A_{1}A_{5}^{\prime}$ and the arc $ A_{3}^{\prime}A_{5}^{\prime}\wedge$ of breadth curve and by $(A_{1}Q_{1}^{\wedge}Q)\backslash )$ the
area bounded by two segments $A_{1}Q_{1},$ $A_{1}Q_{(}$, and the arc $Q_{1}^{\wedge}Q_{6}$ of $\mathfrak{E}$ .
Then, by the same method with Lebesgue’s treatment for the curve of
constant breadth we get

$\int(A_{1}Q_{1}^{\wedge}Q_{6})+(A_{4}Q_{4}^{\wedge}Q_{\tau})\leq(A_{4}A_{5}^{\bigwedge,}A_{3}^{\prime})$ ,

(8)
$|(A_{5}^{3}Q_{5}^{3}Q_{4}^{\Delta})+(A_{2}^{6}Q^{\bigwedge_{)}^{)}}Q_{1^{)}}^{\backslash })_{-\leq}(AQ_{\wedge}^{\wedge}Q)\dashv(AQ_{a}^{\bigwedge_{(}}Q_{\ulcorner})_{-}<_{(A_{2^{\prime}}^{6}A_{3}^{\wedge}A^{\ulcorner})}(AA_{1}^{\wedge}A_{1^{)}}).$

’

Therefore by (7) and (8), the area of the domain bounded by three
arcs .

$A_{1}^{\wedge}A_{3}^{\prime},$ $A_{3}^{\bigwedge,}4_{5}^{t}$ and $A_{5}^{\bigwedge,}A_{1}$ is not greater than that of $\mathfrak{E}$ (the right sidein Fig. 2). This domain, as is clear, is an asymmetric oval. Hence
the area of an asymmetric oval is not greater than the area of an
arbitrarily taken oval.

$\ln$ the case 2), we have $\sin(\theta_{J,\sim}.-\theta_{3})=0$ where $\theta_{1},$ $\theta_{c^{)}}$ and $\theta_{3}$ satisfy
$\theta_{\iota^{\underline{<}}-}\sim\theta\underline{)}\leq\theta_{3}\leq\theta_{1}+\pi$ . Therefore $\theta_{-}$

)
$=\theta\cdot$, or $\theta_{2}=\theta_{3}-\pi=\theta_{1}$ . Accordingly, weshall consider the case $\theta_{2^{-}}--\theta_{3}$ only, without loss of generality.

In this case two supporting lines of $\backslash $ ) $)^{\backslash }$ at $P_{2}$ and $P_{3}$ coincide witheach other. Therefore the supporting lines of $\backslash )^{\backslash }\backslash ^{\backslash }$ at the vertices of thebase hexagon $’\sim$ form a parallelogram and at least one pair of opposite
sides $P_{2}P_{3}$ and $P_{5}P_{6}$ of the base hcxagon coincides with two rectilinearparts of $\backslash $)$\backslash ^{\backslash }$).

If we denote by $P_{2}^{\prime}P_{3}^{\prime}$ the rectilinear part on which the segment
$P_{2}P_{3}$ lies, we have
(9) $P_{1}O=P_{p^{)}}P_{3}\leq P_{2}^{\prime}P_{3}^{\prime}$ .
Since the segment $P_{2}^{\prime}P_{3}^{\prime}$ is a rectilinear part of the breadth curve
there exist two rectilinear parts $Q.$ ) $Q_{3},$ $Q-$

)
$Q_{0}$ (one of which may shrink

to a point) on the oval $\mathfrak{E}$ such that
(10) $\overline{Q}$

)
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Draw two parallel supporting lines $t,$
$t^{\prime}$ of $\mathfrak{E}$ parallel to a supporting

line of $\mathfrak{B}$ at $P_{1}$ ; then, by Property 2, there are two supporting points
$Q_{1},$ $Q_{4}$ on $t,$

$t^{\prime}$ respectively such that

(11)
$\overline{Q_{1}Q}_{4}^{>}=\overline{P_{1}O}^{>}$ .

By (9), (10), (11), we see that $Q_{2}Q_{3}$ and $Q_{6}Q_{5}$ are parallel arcs of $\mathfrak{E}$

parallel to $Q_{1}Q_{2}$ and
$Q_{1}Q_{4}\leq Q_{2}Q_{3}+Q_{5}Q_{6}$ .

If we use the parallelogram8) formed by two pairs of parallels $t,$ $t$
‘

and $Q_{2}Q_{3},$ $Q_{5}Q_{6}$ , then, as can be seen from Fig. 3, we get easily the

same conclusion as in the case 1): The area of an asymmetric oval
is not greater than the area of an arbirtrarily taken oval.

Fig. 3.

On the other hand, the area of an asymmetric oval is given by

$\frac{1}{2}\left(\begin{array}{lll}the & oareaf & \\the & breadth & c\dot{u}rve\end{array}\right)-\frac{1}{3}\left(\begin{array}{lll}the & area & of\\the & base & hexagon\end{array}\right)$ .

The first term being constant, the oval with minimum area is got

when the base hexagon has maximum area. Thus, our theorem ls

proved when $\mathfrak{B}$ has no angular point.
Let us consider the case in which $\mathfrak{B}$ has angular points.

Let ($IS_{\epsilon}$ be an outer $e$ -parallel curve of $\mathfrak{E},$ $\mathfrak{B}_{e}$ a breadth curve of
$\mathfrak{E}_{\epsilon}$ and $\mathfrak{S}_{e}$ a base hexagon of the largest area inscribed in $\mathfrak{B}_{e}$ . Then
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$\mathfrak{B}_{\epsilon}$ is an outer $2e\cdot paraIlel$ curve of $\mathfrak{B}$ and has no angular point. There-
fore we get

(the area of $\mathfrak{E}_{e}$ ) $\geqq\frac{1}{2}$ (the area of $\mathfrak{B}_{g}$ ) $-\frac{1}{3}$ (the area of $\mathfrak{S}_{e}$).

Let us denote by $O$ the cocentre of $\mathfrak{B}$ and $\mathfrak{B}_{e}$ , by $P_{1}P_{2},\cdots,$ $P_{6}$ the
vertices of $\mathfrak{S}_{e}$ , and by $Q_{i}(i=1,2,\cdots, 6)$ the meet of $OP_{i}$ with $\mathfrak{B}$ , and
assume that

$OP_{1}/OQ_{1}=;_{-1}{\rm Max}_{2}OP_{i}/OQ_{i};_{6}$ .
If we construct the hexagon $Q_{1}Q_{2}^{\prime}Q_{3}^{\prime}Q_{4}Q_{5}^{\prime}Q_{6}^{\prime}$ similar and similarly situated
to $\mathfrak{S}_{\epsilon}$ , then we get

$OQ_{i}^{\prime}\leqq OQ_{i}$ $(i=2,3,5,6)$ ;

therefore $\mathfrak{B}$ enclose the hexagon $Q_{1}Q_{2}^{\prime}Q_{3}^{\prime}Q_{4}Q_{5}^{\prime}Q_{6}^{\prime}$ . If we denote by
$Q_{1}Q_{2}Q_{3}^{l}Q_{4}Q_{5}^{\prime}Q_{\text{\^{u}}}^{\prime}$ the base hexagon with the diagonal $Q_{1}Q_{4}$ inscribed in
$\mathfrak{B}$ , then

$Q_{2}^{\prime}Q_{3}^{\prime}=\frac{1}{2}Q_{1}Q_{4}=Q_{2}Q_{3}^{l}$ ,

and therefore the breadth between $Q_{2}^{\prime}Q_{3}^{\prime}$ and $Q_{6}^{\prime}Q_{5}^{\prime}$ is not greater than
the breadth between $Q_{2}^{\prime}Q_{3}^{\nu}$ and $Q_{6}Q_{5}$ . Accordingly, the area of $Q_{1}Q_{2}^{\prime}Q_{3}^{\prime}$

$Q_{4}Q_{5}^{\prime}Q_{6}^{\prime}$ is not greater than the area of $Q_{1}Q_{2}^{\prime\prime}Q_{3}^{l}Q_{4}Q_{5}^{t}Q_{6}^{\prime\prime}$. Hence, if we
denote by $P$ any point on $\mathfrak{B}_{e}$ , by $Q$ the meet of $OP$ with $\mathfrak{B}$ and by
$\lambda_{e}$ the maximum of $(OP:OQ)^{2}$, then $we^{1}$ get

(the area of $\mathfrak{S}_{8}$ ) $\leqq(OP_{1}/OQ_{1})^{2}$ (the area of $Q_{1}Q_{2}^{n}Q_{3}Q_{4}Q_{5}^{t}Q_{6}^{\prime}$)

$\leqq\lambda_{8}$ (the area of $\mathfrak{S}$ )

where $\mathfrak{S}$ is the maximal base hexagon inscribed in $\mathfrak{B}$ . Thus we get

(the area of $\mathfrak{E}_{\epsilon}$ ) $\geqq\frac{1}{2}$ (the area of $\mathfrak{B}_{\epsilon}$ ) $-\frac{1}{3}\lambda_{e}$ (the area of $\mathfrak{S}$).

If $e$ tends to zero, then $\mathfrak{E}_{8}$ and $\mathfrak{B}_{8}$ converge to $\mathfrak{E}$ and $\mathfrak{B}$ respectively
and $\lambda_{\epsilon}$ converges to 1. Therefore, the right side of the last inequality
converges to the area of asymmetric oval determined by $\mathfrak{B}$ and $\mathfrak{S}$ .
Thus, we get the result that the asymmetric oval determined by $\mathfrak{B}$

and $\mathfrak{S}$ is of the smallest area among all ovals with the breadth assigned
by $\mathfrak{B}$ in every direction.
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\S 4. By virtue of Theorem 1, in order to find the minimum of all
ovals with given $D$ and $\Delta$ or perimeter $L$, it will be sufficient to $con$ .
sider the case of asymmetric ovals only, that is, the minimum problems
reduce to the problems concerning central ovals $\mathfrak{B}$ and central hexagons
$\mathfrak{S}$ .

The following form of defining $D$ and $\Delta$ is suitable for later pur-
poses in the study of asymmetric ovals. $D$ is the radius of the circum.
scribed circle about $\backslash )_{\backslash }^{\backslash }\backslash $ conccntric with $\backslash 1^{\backslash }\backslash ^{\backslash }$ and $\Delta$ is the radius of the
inscribed circle in $\backslash )^{\backslash }\backslash ^{\backslash }$ concentric with $\backslash )_{\backslash }\backslash ^{\backslash }$ By Crofton’s theorem, the
perimeter of $\backslash )^{\backslash }\backslash ^{\backslash }$ is $2L$ .

The following lemmas are simple but important.
LEMMA 1. If we replace $t\iota vo$ minor arcs of the breadth curve by

two parallel chords, we get another $asv$mmetric oval, which has a
smallcr area and perimeter than the original oval, where the parallel
chords are assumed not to meet the base hexagon and that they are
symmetric with respect to the centre of the brcadth curve.

LEMMA 2. Let us denote by $\backslash )^{\backslash }\backslash ^{\backslash }$ and $P_{1}P_{\underline{\prime}}P_{\gamma}P_{4}P.-\urcorner P_{6}$ the breadth curve
and the base hexagon of the $\dot{g}ven$ asymmctric oval (-. Draw four
lines $P_{2}P_{2}^{\prime},$ $P_{\gamma}P_{3}^{\prime},$ $P_{5}P_{5}^{\prime},$ $P_{b}P_{6}^{\prime}$ parallcl to the snppo’ ting line of $\mathfrak{V}$ at $P_{1}$ ,
and choose four points $P_{\underline{o}}^{\prime},$ $P_{3}^{\prime},$ $P_{5}^{\prime}$ and
$P_{6}^{\prime}$ respectively on them such that
$P_{2}^{\prime}P_{3}^{\prime}$ lies on the opposite side $o_{J^{\prime}}P_{1}P_{4}$

with respect to P $P_{\}}$ and $f^{\mathscr{J}_{5}}P_{(;}^{\prime}$ on
the cpposite side of $P_{1}P_{4}$ with respect

to $P_{5}P_{6}$ , that $\overline{P_{2}P}_{2}=P_{3}P_{3}=P_{5}^{\prime}P_{5}=P_{6}^{\prime}P_{6}^{>}>,-->,,-\triangleright$ ,
and that $P_{2}^{\prime}P_{3}^{\prime}$ meets or touches $\backslash $)

$\backslash ^{\backslash ^{\backslash }}$

Then, an asymmetric oval, whose base
hexagon is $P_{1}P_{2}^{\prime}P_{3}^{\prime}P_{4}P_{5}^{\prime}P_{6}^{\prime}$ and whose
breadth curve is the minimum oval
enclosing $P_{2}^{\prime}F_{3}P_{5}^{\prime}P_{6}^{\prime}$ and $\backslash $)

$\backslash ^{\backslash ^{\backslash }}$ has a
smaller area than U.

PROOF. Draw four tangent lines
$P_{2}^{\prime}T_{1},$ $P_{2}^{\prime\prime}\Gamma_{2}$ ; $P_{3}^{\prime}T_{3},$ $P_{3}^{\prime}T_{4}$ from $P_{2}^{\prime}$ and
$P_{3}^{\prime}$ to $\backslash $ )$\backslash ^{\backslash ^{\backslash }}$ and let them touch at $T_{1}$ ,

$T_{2},$ $T_{3},$ $T_{4}$ respectively. We denote by
$\mathfrak{V}^{\prime}$ the minimum oval enclosing both
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$P_{2}^{\prime}P_{3}^{\prime}P_{5}^{\prime}P_{6}^{\prime}$ and $\mathfrak{V}$ , and by $S_{i}(i=1,2,3,4)$ the intersections of $P_{1}P_{4}$ with
four parallels passing through $A_{i}(i=1,2,3,4)$ and parallel to $P_{\underline{\prime}}P_{2}^{\prime}$ . It
is clear that the hexagon $P_{1}P_{2}^{\prime}P_{3}^{\prime}P_{4}P_{5}^{\prime}P_{()}^{\prime}$. can be taken as a base
hexagon. If we express the area of $X$ by $|X|$ symbolically, then

$\frac{1}{2}\{|\mathfrak{V}^{\prime}|-|\mathfrak{V}_{1}|\}\leqq|$ concave quadrangle $P_{2}T_{1}P_{2}^{\prime}T,.’|$

$+|$ concave quadrangle $T_{3}P_{3}^{\prime}T_{4}P_{3}|$

$=\frac{1}{2}S_{1}S_{2}\cdot P_{2}P_{2}^{\prime}\sin_{\omega}+\frac{1}{2}S_{3}S_{4}\cdot P_{3}P_{3}^{\prime}\sin_{\omega}$ $(\omega=\angle P_{1}B_{4}T_{4})$

$=\frac{1}{2}(S_{1}S_{2}+S_{3}S_{4})\cdot P_{2}P_{2}^{\prime}\sin_{\omega}$

$\leqq\frac{1}{2}P_{1}P_{4}\cdot P_{2}P_{2}^{\prime}\sin_{\omega}$

$=\frac{1}{3}\{|P_{1}P_{2}^{\prime}P_{3}^{\prime}P_{4}P_{5}^{\prime}P_{6}^{\prime}|-|P_{1}P_{f}P_{3}P_{4}P_{5}P_{0} \}$ .
Therefore

$\frac{1}{2}|\mathfrak{V}^{\prime}|-\frac{1}{3}|P_{1}P_{2}^{\prime}P_{3}^{\prime}P_{4}P_{5}^{\prime}P_{6}^{\prime}|\leqq\frac{1}{2}|^{\backslash )}\circ^{\backslash }|---|P_{1}P_{2}P_{\iota},P_{4}P_{5}P_{6}|31$

Thus Lemma 2 is proved.
In Lemma 2, by making the breadth between $P_{2}^{\prime}P_{3}^{\prime}$ and $P_{6}^{\prime}P_{5}^{\prime}$

greater, we can obtain an asymmetric oval of a smaller area. But, in
doing so, we must bear in mind that $L,$ $D$ and $\Delta$ become greater in
general.

Let us consider the minimum area when $D$ and $\Delta$ are so given that
$D\geqq\Delta\geq\sqrt 3D_{/^{\prime}}2$ .

Denote by ii an asymmetric oval satisfying given conditions and by
$\mathfrak{K}$ the circle of radius $\Delta$ concentric with the breadth curve of $C\rangle$

For our case there is at least a pair of points on the breadth
curve whose distances from the centre are $D$ . If such points are not
the vertices of base hexagon, then, by applying9) the method of Lemma
2 to a pair of arcs on which a pair of points above mentioned lies,
we get an asymmetric oval whose base hexagon has a pair of sides of
length $D$ and has a smaller area than the original oval.
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If we denote by $P_{1}P_{2}\cdots P_{6}$ the new base hexagon whose sides $P_{2}P_{3}$

and $P_{5}P_{6}$ are of length $D$ and by $\mathfrak{V}$ the minimum oval enclosing
$P_{1}P_{2}\cdots P_{6}$ and $\mathfrak{K}$ , then an asymmetric oval determined by $P_{1}P_{2}\cdots P_{6}$ and
$\mathfrak{V}$ has smaller area than $\mathfrak{E}$ , and $D$ and $\Delta$ are the same with those of
$\mathfrak{E}$ .

Transform the hexagon $P_{1}P_{2}\cdots P_{6}$ into $P_{1}P_{2}^{\prime}P_{3}^{\prime}P_{4}P_{5}^{\prime}P_{6}^{\prime}$ by the sym-
metrization with respect to the perpendicular bisector of $P_{1}P_{4}$ , and
denote by $\mathfrak{V}^{\prime}$ the minimum oval enclosing $P_{1}P_{2}^{\prime}P_{3}^{\prime}P_{4}P_{5}^{\prime}P_{6}^{\prime}$ and $\mathfrak{K}$. Then
we see that

$|\mathfrak{V}|\geqq|\mathfrak{V}$
‘

$|$ , $|P_{1}P_{2}P_{3}P_{4}P_{5}P_{6}|=|P_{1}P_{2}^{\prime}P_{3}^{\prime}P_{4}P_{5}^{\prime}P_{6}^{\prime}|$ ,

hence

$\frac{1}{2}|\mathfrak{V}^{\prime}|-\frac{1}{3}|P_{1}P_{2}^{\prime}P_{3}^{\prime}P_{4}P_{5}^{\prime}P_{6}^{\prime}|\leqq\frac{1}{2}|\mathfrak{V}|-\frac{1}{3}|P_{1}P_{2}P_{3}P_{4}P_{5}P_{6}|$ ,

and that $P_{1}P_{2}^{\prime}P_{3}^{\prime}P_{4}P_{5}^{\prime}P_{6}^{\prime}$ satisfies the condition of base hexagon. There-
fore an asymmetric oval determined by $\mathfrak{V}$

‘ and $P_{1}P_{2}^{\prime}P_{3}^{\prime}P_{4}P_{5}^{\prime}P_{6}^{\prime}$ has a
smaller area than the original oval. Construct the regular hexagon
$P_{1}QRP_{4}Q^{\prime}R^{\prime}$ , whose sides are of length $D$ , then $QR$ meets or touches
$\mathfrak{K}$, since $\Delta\geqq\sqrt 3D/2$ .

By Lemma 2, we see that the asymmetric oval whose base hexagon
is $P_{1}QRP_{4}Q^{\prime}R^{\prime}$ and whose breadth curve is a minimum oval enclosing
$P_{1}QRP_{4}Q^{\prime}R^{\prime}$ and $\mathfrak{K}$ has the minimum area, when $D\geqq\Delta\geqq\sqrt 3D/2$ .
Thus we arrive at the following

THEOREM 2. If $D$ and $\Delta$ of the oval are given so that

$D\geqq\Delta\geqq\sqrt 3D/2$ ,

then the following inequality holk:

$F\geqq 3\Delta\{\sqrt{D^{2}-\Delta}2$

$+\Delta(\sin^{-1}\frac{\Delta}{D}-\frac{\pi}{3})\}-\frac{\sqrt{3}}{2}D^{2}$ .

The equality occurs when and only
when the oval is an asymmetri
curve whose base hexagon is a re-

Fig. 5. gular hexagon of si&s $D$ and whose
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breadth curve is a minimum oval enclosing the base hexagon and a
concentric ecrcle with radius $\Delta$ .

This minimum figure is bounded by three circular arcs and six
rectilinear parts, and resembles to the Reuleaux triangle as is seer $\ln$

Fig. 5.
\S 5. Let us consider the minimum area when $\Delta$ and $L$ are so

given that
$\pi\Delta\leqq L\leqq 2\sqrt{}\overline{3}\Delta$ .

We have only to consider the asymmetric oval in this case too.
Denote by $\mathfrak{E}$ an asymmetric oval satisfying the given conditions,

by $P_{1}P_{2}P_{3}P_{4}P_{5}P_{6}$ the base hexagon of $\mathfrak{E}$ , by $\mathfrak{V}$ the breadth curve of $\mathfrak{E}$ ,
and by $\mathfrak{K}$ the circle whose radius is $\Delta$ and concentric with $\mathfrak{V}$ . If every
side of the base hexagon has no common point with $\mathfrak{K}$ , then the
minimum distance of supporting lines of $\mathfrak{V}$ from the centre $O$ is
greater than $\Delta$ . Therefore at least one pair of sides of base hexagon
meets or touches $\mathfrak{K}$. So we may assume that $P_{2}P_{3}$ and $P_{5}P_{6}$ meet or
touch $\mathfrak{K}$ .

Transform the hexagon $P_{1}P_{2}P_{3}P_{4}P_{5}P_{6}$ into $P_{1}P_{2}^{\prime}P_{3}^{\prime}P_{4}P_{5}^{\prime}P_{6}^{\prime}$ by the
symmetrization with respect to the perpendicular bisector of $P_{1}P_{4}$, and
denote by $\mathfrak{V}$

‘ the minimum oval enclosing $P_{I}P_{2}^{\prime}P_{3}^{\prime}P_{4}P_{5}^{\prime}P_{6}^{\prime}$ and $\mathfrak{K}$ and by
$\mathfrak{E}^{\prime}$ an asymmetric oval determined by $P_{1}P_{2}^{\prime}P_{3}^{\prime}P_{4}P_{5}^{\prime}P_{6}^{\prime}$ and $\mathfrak{B}^{\prime}$ . Then $\mathfrak{B}^{\prime}$

is obtained by applying the method of Lemma 1 to the symmetrization
of $\mathfrak{B}$ with respect to the perpendicular bisector of $P_{1}P_{4}$. Therefore we
get

$|$ hexagon $P_{1}P_{2}^{\prime}P_{3}^{\prime}P_{4}P_{5}^{\prime}P_{6}^{\prime}|=|$ hexagon $P_{1}P_{2}P_{3}P_{4}P_{5}P_{6}|$ ,
$\backslash |\mathfrak{V}^{\prime}|\leqq|\mathfrak{V}\}$ ,

and hence
(1) $|\mathfrak{E}_{I}^{r|}\leqq|\mathfrak{E}|$ .
Steiner’s symmetrization and the method of Lemma 1 generally make
the perimeter smaller; therefore, if we denote by (X) the perimeter
of $X$ symbolically, then we get

(2) $(\mathfrak{E}^{\prime})\leqq(\mathfrak{E})$ .
and
(3) $\Delta\pi\leqq(\mathfrak{E}^{\prime})$ ,



386 T. $Kuf\dagger OT\Lambda$ and D. HEMMI

for the length of the smallest breadth of $\mathfrak{E}^{\prime}$ is $\Delta$ .
By virtue of the assumption concerning $P_{2}P_{3}$ , we see that $P_{2}^{\prime}P_{3}^{\prime}$

and $P_{5}^{\prime}P_{6}^{\prime}$ meet or touch,R. Then we get the following two cases:
1) every side of $P_{1}P_{2}^{\prime}P_{3}^{\prime}P_{4}P_{5}^{\prime}P_{6}^{\prime}$ meets or touches $\mathfrak{K}$ ;
2) two pairs of sides $P_{1}P_{2}^{\prime},$ $P_{4}P_{3}^{\prime}$ and $P_{3}^{\prime}P_{4},$ $P_{6}^{\prime}P_{5}^{\prime}$ have no common

point with $Si^{\backslash }$ .
Let us consider the case 2). For this case $P_{1}P_{2}^{\prime},$ $P_{3}^{\prime}P_{4},$ $P_{4}P_{5}^{\prime}$ and

$P_{6}^{\prime}P_{1}$ are rectilinear parts of $\backslash )_{\backslash ^{\backslash /}}\backslash $ Denote by $P_{2}^{\prime}A_{1}$ and $A{}_{2}P_{3}^{\prime}$ the other
rectilinear parts of $\mathfrak{V}^{\prime}$ passing through $P_{2}^{\prime}$ and $P_{3}^{\prime}$ respectively; then
the oval $oP_{2}^{\prime}A_{1}^{\wedge}A{}_{2}P_{3}^{\prime}O$ is an asymmetric oval determined by $P_{1}P_{2}^{\prime}P_{3}^{\prime}P_{4}$

$P_{5}^{\prime}P_{6}^{\prime}$ and $\mathfrak{V}^{\prime}$ , that is $\mathfrak{E}^{\prime}$ .
Denote by $M$ the middle point of arc $A_{1}^{\wedge}A_{2}$, by $X$ a moving point

on $P_{2}^{\prime}A_{1}^{\wedge}M$ which is an arc of $\mathfrak{E}$ ‘, and by $Y$ the reflecting point of $X$

with respect to $OM$. Then the distance from $X$ to $OY$ varies con-
tinuously as $X$ moves continuously, and when $X$ comes to $P_{2}^{\prime}$ it is
greater than $\Delta$ . Accordingly there are two points $A,$ $A^{\prime}$ on $P_{2}^{\prime}A_{1}^{\wedge}A{}_{2}P_{3}^{\prime}$

such that they are symmetric with respect to $OM$ and the distance
from $A$ to $OA^{\prime}$ is equal to $\Delta$ .

If we denote by $\mathfrak{E}^{\prime\prime}$ the convex domain surrounded by $OA,$ $OA^{t}$

and the arc of $\mathfrak{E}^{\prime}$ joining $A,$ $A^{\prime}$ , then ($’\vee^{-//}$ has a smaller area and
perimeter than those of $\mathfrak{E}^{\prime}$ . Further we see that $\mathfrak{E}^{\prime\prime}$ is an asymmetric
oval and every side of the base hexagon of $C$; meets or touches $\mathfrak{K}$ .
Therefore, by substituting $C^{\prime\prime}\backslash $ for $\mathfrak{E}^{\prime}$ , we see that the case 2) reduces
to the case 1).

Let us consider the case 1). In this case every side of $P_{1}P_{2}^{\prime}P_{3}^{\prime}P_{4}$

$P_{5}^{\prime}P_{6}^{\prime}$ meets or touches $\mathfrak{K}$ . Draw two pairs of tangents $P_{1}Q,$ $P_{1}Q^{\prime}$ and
$P_{2}^{\prime}R,$ $P_{2}^{\prime}R^{\prime}$ , and let them touch $\mathfrak{K}$ at $Q,$ $Q^{\prime}$ and $R,$ $R^{\prime}$ respectively. If
we put

$\angle P_{1}OQ=\theta_{0}$ , $\angle P_{2}^{\prime}OR=\varphi_{0}$ , $(\mathfrak{E}^{\prime})=l$ ,

then we have

(4) $|\mathfrak{E}^{\prime}|=(\Delta l-\Delta^{2}\sec\theta_{0^{\sqrt{}}}\overline{4\sec^{2}\varphi_{0}-\sec^{2}\theta_{0})}/2$ ,

(5) $1=2\Delta\{2(\tan\varphi_{0}-\varphi_{\backslash }/))+\tan\theta_{()}-\theta_{0}+\pi/2\}$

$(\pi\Delta\leqq l\leqq L\leqq 2\sqrt 3\Delta)$ .



Some problems of minima concerning the oval. 387

Now let us consider the maximum value of $u$ where

(6) $u=\sec^{2}x(4\sec^{2}y--\sec^{2}x)$ ,

when $x$ and $y$ are connected by

(7) $2(\tan y-y)+\tan x-x=(l-\pi\Delta)/(2\Delta)$

$(0\leq-x<\pi/2, 0\leq y<\pi/2)$ .
By (7), $y$ is a continuous decreasing function of $x$ , and

$\frac{dy}{dx}=-\frac{1}{2}\cot^{2}y\tan^{2}x$ ,

$\frac{du}{dx}=4\sec^{3}x\tan x$ cosec $y(\sec^{2}y+\tan^{2}y+\tan x\tan y)\sin(y-x)$ .

On the other hand, if we put $y=x$ in (7), we get

$\tan x-x=(l-\pi\Delta)/(6\Delta)$ .
This equation has only one root in the interval $(0, \pi/2)$ . Denote this
root by $\theta_{1}$ and the value of $x$ corresponding to $y=0$ by $\alpha$ ; then we
see

$y-x>0$ when $0\leq x<\backslash \theta_{1}$ ,

$y-x<0$ when $\theta_{1}<x<\alpha$ ,
and therefore

$- d\underline{u}=0$ when $x=0$ ,
$dx$

$\frac{du}{dx}>0$ when $0<x<\theta_{1}$ ,

$d\underline{u}<0$ when $\theta_{1}<x<\alpha$ .
$dx$

Consequently a maximum of $u$ is got when $x=\theta_{1}$ and hence $x=y=\theta_{1}$.
So we have

$\sec\theta_{()}1\overline{4\sec^{2}\varphi_{0}-\sec^{2}\theta_{0}}\leqq 1$

(8) $|\mathfrak{E}^{\prime}|\geq\Delta(l-t/3\Delta\sec^{2}\theta_{1})/2$ ,

(9) $\tan\theta_{1}-\theta_{1}=(l-\pi\Delta)/6\Delta$ .
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When $\theta_{1}$ and $l$ vary under the condition (9), we have

$\frac{dl}{d\theta_{1}}=6\Delta\tan^{2}\theta_{1}\geqq 0$ ,

$\frac{d}{d\theta_{1}}(\iota_{-1}/3\Delta\sec^{2}\theta_{1})=-2_{1}/3\Delta\tan\theta_{1}\{(\tan\theta_{1^{--}2^{-)^{2}+\div\}}}^{\sqrt{3}}\leqq 0$

in the interval $0\leqq\theta_{1}<\pi/2$ . Therefore, by making $l$ greater, we can
obtain a smaller value of $(1-1^{/}3\Delta\sec^{2}\theta_{1})$ .

If we denote by $\theta$ the root of
$\tan x-x=(L-\pi\Delta)/6\Delta$

in the interval $(0, \pi/2)$ , then we get

$0\leqq\theta_{1}\leq\theta\leq\pi/6$ ,

since $\pi\Delta\leq l\leq L\leqq 2\sqrt{3}\Delta$ . Therefore
(10) $|\mathfrak{E}|\geqq|\mathfrak{E}^{t}|\geqq(\Delta L-\sqrt 3\Delta^{2}\sec^{2}\theta)/2$ .
Thus we arrive at the following

THEOREM 3. If $\Delta$ and $L$ of the oval are so given that
$\pi\Delta\leq L\leq 2\sqrt 3\Delta$ ,

then the following inequality holds:

$ 2F\geq\Delta L-\sqrt 3\Delta^{2}\sec^{2}\theta$ ,

where $\theta$ is the root of $\tan\theta-\theta=(L-\pi\Delta)/(6\Delta)$ in the interval $0\leq\theta\leq-\pi/6$ ;
the equality occurs when and only when the oval is an asymmetric
curve whose base hexagon is a regular hexagon of sides $\Delta\sec\theta$ and
whose breadth curve is a minimum oval endosing the base hexagon
and the concentric circk with radius $\Delta^{10)}$

Notes
(1) J. P\’al: Ein Minimumproblem fur Ovale. Math. Ann. 83 (1921). Cf. throughout

this note as a reference the excellent report by T. Bonnesen u. W. Fenchel, Theorie
der konvexen Korper. (Ergebn. d. Math. III 1.) Berlin (1934).

(2) T. Kubota: Einige Ungleichheitsbeziehungen \"uber Eilinien und Eifl\"achen. Sci. Rep.
T\^ohoku Univ. 12 (1923).

(3) M. Yamanouchi: Notes on closed convex figures. Proc. Phys.-Math. Soc. Japan 14
(1932).
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(4) Lebesgue: Sur le probl\‘eme des isop\’erim\‘etres et sur les domaines de largeur con-
stante. Bull. Soc. Math. France C. R. (1914).

(5) H. Lebesgue: Sur quelques questions de minimum, relatives aux courbes orbiformes,
et sur leurs rapports avec le calcul des variations. J. Math. Pures Appl. 4 (1921).

(6) W. Blaschke: Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts.
Math. Ann. 76 (1915).

(7) T. Kubota: Eine Ungleichheit fur Eilinien. Math. Z. 20 (1924).
(8) In 1917 (?) Mr. K. Yanagihara proved the following th $\epsilon$ orem at the ordinary meeting

of Mathematical Institute in Tohoku University: Let $E_{0},$ $E_{1},$ $E_{2}$ be three congruent
ovals which are situated in a homogetic positions and touch with each other. If we
construct a $r$ } $ng$ of congruent ovals $E_{3},$ $ E_{4},\cdots$ around $E_{0}$, so that $E_{i},$ $E_{i-1},$ $E_{0}$ are
located in homogetic positions and touch with each other, then $E_{6}$ touches $E_{1}$ , that
is, $E_{7}$ is the very oval $E_{1}$ . If we denote the internal common tangent of $E_{0},$ $E$; by
$l_{i}$ , then, by placing $E_{1}$ in a suitable position, we can make the three pairs of opposite
sides of the convex hexagon formed by $l_{1},$ $t_{2},\cdots,$ $t_{6}$ have respectively equal lengths.
Cf. ” Suri Zasso ‘’ (Miscellaneous notes in mathematics) 2, Tokyo.Butsuri.Gakko.
Zasshi (Journal of Physics School) 26 (1917). The hexagon $A_{1}A_{2}\cdot\cdot A_{6}$ in Fig. 3 is
applicable to the hexagon in the above menticned Yanagihara’s theorem, and the
parallelogram in Fig. 4 is a special case of it.

(9} The determination of the arc to which Lemma 2 is applied, owes to Prof. Hombu.
Our previous proof was as follows: If every side of $P_{1}P_{2}\cdots P_{6}$ is not of length $D$ .
then by applying the method of Lemma 2, or by repetitions of it to every side of
base hexagon, if necessary, we can make two sides of the base hexagon be of length
$D$. But in doing so the area of the asymmetric oval becomes smaller.

(10) We have considered the case when $D$ and $\Delta$ or $L$ and $\Delta$ are given, and not the case
when $D$ and $L$ are so given that $3D\leqq L\leqq\pi D$. For this case, by a property of the
convex polygon in Favard’s paper (Ann. \’Ecole Norm. 46, 1929), we get

$2F\geqq D^{2}\{[\pi/2\theta]\sin 2\theta+\sin(2\theta[\mathfrak{n}/2\theta])-\swarrow 3\}$ $(\geqq DL\cos\theta-\sqrt 3D^{2})$ ,

where $[]$ is Gauss’s notation and $\theta$ is the root of $[\pi/2\theta]\sin\theta+\cos(\theta[\pi/2\theta])=L/(2D)$

in the interval $(0, \pi/6)$ . The equality occurs when and only when the oval is an
asymmetric curve whose base hexagon is a regular hexagon of sides $D$ and whose
breadth curve is a regular 6n.polygon inscribed in a circle with radius $D$. This
inequality differs in some respects from Theorem 2 or 3, for the equality does not
occur unless

$L=6nD\sin(\pi/6n)$ , $ n=1,2,3,\cdots$ .
$(^{*})$ Read at the annual meeting of the Math. Soc. of Japan held in June 2, 1951.
Added in proof by D. Hemmi.

After we wrote this paper I received D. Ohmann’s paper (Math. Z. 55, 1952. 347-
352) and M. Sholander’s (Trans. Amer. Math. Soc. 73, 1952. 139-173). The former
does not touch the case $3D<L<\pi D$ and the latter gives the partial results and
conjectures a property of the solution. The proofs of Sholander’s conjecture and
the inequality in Notes (10) may be seen in Bull. Yamagata Univ. (Natural science)
2 (1953) 157-170 and 5 (1953) 1-11.
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