Some problems of minima concerning the oval.**

By Tadahiko Kubota (Tokyo) and
Denzaburo Hemail (Yamagata)

$\$ 1$. As is well known, the maximum area of those ovals which carry in every direction an assigned breadth has been found by use of the method of central symmetrization; this method transforms any oval into a central oval having greater area and the same breadth with the given oval in every direction. But, the method to make the area smaller is not yet known. We think this is the main difficulty in minimum problems of ovals under some conditions on the breadth.

However, some special cases in this direction were studied by Hayashi, Pál and others, as an analogue to the isoperimetric problem or as a solution of Kakeya's problem. The main inequalities which have been got are the following :
(1) $\quad F \geq d^{3} / \sqrt{3}$
(Pál) ${ }^{11}$;

$$
\begin{equation*}
2 F \geq d D \tag{2}
\end{equation*}
$$

(Kubota) ${ }^{2 \prime}$;
(3) $4 F \geq \Delta L-b\rfloor \quad$ when $2 \sqrt{ } 3 \leq \leq L$,
where b is a positive root smaller than $2 d / 1 / 3$ of the equation

$$
\begin{equation*}
4 F \geq(L-2 D) \jmath^{\prime} 4 L D-L^{2}, \quad \text { when } 2 D<L \leq 3 D \quad(\text { Kubota })^{2} \tag{4}
\end{equation*}
$$

$$
2 L x^{3}-\left(L^{2}-\Delta^{2}\right) x^{2}-2 L \Delta^{2} x+L^{2} \Delta^{2}=0 \quad(\text { Yamanouchi })^{3}
$$

$$
\begin{equation*}
2 F \geq(\pi-\sqrt{ } 3) B^{2}, \quad \text { when } B=D=\Delta=L / \pi \tag{5}
\end{equation*}
$$

(Lebesgue ${ }^{4 / 5)}$ and Blaschke) ${ }^{6)}$;
(6) $\quad 4 F \geqq(L-2 D) \sqrt{ } / 3 D, \quad$ when $3 D \leqq L \leqq \pi D \quad$ (Kubota) ${ }^{7}$.

In these inequalities we denote by F the area, by L the perimeter, by D the diameter which is the length of the greatest chord and at the same time the length of the greatest breadth, and by Δ the length of the smallest breadth. The minimum ovals in the cases (1)~(5) are respectively the following :
(1) a regular triangle whose height is Δ when Δ is given;
(2) a triangle whose largest side is of length D and smallest height is Δ, when D and Δ are so given that $\Delta \leqq v^{\prime} 3 D / 2$;
(3) an isosceles triangle whose heights corresponding to equal sides are Δ and whose perimeter is equal to L, when Δ and L are so given that $2 \sqrt{ } 3 \Delta \leq L$;
(4) an isosceles triangle whose two equal sides are of length D and whose perimeter is equal to L, when D and L are so given that $2 D<L \leqq 3 D$;
(5) the Reuleaux triangle when the constant breadth B is given. The equality of (6) does not occur unless $L=3 D$ and the minimum oval is a regular triangle.

As can easily be seen by considering the above-mentioned inequalities, the problems of minimum figures for the following cases remain unsolved : (1) $\sqrt{ } 3 D / 2<\Delta<D$, (2) $\pi \Delta<L<2 \sqrt{ } 3 \Delta$, (3) $3 D<L<\pi D$.

These problems, as Dr. Fujiwara said in his paper, lie beyond the scope of the elementary theory of maxima and minima in the infinitesimal calculus as well as the classical theory of calculus of variations.

The object of this note is to give a method which transforms any oval into an oval having smaller area and the same breadth in every direction by extending Lebesgue's treatment for the curves of constant breadth, and also to give a minimum figure for the cases $\sqrt{ } 3 D / 2 \leqq \Delta \leqq D$ and $\pi \Delta \leqq L \leqq 2 \sqrt{ } 3 \Delta{ }^{10)}$
$\$ 2$. Let \mathfrak{F} be an oval and \mathbb{F}^{\prime} be a central symmetrization of \mathfrak{F}, in other words, \mathbb{C}^{\prime} is a central convex curve which has the same breadth with (5 in every direction; the oval, which is similar to \mathscr{F}^{\prime} with the ratio $2: 1$, is called a breadth curve of \mathfrak{C}. The following properties of the breadth curve are to be mentioned.

Property 1. The breadth curve of \mathfrak{b} with its centre at O is an envelope of such a moving line that the distance from O to t is equal to the breadth of a pair of supporting lines of \mathfrak{E} parallel to t.

Property 2. Let O be a fixed point, and $Q Q^{\prime}$ be a moving chord joining two supporting points of parallel supporting lines of \mathfrak{E}. Then, the locus of such a moving point P as $O P \Perp Q Q^{\prime}$ is a breadth curve of \mathbb{C} whose centre is O. Moreover a supporting line at P of the locus is parallel to a supporting line at Q of \mathfrak{F}.

Proof. Using the polar tangential coordinates with its origin at O, we write the equation of \mathfrak{E}

$$
\begin{equation*}
P=P(\theta) ; \tag{1}
\end{equation*}
$$

then the breadth curve of \mathfrak{E} with its centre at O will be given by

$$
\begin{equation*}
P=P(\theta)+P(\theta+\pi) . \tag{2}
\end{equation*}
$$

The envelope of \mathfrak{E} will be represented parametrically by

$$
\begin{equation*}
Z=\left\{P^{\prime}(\theta)-i P(\theta)\right\} e^{i \theta} \tag{3}
\end{equation*}
$$

for any differentiable point θ of $P(\theta)$,

$$
\begin{equation*}
Z=\left\{\lambda P_{+}^{\prime}(\theta)+(1-\lambda) P_{-}^{\prime}(\theta)-i P(\theta)\right\} e^{i \theta} \quad(0 \leqq \lambda \leqq 1) \tag{3}
\end{equation*}
$$

for any non-differentiable point θ of $P(\theta)$ (that is, a point at which $(5$ has a rectilinear part parallel to the direction θ),
where Z is the Gaussian coordinate of a point on $(\mathfrak{V}, i$ the imaginary unit, and $P_{-}^{\prime}(\theta)$ and $P_{+}^{\prime}(\theta)$ are the left-side and right-side differential coefficients respectively.

The supporting lines at Q and Q^{\prime} are parallel to each other. Hence, if we put

$$
\begin{aligned}
& \overrightarrow{O Q}=\left\{\lambda_{0} P_{+}^{\prime}\left(\theta_{0}\right)+\left(1-\lambda_{0}\right) P_{-}^{\prime}\left(\theta_{0}\right)-i P\left(\theta_{0}\right)\right\} e^{i \theta}, \\
& \vec{O} \overrightarrow{Q^{\prime}}=\left\{\lambda_{1} P_{+}^{\prime}\left(\theta_{0}+\pi\right)+\left(1-\lambda_{1}\right) P_{-}^{\prime}\left(\theta_{0}+\pi\right) \cdots i P\left(\theta_{0}+\pi\right)\right\} e^{i(\theta+\pi)},
\end{aligned}
$$

we get

$$
\begin{aligned}
\overrightarrow{Q^{\prime} \boldsymbol{Q}=O Q}- & \overrightarrow{O Q^{\prime}}=\left[P_{-}^{\prime}\left(\theta_{0}\right)+P_{-}^{\prime}\left(\theta_{0}+\pi\right)+\lambda_{0}\left\{P_{+}^{\prime}\left(\theta_{0}\right)-P_{-}^{\prime}\left(\theta_{0}\right)\right\}\right. \\
& \left.+\lambda_{1}\left\{P_{+}^{\prime}\left(\theta_{0}+\pi\right)-P_{-}^{\prime}\left(\theta_{0}+\pi\right)\right\}-i\left\{P\left(\theta_{0}\right)+P\left(\theta_{0}+\pi\right)\right\}\right] e^{i \theta_{0}} .
\end{aligned}
$$

Further, if we put

$$
\begin{gathered}
\lambda_{0}\left\{P_{+}^{\prime}\left(\theta_{0}\right)-P_{-}^{\prime}\left(\theta_{0}\right)\right\}+\lambda_{1}\left\{P_{+}^{\prime}\left(\theta_{0}+\pi\right)-P_{-}^{\prime}\left(\theta_{0}+\pi\right)\right\} \\
=\mu_{0}\left\{P_{+}^{\prime}\left(\theta_{0}\right)+P_{+}^{\prime}\left(\theta_{0}+\pi\right)-P_{-}^{\prime}\left(\theta_{0}\right)-P_{-}^{\prime}\left(\theta_{0}+\pi\right)\right\} \\
P(\theta)+P(\theta+\pi) \equiv B(\theta),
\end{gathered}
$$

and
then μ_{0} is a value in the interval from λ_{0} to λ_{1}, and

$$
\begin{gathered}
Q^{\prime} Q^{\prime}=\left\{\mu_{0} B_{+}^{\prime}\left(\theta_{0}\right)+\left(1-\mu_{0}\right) B_{-}^{\prime}\left(\theta_{0}\right)-i B\left(\theta_{0}\right)\right\} e^{i \theta_{0}} \\
\left(0 \leqq \mu_{0} \leqq 1\right) .
\end{gathered}
$$

Therefore, the locus of P such that $\overrightarrow{O P}=\overrightarrow{Q^{\prime} Q}$ is given by

$$
\begin{equation*}
Z=\left\{B^{\prime}(\theta)-i B(\theta)\right\} \epsilon^{i \theta} \tag{4}
\end{equation*}
$$

for any differentiable point θ of $B(\theta)$,
(4)

$$
\begin{gathered}
Z=\left\{\mu B_{+}^{\prime}(\theta)+(1-\mu) B^{\prime}(\theta)-i B(\theta)\right\} e^{i 0} \quad(0 \leq \mu \leq 1) \\
\quad \text { for any non differentiable point } \theta \text { of } B(\theta) .
\end{gathered}
$$

Comparing (3) with (4), we see that (4) is represented by (2) in the polar tangential equation. That is, the locus of P is the breadth curve (2). Thus, Property 2 is proved.

From this proof, we see

$$
\left\{B_{+}^{\prime}(\theta)-B_{-}^{\prime}(\theta)\right\} e^{i 0}=\left\{P_{+}^{\prime}(\theta)-P_{-}^{\prime}(\theta)\right\} c^{i \theta}-\left\{P_{+}^{\prime}(\theta+\pi)-P_{-}^{\prime}(\theta+\pi)\right\} e^{i \theta+\pi)} .
$$

Therefore, we get the following
Property 3. Let 出 be a breadth curve of \mathfrak{C}. If ${ }^{*}$ has a pair of parallel rectilinear parts of length l, then has two parallel rectilinear parts (one of them may shrink to a point) and the sum of their lengths is equal to l.

If ψ_{0} be a breadth curve whose centre is O, P_{1} be a point on \aleph_{0} and \uplus_{1} be the translation of \forall_{0} by $O P_{1}$, then, since the breadth curve is central, \Vdash_{1} passes through O. Further, let us denote by P_{2} one of the intersection of $\stackrel{\aleph}{*}_{0}$ and $\mathfrak{\aleph}_{1}$, by $P_{2} P_{3}$ a chord of \aleph_{0} parallel to $O P_{1}$ and by P_{4}, P_{5} and P_{6} symmetrical points of P_{1}, P_{2} and P_{3} with respect to O respectively. Then P_{4}, P_{5} and P_{6} lie on \mathcal{H}_{0}, and

$$
\overrightarrow{P_{5} \vec{P}_{6}}=\vec{P}_{3} \overrightarrow{P_{2}}=\vec{O} \vec{P}_{1} .
$$

Fig. 1

Therefore P_{6} is another intersection of \mathfrak{B}_{0} and \mathfrak{B}_{1}.

Similarly, if we denote by \mathfrak{B}_{2} the translation of \aleph_{0} by $\overrightarrow{O P_{2}}$, then \uplus_{2} is carried by the translation ${\overrightarrow{P_{2}} P_{1}}$ into \mathscr{B}_{1}; hence $\stackrel{N}{2}_{2}$ passes through each of O, P_{1} and P_{3}. Thus we get the congruent relations

$$
\begin{equation*}
\text { sector } O \underset{P_{2} P_{3}}{\overparen{ }} \equiv \text { sector } O \overparen{P_{5} P_{6}} \equiv \text { sector } P_{2} \overparen{O P_{1}} \text {, } \tag{1}
\end{equation*}
$$ sector $O \widehat{P_{3} P_{4}} \equiv$ sector $\widehat{P_{1}} \widehat{P_{2} O}$,

where the sector $O \overparen{P_{2} P_{3}}$ represents a domain enclosed by two radii $O P_{2}, O P_{3}$ and the minor arc $\widehat{P_{2}} P_{3}$ of \mathfrak{B}_{0}.

By (1), (2) and Property 1, the common part of three convex domains $\mathfrak{H}_{0}, \mathfrak{B}_{1}$ and \mathfrak{H}_{2} (the shaded domain in Fig. 1), is an oval having the breadth assigned by \mathcal{W}_{0} in every direction. Similarly we get several ovals using $\mathfrak{*}_{i}$ and \mathfrak{W}_{i+1} where \mathfrak{W}_{i} denotes the translation of \mathfrak{W}_{0} by $\overrightarrow{O P_{i}}$, but they are all congruent to each other. Therefore one of them will be called "the asymmetric oval" determined by a hexagon $P_{1} P_{2} P_{3} P_{4} P_{5} P_{6}$ and \mathscr{H}_{6}, and $P_{1} P_{2} P_{3} P_{4} P_{5} P_{6}$ "the base hexagon ".

From the construction of $P_{1} P_{2} P_{3} P_{4} P_{5} P_{6}$, we see that any convex polygon $P_{1} P_{2} P_{3} P_{4} P_{5} P_{6}$ inscribed in a breadth curve \mathfrak{B} can be taken as the base hexagon when and only when it is symmetrical with respect to the centre of \mathfrak{b} and

$$
P_{2} P_{3}=\frac{1}{2} P_{1} P_{4} .
$$

§3. We shall now proceed to prove the following
Theorem 1. Let $\mathfrak{*}$ be a breadth curve and \subseteq be a hexagon of the largest area among all base hexagons inscribed in \mathcal{H}^{2}. Then, the asymmetric oval determined by $₫$ and $\mathfrak{*}$ is of the smallest area among all ovals with the breadth assigned by $\stackrel{\leftrightarrow}{ }$ in every direction.

Proof. First we shall consider a case when the breadth curve \mathfrak{B} has no angular point and denote by \mathfrak{E} an oval whose breadth curve is \mathfrak{r}.

If we put the equations of \mathscr{W} as

$$
x=X(s), \quad y=Y(s),
$$

where x and y are rectangular coordinates of a point on the curve and the parameter s is the curve length. Assume further that P_{1}, P_{2} and P_{3} are three vertices of a base hexagon corresponding to $s=s_{1}$, $s=s_{2}$ and $s=s_{3}$ and denote by θ_{1}, θ_{2} and θ_{3} three directions of supporting lines of the breadth curve at the respective points such that $\theta_{1} \leqq \theta_{2} \leqq$ $\theta_{3} \leq \theta_{1}+\pi$. Then, from the conditions of base hexagon, we get

$$
X\left(s_{1}\right)=X\left(s_{2}\right)-X\left(s_{3}\right), \quad Y\left(s_{1}\right)=Y\left(s_{2}\right)-Y\left(s_{3}\right)
$$

whose Jacobian is

$$
\frac{\partial\left(X\left(s_{1}\right), Y\left(s_{1}\right)\right)}{\partial\left(s_{2}, s_{3}\right)}=\left|\begin{array}{ll}
\cos \theta_{2} & -\cos \theta_{3} \tag{1}\\
\sin \theta_{2} & -\sin \theta_{3}
\end{array}\right|=\sin \left(\theta_{2}-\theta_{3}\right) .
$$

Thus we get the following two cases:

1) whatever the base hexagon may be chosen, Jacobian (1) is not equal to zero;
2) for a special base hexagon Jacobian (1) is equal to zero.

In the case 1), not only $\sin \left(\theta_{2}-\theta_{3}\right) \neq 0$ but also $\sin \left(\theta_{3}-\theta_{1}\right) \neq 0$, $\sin \left(\theta_{1}-\theta_{2}\right) \neq 0$, and s_{2} and s_{3} will be expressed by continuous functions of s_{1}. Therefore θ_{1}, θ_{2} and θ_{3} vary continuously when a base hexagon \mathfrak{S}, inscribed in \mathfrak{B}, moves continuously.

We construct supporting lines of \mathfrak{F} parallel to those of \mathfrak{B} at vertices of \mathfrak{S} and denote by \mathfrak{S}^{\prime} the convex hexagon surrounded by these supporting lines of \mathfrak{C}. If we write the equation of \mathfrak{C} as

$$
P=P(\theta),
$$

then the rectangular coordinates of vertices of Θ^{\prime} will be given by

$$
\begin{aligned}
& x=\left\{P\left(\theta_{2}\right) \cos \theta_{3}-P\left(\theta_{3}\right) \cos \theta_{2}\right\} / \sin \left(\theta_{2}-\theta_{3}\right), \\
& y=\left\{P\left(\theta_{2}\right) \sin \theta_{3}-P\left(\theta_{3}\right) \sin \theta_{2}\right\} / \sin \left(\theta_{2}-\theta_{3}\right),
\end{aligned}
$$

etc.
Since $\sin \left(\theta_{2}-\theta_{3}\right) \neq 0$ etc., \mathfrak{S}^{\prime} is not a parallelogram and the vertices of \mathfrak{S}^{\prime} move continuously as \mathfrak{S} rotates continuously.

If we denote by $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}$ the vertices of \mathfrak{G}^{\prime} and by A_{25} the mid point of $A_{2} A_{5}$, then the oriented area of the triangle $A_{1} A_{4} A_{25}$ varies continuously as \mathfrak{S}^{\prime} moves continuously. Moreover, if \mathfrak{S}^{\prime} rotates by π around \mathbb{E}, A_{2} and A_{5} interchange their positions and the sign of the area $A_{1} A_{4} A_{25}$ changes. Therefore, there is at least one hexagon $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$ such that

$$
\text { the area of } A_{1} A_{4} A_{25}=0 .
$$

Hence A_{1}, A_{4} and A_{25} are collinear. In the hexagon thus obtained, $A_{1} A_{2} A_{4} A_{5}$ is a parallelogram since $A_{1} A_{2} 川 A_{4} A_{5}$. From $A_{6} A_{1} \| A_{4} A_{3}$, $A_{6} A_{5} \| A_{2} A_{3}$ we see that $\Delta A_{6} A_{1} A_{5} \equiv \Delta A_{3} A_{4} A_{2}$. Therefore $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$ is a central hexagon. If we denote by $P_{1} P_{2} P_{3} P_{4} P_{5} P_{6}$ the base hexagon corresponding to $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$ in the construction of \mathbb{S}^{\prime}, then, by

Property 2, there are six supporting points $Q_{1}, Q_{2}, \cdots, Q_{6}$ such that $Q_{i}(i=1,2, \cdots, 6)$ lies on $A_{i} A_{i+1}$ and

$$
\overrightarrow{Q_{1} Q_{4}}=\overrightarrow{P_{1} O}, \quad \overrightarrow{Q_{5} Q_{2}}=\overrightarrow{O P_{2}}, \quad \overrightarrow{Q_{3} Q_{6}}=\overrightarrow{O P_{6}}\left(=\overrightarrow{P_{2} P_{1}}\right) .
$$

Therefore

$$
\begin{equation*}
\overrightarrow{Q_{1} Q_{4}}+\overrightarrow{Q_{5} \vec{Q}_{2}}+\overrightarrow{Q_{3} \vec{Q}_{6}}=0 . \tag{2}
\end{equation*}
$$

Draw two lines $A_{1} A_{3}^{\prime}, A_{1} A_{5}^{\prime}$ parallel to $Q_{6} Q_{3}, Q_{1} Q_{4}$ and let them cut $A_{3} A_{4}, A_{4} A_{5}$ in $A_{3}^{\prime}, A_{5}^{\prime}$ respectively (see the left side in Fig. 2). Then we have ${ }^{\text {s }}$

$$
\begin{equation*}
\overrightarrow{A_{3}^{\prime} A_{1}}=\overrightarrow{Q_{3} Q_{6}}, \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\overrightarrow{A_{1} A_{5}^{\prime}}=\overrightarrow{Q_{1} Q_{4}}, \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\overrightarrow{A_{3}^{\prime} A_{1}}+\overrightarrow{A_{1} A_{5}^{\prime}}+\overrightarrow{A_{5}^{\prime} A_{3}^{\prime}}=0 \tag{5}
\end{equation*}
$$

By (2)~(5) we get

$$
\begin{equation*}
\overrightarrow{Q_{5} Q_{2}}=\overrightarrow{A_{5}^{\prime} A_{3}^{\prime}} \tag{6}
\end{equation*}
$$

Fig. 2
Next draw $A_{3}^{\prime} A_{2}^{\prime}$ and $A_{5}^{\prime} A_{6}^{\prime}$ parallel to $A_{2} A_{3}$, and let them meet $A_{1} A_{2}$ and $A_{1} A_{6}$ in $A_{2}^{\prime}, A_{6}^{\prime}$ respectively. Then, by (6) two pairs of parallels $A_{2}^{\prime} A_{3}^{\prime}, A_{6}^{\prime} A_{5}^{\prime}$ and $A_{2} A_{3}, A_{6} A_{5}$ have the same breadth. Therefore, using $A_{2} A_{3}=A_{6} A_{5}$, we get

$$
\begin{equation*}
\text { area } A_{1} A_{2} A_{3} A_{4} A_{5} A_{5} \geqq \text { area } A_{1} A_{2}^{\prime} A_{3}^{\prime} A_{4} A_{5}^{\prime} A_{6}^{\prime} \tag{7}
\end{equation*}
$$

On the other hand, by (3), (4) and Property 2 , the breadth curve of \mathfrak{F} whose centre is A_{1} passes through A_{3}^{\prime} and A_{5}. Similarly A_{5}^{\prime} and A_{1} (or A_{1} and A_{3}^{\prime}) lie on the breadth curve having its centre at A_{3}^{\prime} (or A_{5}^{\prime}). We denote by ($A_{1} \widehat{A_{3}^{\prime}} A_{5}^{\prime}$) the area bounded by two segments $A_{1} A_{3}^{\prime}, A_{1} A_{5}^{\prime}$ and the arc $\overparen{A_{3}^{\prime} A_{5}^{\prime}}$ of breadth curve and by $\left(A_{1} \overparen{Q_{1} Q_{6}}\right)$ the area bounded by two segments $A_{1} Q_{1}, A_{1} Q_{6}$ and the arc $\widehat{Q}_{1} Q_{6}$ of Then, by the same method with Lebesgue's treatment for the curve of constant breadth we get

$$
\left\{\begin{array}{l}
\left(A_{1} \overparen{Q_{1} Q_{6}}\right)+\left(A_{4} \overparen{Q_{4} Q_{3}}\right) \leq\left(A_{4} \overparen{A_{5}^{\prime}} A_{3}^{\prime}\right) \tag{8}\\
\left(A_{3} \overparen{Q_{3} Q_{2}}\right)+\left(A_{5} \overparen{Q_{6} Q_{5}}\right) \leq\left(A_{6}^{\prime} \overparen{A_{1} A_{5}}\right) \\
\left(A_{5} \overparen{Q_{5}}\right) \\
\left.\overparen{Q_{4}}\right)+\left(A_{2} \overparen{Q_{2} Q_{1}}\right) \leq\left(A_{2}^{\prime} \overparen{A_{3}^{\prime} A_{1}}\right)
\end{array}\right.
$$

Therefore by (7) and (8), the area of the domain bounded by three arcs $\overparen{A_{1} A_{3}^{\prime}}, \overparen{A_{3}^{\prime} A_{5}^{\prime}}$ and $\overparen{A_{5}^{\prime} A_{1}}$ is not greater than that of \mathbb{C} (the right side in Fig. 2). This domain, ás is clear, is an asymmetric oval. Hence, the area of an asymmetric oval is not greater than the area of an arbitrarily taken oval.

In the case 2), we have $\sin \left(\theta_{2}-\theta_{3}\right)=0$ where θ_{1}, θ_{2} and θ_{3} satisfy $\theta_{1} \leq \theta_{2} \leq \theta_{3} \leq \theta_{1}+\pi$. Therefore $\theta_{2}=\theta_{3}$ or $\theta_{2}=\theta_{3}-\pi=\theta_{1}$. Accordingly, we shall consider the case $\theta_{2}=\theta_{3}$ only, without loss of generality.

In this case two supporting lines of $\uplus 3$ at P_{2} and P_{3} coincide with each other. Therefore the supporting lines of $i+$ at the vertices of the base hexagon $\mathbb{\approx}$ form a parallelogram and at least one pair of opposite sides $P_{2} P_{3}$ and $P_{5} P_{6}$ of the base hexagon coincides with two rectilinear parts of ${ }^{2}$.

If we denote by $P_{2}^{\prime} P_{3}^{\prime}$ the rectilinear part on which the segment $P_{2} P_{3}$ lies, we have

$$
\begin{equation*}
P_{1} O=P_{2} P_{3} \leq P_{2}^{\prime} P_{3}^{\prime} \tag{9}
\end{equation*}
$$

Since the segment $P_{2}^{\prime} P_{3}^{\prime}$ is a rectilinear part of the breadth curve, there exist two rectilinear parts $Q_{2} Q_{3}, Q_{5} Q_{\dot{\circ}}$ (one of which may shrink to a point) on the oval F_{5} such that

$$
\begin{equation*}
\overrightarrow{Q_{2}} \overrightarrow{Q_{3}}+\overrightarrow{Q_{6} Q_{5}^{\prime}}=\overrightarrow{P_{2}^{\prime} P_{3}^{\prime}} \tag{10}
\end{equation*}
$$

Draw two parallel supporting lines t, t^{\prime} of \mathbb{E} parallel to a supporting line of \mathfrak{B} at P_{1}; then, by Property 2, there are two supporting points Q_{1}, Q_{4} on t, t^{\prime} respectively such that

$$
\begin{equation*}
\overrightarrow{Q_{1} Q_{4}}=\overrightarrow{P_{1} O} . \tag{11}
\end{equation*}
$$

By (9), (10), (11), we see that $Q_{2} Q_{3}$ and $Q_{6} Q_{5}$ are parallel arcs of \mathfrak{E} parallel to $Q_{1} Q_{2}$ and

$$
Q_{1} Q_{4} \leq Q_{2} Q_{3}+Q_{5} Q_{6} .
$$

If we use the parallelogram ${ }^{8)}$ formed by two pairs of parallels t, t^{\prime} and $Q_{2} Q_{3}, Q_{5} Q_{\text {b }}$, then, as can be seen from Fig. 3, we get easily the same conclusion as in the case 1): The area of an asymmetric oval is not greater than the area of an arbirtrarily taken oval.

Fig. 3.
On the other hand, the area of an asymmetric oval is given by

$$
\frac{1}{2}\binom{\text { the area of }}{\text { the breadth curve }}-\frac{1}{3}\binom{\text { the area of }}{\text { the base hexagon }} .
$$

The first term being constant, the oval with minimum area is got when the base hexagon has maximum area. Thus, our theorem is proved when \mathfrak{B} has no angular point.

Let us consider the case in which \mathfrak{B} has angular points.
Let $\mathscr{F}_{\varepsilon}$ be an outer ε-parallel curve of $\mathfrak{C}, \mathfrak{R}_{\varepsilon}$ a breadth curve of $\mathfrak{F}_{\mathrm{e}}$ and $\mathfrak{S}_{\mathrm{s}}$ a base hexagon of the largest area inscribed in $\mathfrak{B}_{\mathrm{e}}$. Then
$\mathfrak{B}_{\mathrm{e}}$ is an outer 2ε-parallel curve of \mathfrak{B} and has no angular point. Therefore we get
(the area of $\mathfrak{E}_{\mathrm{q}}$) $\geqq \frac{1}{2}$ (the area of $\mathfrak{B}_{\mathrm{q}}$) $-\frac{1}{3}$ (the area of $\mathfrak{G}_{\mathfrak{z}}$).
Let us denote by O the cocentre of \mathfrak{B} and $\mathfrak{R}_{\mathfrak{e}}$, by $P_{1} P_{2}, \cdots, P_{6}$ the vertices of $\mathfrak{S}_{\mathrm{e}}$, and by $Q_{i}(i=1,2, \cdots, 6)$ the meet of $O P_{i}$ with \mathfrak{B}, and assume that

$$
O P_{1} / O Q_{1}=\operatorname{Max}_{i=1,2, \cdots, 6} O P_{i} / O Q_{i}
$$

If we construct the hexagon $Q_{1} Q_{2}^{\prime} Q_{3}^{\prime} Q_{4} Q_{5}^{\prime} Q_{6}^{\prime}$ similar and similarly situated to $\mathfrak{S}_{\mathfrak{e}}$, then we get

$$
O Q_{i}^{\prime} \leqq O Q_{i} \quad(i=2,3,5,6) ;
$$

therefore \mathfrak{B} enclose the hexagon $Q_{1} Q_{2}^{\prime} Q_{3}^{\prime} Q_{4} Q_{5}^{\prime} Q_{6}^{\prime}$. If we denote by $Q_{1} Q_{2}^{\prime} Q_{3}^{\prime} Q_{1} Q_{5}^{\prime \prime} Q_{6}^{\prime \prime}$ the base hexagon with the diagonal $Q_{1} Q_{4}$ inscribed in \mathfrak{R}, then

$$
Q_{2}^{\prime} Q_{3}^{\prime}=\frac{1}{2} Q_{1} Q_{4}=Q_{2}^{\prime} Q_{3}^{\prime \prime},
$$

and therefore the breadth between $Q_{2}^{\prime} Q_{3}^{\prime}$ and $Q_{6}^{\prime} Q_{5}^{\prime}$ is not greater than the breadth between $Q_{2}^{\prime \prime} Q_{3}^{\prime \prime}$ and $Q_{6}^{\prime} Q_{5}^{\prime \prime}$. Accordingly, the area of $Q_{1} Q_{2}^{\prime} Q_{3}^{\prime}$ $Q_{4} Q_{5}^{\prime} Q_{6}^{\prime}$ is not greater than the area of $Q_{1} Q_{2}^{\prime \prime} Q_{3}^{\prime \prime} Q_{4} Q_{5}^{\prime \prime} Q_{6}^{\prime \prime}$. Hence, if we denote by P any point on $\mathfrak{R}_{\mathrm{e}}$, by Q the meet of $O P$ with \mathfrak{B} and by λ_{g} the maximum of $(O P: O Q)^{2}$, then we get
(the area of $\left.\mathbb{S}_{\mathrm{z}}\right) \leqq\left(O P_{1} / O Q_{1}\right)^{2}$ (the area of $Q_{1} Q_{2}^{\prime} Q_{3}^{\prime} Q_{4} Q_{5}^{\prime} Q_{6}^{\prime}$)

$$
\leqq \lambda_{\mathrm{g}}(\text { the area of } \mathfrak{G})
$$

where \mathfrak{S} is the maximal base hexagon inscribed in \mathfrak{B}. Thus we get
(the area of $\left.\mathfrak{F}_{\mathrm{z}}\right) \geq \frac{1}{2}$ (the area of $\mathfrak{B}_{\mathrm{z}}$) $-\frac{1}{3} \lambda_{\mathrm{z}}$ (the area of \mathfrak{S}).
If ε tends to zero, then $\mathfrak{F}_{\mathrm{e}}$ and $\mathfrak{B}_{\mathrm{e}}$ converge to \mathfrak{E} and \mathfrak{B} respectively and λ_{s} converges to 1 . Therefore, the right side of the last inequality converges to the area of asymmetric oval determined by \mathfrak{F} and \mathbb{C}. Thus, we get the result that the asymmetric oval determined by \mathfrak{B} and \mathfrak{C} is of the smallest area among all ovals with the breadth assigned by \mathfrak{R} in every direction.
§4. By virtue of Theorem 1, in order to find the minimum of all ovals with given D and Δ or perimeter L, it will be sufficient to consider the case of asymmetric ovals only, that is, the minimum problems reduce to the problems concerning central ovals \mathfrak{B} and central hexagons \bigcirc.

The following form of defining D and Δ is suitable for later purposes in the study of asymmetric ovals. D is the radius of the circumscribed circle about $\because=$ concentric with \because and Δ is the radius of the inscribed circle in \mathfrak{N}^{*} concentric with $\mathfrak{N} . \quad$ By Crofton's theorem, the perimeter of ${ }^{N}$ is $2 L$.

The following lemmas are simple but important.
Lemma 1. If we replace two minor arcs of the breadth curve by two parallel chords, we get another asymmetric oval, which has a smaller area and perimeter than the original oval, where the parallel chords are assumed not to meet the base hexagon and that they are symmetric with respect to the centre of the brcadth curve.

Lemma 2. Let us denote by ㄴ and $P_{1} P_{2} P_{3} P_{4} P_{5} P_{6}$ the breadth curve and the base hexagon of the given asymmetric oval $\underset{F}{ }$. Draw four lines $P_{2} P_{2}^{\prime}, P_{3} P_{3}^{\prime}, P_{5} P_{5}^{\prime}, P_{6} P_{6}^{\prime}$ parallcl to the supporting line of \mathfrak{V}^{*} at P_{1}, and choose four points $P_{2}^{\prime}, P_{3}^{\prime}, P_{5}^{\prime}$ and P_{6}^{\prime} respectively on them such that $P_{2}^{\prime} P_{3}^{\prime}$ lies on the opposite side of $P_{1} P_{4}$ with respect to $P_{2} P_{3}$ and $P_{5}^{\prime} P_{6}^{\prime}$ on the opposite side of $P_{1} P_{4}$ with respect to $P_{5} P_{6}$, that $\overrightarrow{P_{2} P_{2}^{\prime}}=P_{3} P_{3}^{\prime}=P_{5}^{\prime} P_{5}^{\prime}=\overrightarrow{P_{6}^{\prime} P_{6}}$, and that $P_{2}^{\prime} P_{3}^{\prime}$ meets or touches \Re_{1}. Then, an asymmetric oval, whose base hexagon is $P_{1} P_{2}^{\prime} P_{3}^{\prime} P_{4} P_{5}^{\prime} P_{6}^{\prime}$ and whose breadth curve is the minimum oval enclosing $P_{2}^{\prime} P_{3}^{\prime} P_{5}^{\prime} P_{6}^{\prime}$ and ${ }^{\prime}$, has a smaller area than $\underset{E}{ }$.

Proof. Draw four tangent lines $P_{2}^{\prime} T_{1}, P_{2}^{\prime} T_{2} ; P_{3}^{\prime} T_{3}, P_{3}^{\prime} T_{4}$ from P_{2}^{\prime} and P_{3}^{\prime} to ${ }^{*}{ }^{\prime}$ and let them touch at T_{1}. T_{2}, T_{3}, T_{4} respectively. We denote by ${ }^{2}{ }^{\prime}$ the minimum oval enclosing both

Fig. 4.
$P_{2}^{\prime} P_{3}^{\prime} P_{5}^{\prime} P_{6}^{\prime}$ and \mathfrak{K}, and by $S_{i}(i=1,2,3,4)$ the intersections of $P_{1} P_{4}$ with four parallels passing through $A_{i}(i=1,2,3,4)$ and parallel to $P_{2} P_{2}^{\prime}$. It is clear that the hexagon $P_{1} P_{2}^{\prime} P_{3}^{\prime} P_{4} P_{5}^{\prime} P_{6}^{\prime}$ can be taken as a base hexagon. If we express the area of X by $|X|$ symbolically, then

$$
\begin{aligned}
& \frac{1}{2}\left\{\left|\mathfrak{B}^{\prime}\right|-|\mathscr{B}|\right\} \leqq \mid \text { concave quadrangle } P_{2} T_{1} P_{2}^{\prime} T_{2} \mid \\
&+\mid \text { concave quadrangle } T_{3} P_{3}^{\prime} T_{4} P_{3} \mid \\
&=\frac{1}{2} S_{1} S_{2} \cdot P_{2} P_{2}^{\prime} \sin \omega+\frac{1}{2} S_{3} S_{4} \cdot P_{3} P_{3}^{\prime} \sin \omega \quad\left(\omega=\angle P_{1} B_{4} T_{4}\right) \\
&=\frac{1}{2}\left(S_{1} S_{2}+S_{3} S_{4}\right) \cdot P_{2} P_{2}^{\prime} \sin \omega \\
& \leqq \frac{1}{2} P_{1} P_{4} \cdot P_{2} P_{2}^{\prime} \sin \omega \\
&=\frac{1}{3}\left\{\left|P_{1} P_{2}^{\prime} P_{3}^{\prime} P_{4} P_{5}^{\prime} P_{6}^{\prime}\right|-\left|P_{1} P_{2} P_{3} P_{4} P_{5} P_{j}\right|\right\}
\end{aligned}
$$

Therefore

$$
\frac{1}{2}\left|\mathscr{B}^{\prime}\right|-\frac{1}{3}\left|P_{1} P_{2}^{\prime} F_{3}^{\prime} P_{4} P_{5}^{\prime} P_{6}^{\prime}\right| \leqq \frac{1}{2}\left|\aleph^{\prime}\right|-\frac{1}{3}\left|P_{1} P_{2} P_{3} P_{4} P_{5} P_{6}\right|
$$

Thus Lemma 2 is proved.
In Lemma 2, by making the breadth between $P_{2}^{\prime} P_{3}^{\prime}$ and $P_{6}^{\prime} P_{5}^{\prime}$ greater, we can obtain an asymmetric oval of a smaller area. But, in doing so, we must bear in mind that L, D and d become greater in general.

Let us consider the minimum area when D and A are so given that

$$
D \geq \Delta \geq \sqrt{ } 3 D / 2
$$

Denote by \mathbb{C} an asymmetric oval satisfying given conditions and by Ω the circle of radius Δ concentric with the breadth curve of \mathscr{C}.

For our case there is at least a pair of points on the breadth curve whose distances from the centre are D. If such points are not the vertices of base hexagon, then, by applying ${ }^{9)}$ the method of Lemma 2 to a pair of arcs on which a pair of points above mentioned lies, we get an asymmetric oval whose base hexagon has a pair of sides of length D and has a smaller area than the original oval.

If we denote by $P_{1} P_{2} \cdots P_{6}$ the new base hexagon whose sides $P_{2} P_{3}$ and $P_{5} P_{6}$ are of length D and by ${ }^{3}$ the minimum oval enclosing $P_{1} P_{2} \cdots P_{6}$ and Ω, then an asymmetric oval determined by $P_{1} P_{2} \cdots P_{6}$ and \mathfrak{H} has smaller area than \mathfrak{G}, and D and Δ are the same with those of E.

Transform the hexagon $P_{1} P_{2} \cdots P_{6}$ into $P_{1} P_{2}^{\prime} P_{3}^{\prime} P_{4} P_{5}^{\prime} P_{6}^{\prime}$ by the symmetrization with respect to the perpendicular bisector of $P_{1} P_{4}$, and denote by \mathfrak{W}^{\prime} the minimum oval enclosing $P_{1} P_{2}^{\prime} P_{3}^{\prime} P_{4} P_{5}^{\prime} P_{6}^{\prime}$ and Ω. Then we see that

$$
|\mathcal{W}| \geqq\left|\mathcal{B}^{\prime}\right|, \quad\left|P_{1} P_{2} P_{3} P_{4} P_{5} P_{6}\right|=\left|P_{1} P_{2}^{\prime} P_{3}^{\prime} P_{4} P_{5}^{\prime} P_{6}^{\prime}\right|,
$$

hence

$$
\frac{1}{2}\left|\mathfrak{B}^{\prime}\right|-\frac{1}{3}\left|P_{1} P_{2}^{\prime} P_{3}^{\prime} P_{4} P_{5}^{\prime} P_{6}^{\prime}\right| \subseteq \frac{1}{2}|\dot{\mathcal{B}}|-\frac{1}{3}\left|P_{1} P_{2} P_{3} P_{4} P_{5} P_{6}\right|,
$$

and that $P_{1} P_{2}^{\prime} P_{3}^{\prime} P_{4} P_{5}^{\prime} P_{6}^{\prime}$ satisfies the condition of base hexagon. Therefore an asymmetric oval determined by \mathfrak{W}^{\prime} and $P_{1} P_{2}^{\prime} P_{3}^{\prime} P_{4} P_{5}^{\prime} P_{6}^{\prime}$ has a smaller area than the original oval. Construct the regular hexagon $P_{1} Q R P_{4} Q^{\prime} R^{\prime}$, whose sides are of length D, then $Q R$ meets or touches Ω, since $\Delta \geq \sqrt{ } 3 D / 2$.

By Lemma 2, we see that the asymmetric oval whose base hexagon is $P_{1} Q R P_{4} Q^{\prime} R^{\prime}$ and whose breadth curve is a minimum oval enclosing $P_{1} Q R P_{4} Q^{\prime} R^{\prime}$ and Ω has the minimum area, when $D \geqq \Delta \geqq \sqrt{ } \overline{3} D / 2$. Thus we arrive at the following

Theorem 2. If D and Δ of the oval are given so that

Fig. 5.

$$
D \geqq \Delta \geqq \sqrt{ } 3 D / 2,
$$

then the following inequality holds:

$$
\begin{aligned}
F & \geqq 3 \Delta\left\{\sqrt{D^{2}-\Delta^{2}}\right. \\
& \left.+\Delta\left(\sin ^{-1} \frac{\Delta}{D}-\frac{\pi}{3}\right)\right\}-\frac{\sqrt{3}}{2} D^{2} .
\end{aligned}
$$

The equality occurs when and only when the oval is an asymmetric curve whose base hexagon is a regular hexagon of sides D and whose
breadth curve is a minimum oval enclosing the base hexagon and a concentric circle with radius Δ ．

This minimum figure is bounded by three circular arcs and six rectilinear parts，and resembles to the Reuleaux triangle as is seer in Fig． 5.
§5．Let us consider the minimum area when Δ and L are so given that

$$
\pi \Delta \leqq L \leqq 2 \sqrt{ } 3 \Delta
$$

We have only to consider the asymmetric oval in this case too．
Denote by \mathscr{F} an asymmetric oval satisfying the given conditions， by $P_{1} P_{2} P_{3} P_{4} P_{5} P_{6}$ the base hexagon of \mathfrak{F} ，by \mathscr{V} the breadth curve of \mathfrak{F} ， and by Ω the circle whose radius is Δ and concentric with \mathfrak{B} ．If every side of the base hexagon has no common point with Ω ，then the minimum distance of supporting lines of \mathfrak{H} from the centre O is greater than Δ ．Therefore at least one pair of sides of base hexagon meets or touches Ω ．So we may assume that $P_{2} P_{3}$ and $P_{5} P_{6}$ meet or touch Ω ．

Transform the hexagon $P_{1} P_{2} P_{3} P_{4} P_{5} P_{6}$ into $P_{1} P_{2}^{\prime} P_{3}^{\prime} P_{4} P_{5}^{\prime} P_{6}^{\prime}$ by the symmetrization with respect to the perpendicular bisector of $P_{1} P_{4}$ ，and denote by \mathfrak{B}^{\prime} the minimum oval enclosing $P_{1} P_{2}^{\prime} P_{3}^{\prime} P_{4} P_{5}^{\prime} P_{6}^{\prime}$ and Ω and by \mathfrak{F}^{\prime} an asymmetric oval determined by $P_{1} P_{2}^{\prime} P_{3}^{\prime} P_{4} P_{5}^{\prime} P_{6}^{\prime}$ and \mathfrak{B}^{\prime} ．Then \mathfrak{B}^{\prime} is obtained by applying the method of Lemma 1 to the symmetrization of \mathfrak{B} with respect to the perpendicular bisector of $P_{1} P_{4}$ ．Therefore we get

$$
\begin{gathered}
\text { | hexagon } P_{1} P_{2}^{\prime} P_{3}^{\prime} P_{4} P_{5}^{\prime} P_{6}^{\prime}|=| \text { hexagon } P_{1} P_{2} P_{3} P_{4} P_{5} P_{6} \mid, \\
\left|\mathfrak{B}^{\prime}\right| \leqq|\mathfrak{B}|,
\end{gathered}
$$

and hence
（1）

$$
\mid \text { ぼ }|\leqq| \text { ぼ }
$$

Steiner＇s symmetrization and the method of Lemma 1 generally make the perimeter smaller；therefore，if we denote by (X) the perimeter of X symbolically，then we get

$$
\begin{equation*}
\left(\mathfrak{F}^{\prime}\right) \leqq(\mathfrak{F}), \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta \pi \leqq\left(\mathfrak{F}^{\prime}\right), \tag{3}
\end{equation*}
$$

for the length of the smallest breadth of \mathfrak{F}^{\prime} is Δ.
By virtue of the assumption concerning $P_{2} P_{3}$, we see that $P_{2}^{\prime} P_{3}^{\prime}$ and $P_{5}^{\prime} P_{6}^{\prime}$ meet or touch \Re. Then we get the following two cases:

1) every side of $P_{1} P_{2}^{\prime} P_{3}^{\prime} P_{4} P_{5}^{\prime} P_{6}^{\prime}$ meets or touches Ω;
2) two pairs of sides $P_{1} P_{2}^{\prime}, P_{4} P_{3}^{\prime}$ and $P_{3}^{\prime} P_{4}, P_{6}^{\prime} P_{5}^{\prime}$ have no common point with Ω.
Let us consider the case 2). For this case $P_{1} P_{2}^{\prime}, P_{3}^{\prime} P_{4}, P_{4} P_{5}^{\prime}$ and $P_{6}^{\prime} P_{1}$ are rectilinear parts of ' ${ }^{\prime}$ '. Denote by $P_{2}^{\prime} A_{1}$ and $A_{2} P_{3}^{\prime}$ the other rectilinear parts of \mathfrak{V}^{\prime} passing through P_{2}^{\prime} and P_{3}^{\prime} respectively; then the oval $O P_{2}^{\prime} \overparen{A_{1}} A_{2} P_{3}^{\prime} O$ is an asymmetric oval determined by $P_{1} P_{2}^{\prime} P_{3}^{\prime} P_{4}$ $P_{5}^{\prime} P_{6}^{\prime}$ and \mathfrak{W}^{\prime}, that is \mathfrak{E}^{\prime}.

Denote by M the middle point of arc $\widehat{A_{1} A_{2}}$, by X a moving point on $P_{2}^{\prime} \overparen{A_{1} M}$ which is an arc of $\mathfrak{C r}^{\prime}$, and by Y the reflecting point of X with respect to $O M$. Then the distance from X to $O Y$ varies continuously as X moves continuously, and when X comes to P_{2}^{\prime} it is greater than Δ. Accordingly there are two points A, A^{\prime} on $P_{2}^{\prime} \widehat{A_{1} A_{2}} P_{3}^{\prime}$ such that they are symmetric with respect to $O M$ and the distance from A to $O A^{\prime}$ is equal to d.

If we denote by $\mathfrak{F}^{\prime \prime}$ the convex domain surrounded by $O A, O A^{\prime}$ and the arc of G^{\prime} joining A, A^{\prime}, then $G^{\prime \prime}$ has a smaller area and perimeter than those of \mathscr{E}^{\prime}. Further we see that $\mathscr{C}^{\prime \prime}$ is an asymmetric oval and every side of the base hexagon of $\mathcal{E}^{\prime \prime}$ meets or touches Ω. Therefore, by substituting $\mathfrak{V}^{\prime \prime}$ for \mathfrak{E}, we see that the case 2) reduces to the case 1).

Let us consider the case 1). In this case every side of $P_{1} P_{2}^{\prime} P_{3}^{\prime} P_{4}$ $P_{5}^{\prime} P_{6}^{\prime}$ meets or touches Ω. Draw two pairs of tangents $P_{1} Q, P_{1} Q^{\prime}$ and $P_{2}^{\prime} R, P_{2}^{\prime} R^{\prime}$, and let them touch Ω at Q, Q^{\prime} and R, R^{\prime} respectively. If we put

$$
\angle P_{1} O Q=\theta_{0}, \quad \angle P_{2}^{\prime} O R=\phi_{0}, \quad\left(\mathfrak{F}^{\prime}\right)=l,
$$

then we have

$$
\begin{align*}
& \left|\mathfrak{E}^{\prime}\right|=\left(\Delta l-\Delta^{2} \sec \theta_{0} \sqrt{\left.4 \sec ^{2} \varphi_{0}-\sec ^{2} \theta_{0}\right)} / 2,\right. \tag{4}\\
& l=2 \Delta\left\{2\left(\tan \varphi_{0}-\varphi_{0}\right)+\tan \theta_{0}-\theta_{0}+\pi / 2\right\} \tag{5}\\
& \quad(\pi \Delta \leqq l \leqq L \leqq 2 \sqrt{ } 3 \Delta) .
\end{align*}
$$

Now let us consider the maximum value of u where

$$
\begin{equation*}
u=\sec ^{2} x\left(4 \sec ^{2} y-\sec ^{2} x\right) \tag{6}
\end{equation*}
$$

when x and y are connected by

$$
\begin{gather*}
2(\tan y-y)+\tan x-x=(l-\pi \Delta) /(2 \Delta) \tag{7}\\
(0 \leqq x<\pi / 2, \quad 0 \leqq y<\pi / 2) .
\end{gather*}
$$

By (7), y is a continuous decreasing function of x, and

$$
\begin{aligned}
& \frac{d y}{d x}=-\frac{1}{2} \cot ^{2} y \tan ^{2} x \\
& \frac{d u}{d x}=4 \sec ^{3} x \tan x \operatorname{cosec} y\left(\sec ^{2} y+\tan ^{2} y+\tan x \tan y\right) \sin (y-x)
\end{aligned}
$$

On the other hand, if we put $y=x$ in (7), we get

$$
\tan x-x=(l-\pi \Delta) /(6 \Delta) .
$$

This equation has only one root in the interval $(0, \pi / 2)$. Denote this root by θ_{1} and the value of x corresponding to $y=0$ by α; then we see

$$
\begin{array}{lll}
y-x>0 & \text { when } & 0 \leq x<\theta_{1}, \\
y-x<0 & \text { when } & \theta_{1}<x<\alpha,
\end{array}
$$

and therefore

$$
\begin{array}{lll}
\frac{d u}{d x}=0 & \text { when } & x=0, \\
\frac{d u}{d x}>0 & \text { when } & 0<x<\theta_{1}, \\
\frac{d u}{d x}<0 & \text { when } & \theta_{1}<x<\alpha .
\end{array}
$$

Consequently a maximum of u is got when $x=\theta_{1}$ and hence $x=y=\theta_{1}$. So we have $\sec \theta_{0} \sqrt{4 \sec ^{2} \boldsymbol{\varphi}_{0}-\sec ^{2} \theta_{0}} \leqq \sqrt{3} \sec ^{2} \theta_{1}$,

$$
\begin{equation*}
\left|\mathfrak{F}^{\prime}\right| \geq \Delta\left(l-\sqrt{ } / 3 \Delta \sec ^{2} \theta_{1}\right) / 2, \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\tan \theta_{1}-\theta_{1}=(l-\pi \Delta) / 6 \Delta . \tag{9}
\end{equation*}
$$

When θ_{1} and l vary under the condition (9), we have

$$
\begin{aligned}
& \frac{d l}{d \theta_{1}}=6 \Delta \tan ^{2} \theta_{1} \geqq 0, \\
& \frac{d}{d \theta_{1}}\left(l-\sqrt{ } / 3 \Delta \sec ^{2} \theta_{1}\right)=-2 \sqrt{ } / 3 \Delta \tan \theta_{1}\left\{\left(\tan \theta_{1}-\frac{\sqrt{3}}{2}\right)^{2}+\frac{1}{4}\right\} \leqq 0
\end{aligned}
$$

in the interval $0 \leq \theta_{1}<\pi / 2$. Therefore, by making l greater, we can obtain a smaller value of $\left(l-\sqrt{ } / 3 \Delta \sec ^{2} \theta_{1}\right)$.

If we denote by θ the root of

$$
\tan x-x=(L-\pi \Delta) / 6 \Delta
$$

in the interval $(0, \pi / 2)$, then we get

$$
0 \leq \theta_{1} \leq \theta \leq \pi / 6,
$$

since $\pi \Delta \leq l \leq L \leq 2 \sqrt{3} \Delta$. Therefore

$$
\begin{equation*}
|\mathscr{C}| \geqq \mid\left(\mathscr{C}^{\prime} \mid \geqq\left(\Delta L-\sqrt{ } 3 \Delta^{2} \sec ^{2} \theta\right) / 2 .\right. \tag{10}
\end{equation*}
$$

Thus we arrive at the following
Theorem 3. If Δ and L of the oval are so given that

$$
\pi \Delta \leq L \leq 2 \sqrt{ } 3 \Delta,
$$

then the following inequality holds:

$$
2 F \geqq \Delta L-\sqrt{ } 3 \Delta^{2} \sec ^{2} \theta
$$

where θ is the root of $\tan \theta-\theta=(L-\pi \Delta) /(64)$ in the interval $0 \leqq \theta \leqq \pi / 6$; the equality occurs when and only when the oval is an asymmetric curve whose base hexagon is a regular hexagon of sides $\Delta \sec \theta$ and whose breadth curve is a minimum oval enclosing the base hexagon and the concentric circle with radius $4 .{ }^{10)}$

Notes

(1) J. Pål: Ein Minimumproblem für Ovale. Math. Ann. 83 (1921). Cf. throughout this note as a reference the excellent report by T. Bonnesen u. W. Fenchel, Theorie der konvexen Körper. (Ergebn. d. Math. III 1.) Berlin (1934).
(2) T. Kubota: Einige Ungleichheitsbeziehungen über Eilinien und Eifächen. Sci. Rep. Tôhoku Univ. 12 (1923).
(3) M. Yamanouchi : Notes on closed convex figures. Proc. Phys.-Math. Soc. Japan 14 (1932).
(4) Lebesgue: Sur le problème des isopérimètres et sur les domaines de largeur constante. Bull. Soc. Math. France C. R. (1914).
(5) H. Lebesgue: Sur quelques questions de minimum, relatives aux courbes orbiformes, et sur leurs rapports avec le calcul des variations. J. Math. Pures Appl. 4 (1921).
(6) W. Blaschke: Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts. Math. Ann. 76 (1915).
(7) T. Kubota: Eine Ungleichheit für Eilinien. Math. Z. 20 (1924).
(8) In 1917 (?) Mr. K. Yanagihara proved the following theorem at the ordinary meeting of Mathematical Institute in Tohoku University: Let E_{0}, E_{1}, E_{2} be three congruent ovals which are situated in a homogetic positions and touch with each other. If we construct a ring of congruent ovals E_{3}, E_{4}, \cdots around E_{0}, so that E_{i}, E_{i-1}, E_{0} are located in homogetic positions and touch with each other, then E_{6} touches E_{1}, that is, E_{7} is the very oval E_{1}. If we denote the internal common tangent of E_{0}, E_{i} by t_{i}, then, by placing E_{1} in a suitable position, we can make the three pairs of opposite sides of the convex hexagon formed by $t_{1}, t_{2}, \cdots, t_{6}$ have respectively equal lengths. Cf. "Sūri Zasso" (Miscellaneous notes in mathematics) 2, Tokyo-Butsuri-GakkoZasshi (Journal of Physics School) 26 (1917). The hexagon $A_{1} A_{2} \cdots A_{6}$ in Fig. 3 is applicable to the hexagon in the above mentioned Yanagihara's theorem, and the parallelogram in Fig. 4 is a special case of it.
(9) The determination of the arc to which Lemma 2 is applied, owes to Prof. Hombu. Our previous proof was as follows: If every side of $P_{1} P_{2} \cdots P_{6}$ is not of length D, then by applying the method of Lemma 2, or by repetitions of it to every side of base hexagon, if necessary, we can make two sides of the base hexagon be of length D. But in doing so the area of the asymmetric oval tecomes smaller.
(10) We have considered the case when D and Δ or L and Δ are given, and not the case when D and L are so given that $3 D \leqq L \leqq \pi D$. For this case, by a property of the convex polygon in Favard's paper (Ann. École Norm. 46, 1929), we get

$$
2 F \geqq D^{2}\{[\pi / 2 \theta] \sin 2 \theta+\sin (2 \theta[\pi / 2 \theta])-\sqrt{ } 3\} \quad\left(\geqq D L \cos \theta-\sqrt{ } 3 D^{2}\right),
$$

where [] is Gauss's notation and θ is the root of $[\pi / 2 \theta] \sin \theta+\cos (\theta[\pi / 2 \theta])=L /(2 D)$ in the interval $(0, \pi / 6)$. The equality occurs when and only when the oval is an asymmetric curve whose base hexagon is a regular hexagon of sides D and whose breadth curve is a regular $6 n$-polygon inscribed in a circle with radius D. This inequality differs in some respects from Theorem 2 or 3 , for the equality does not occur unless

$$
L=6 n D \sin (\pi / 6 n), \quad n=1,2,3, \cdots
$$

(*) Read at the annual meeting of the Math. Soc. of Japan held in June 2, 1951.
Added in proof by D. Hemmi.
After we wrote this paper I received D. Ohmann's paper (Math. Z. 55, 1952. 347352) and M. Sholander's (Trans. Amer. Math. Soc. 73, 1952. 139-173). The former does not touch the case $3 D<L<\pi D$ and the latter gives the partial results and conjectures a property of the solution. The proofs of Sholander's conjecture and the inequality in Notes (10) may be seen in Bull. Yamagata Univ. (Natural science) 2 (1953) 157-170 and 3 (1953) 1-11.

