On the regularity of homeomorphisms of E^{n}.

By Tatsuo Homma and Shin'ichi Kinoshita

(Received Feb. 16, 1953)
Introduction. Let X be a compact metric space and h a homeomorphism of X onto itself. The homeomorphism h has been called by B. v. Kerékjártó [3] ${ }^{1)}$ regular at $p \in X$, if h satisfies the following condition: for each $\varepsilon<0$ there exists $\delta>0$ such that for each x with $d(t, x)<\delta$ and for each integer m

$$
d\left(h^{m}(p), h^{m}(x)\right)<\varepsilon .
$$

One of the purpose of this paper is to prove the following
Theorem 1. Let X be a compact metric space and h a homeomorphism of X onto itself. Assume that X and h have the following property: there cxist two distinct points a and b such that
(i) for each point $x \in X-b$ the sequence $\left\{h^{m}(x)\right\}$ converges to a and
(ii) for each point $x \in X-a$ the sequence $\left\{h^{-m}(x)\right\}$ converges to b, where $m=1,2,3, \cdots$.

Then h is regular at every point of X except for a and b.
As a corollary of Theorem 1 we have the following
Theorem 2. Let h be a homeomorphism of the n-dimensional sphere S^{n} onto itself satisfying the same condition as that of Theorem 1. Then h is regular at every point of S^{n} except for a and b.

Now let S^{n} be the n-dimensional sphere in the $(n+1)$-dimensional Euclidean space E^{n+1} and let P be a point of S^{n}. Let $p(x)$ be the stercographic projection of $S^{n}-P$ from P onto the n-dimensional Euclidean space E^{n} tangent at the antipode O of P, where we assume that O is the origin of E^{n}. Let h be a homeomorphism of E^{n} onto itself. Put $\bar{h}(x)=p^{-1} h p(x)$ where $x \in S^{n} \ldots P$ and put $\bar{h}(P)=P$. Then we have a homeomorphism \bar{h} of S^{n} onto itself. B. v. Kerékjártó [3] called a

1) The numbers in the brackets refer to the references at the end of this paper.
homeomorphism h of E^{n} onto itself regular at $p \in E^{n}$, if \bar{h} is regular at $p^{-1}(p)$. By Theorem 2 we have immediately the following

THEOREM 3. Let h be a homeomorphism of E^{n} onto itself satisfying the following conditions :
(i) for each $x \in E^{n}$ the sequence $\left\{h^{m}(x)\right\}$ converges to the origin O,
(ii) for each $x \in E^{n}$ except for O the sequence $\left\{h^{-m}(x)\right\}$ converges to the point at infinity ∞, where $m=1,2,3, \cdots$.

Then h is regular at every point of E^{n} except for O.
If $n=2$, in virtue of a theorem of Kerékjártó [3], we have immediately the following

Theorem 4. Let h be a homeomorphism of the plane onto itself satisfying the same conditions as that of Theorem 3. If h is sensepreserving, then h is topologically equivalent to the transformation

$$
x^{\prime}=\begin{aligned}
& 1 \\
& 2
\end{aligned} x, \quad y^{\prime}=\frac{1}{2} y
$$

and if h is sensc-reversing, then h is topologically equivalent to the transformation

$$
x^{\prime}=\frac{1}{2} x, \quad y^{\prime}=-\frac{1}{2} y
$$

in Cartesian coordinates.
Since Theorem 2 follows immediately from Theorem 1, Theorem 3 immediately from Theorem 2, and Theorem 4 immediately from Theorem 3, we shall prove in this paper Theorem 1 only. To this purpose a notion of bulging sequences will be introduced in $\$ 1$. Then in $\leqslant 2$ Theorem 1 will be proved. In $\leqslant 3$ we shall give another application of bulging sequences in relation to the works of A.S. Besicovitch [1] [2].

§ 1. Bulging sequences.

Let A be a subset of a separable metric space X and let f be a continuous mapping of X into itself. A sequence $\left\{f^{n}(A)\right\}$ will be said to be a bulging scqucnce, if for cach natural number n

$$
f^{n}(A)-U_{i=0}^{n-1} f^{i}(A) \neq 0 .
$$

Lemma 1. Let A be compact. If $\cup_{n=0}^{\infty} f^{n}(A)$ is not compact, then $\left\{f^{n}(A)\right\}$ is a bulging sequence.

Proof. Suppose on the contrary that $\left\{f^{n}(A)\right\}$ is not a bulging sequence and that there exists a natural number m such that

$$
f^{m}(A) \subset A \smile f(A) \smile \cdots \smile f^{m-1}(A) .
$$

Then it is easy to see that for each natural number i

$$
f^{m+i}(A) \subset A \smile f(A) \smile \cdots \smile f^{m-1}(A) .
$$

Therefore we have

$$
\begin{equation*}
\cup_{n=0}^{\infty} f^{n}(A)=A \smile f(A) \smile \cdots \smile f^{m-1}(A) . \tag{*}
\end{equation*}
$$

Since a continuous image of a compactum is compact and since a finite sum of compacta is also compact, the right hand side of $\left(^{*}\right)$ is compact, which is a contradiction.

Lemma 2. Let $\left\{f^{n}(A)\right\}$ be a bulging sequence and let

$$
C_{n}=A-f-n\left(f n(A)-\bigcup_{i=1}^{n-1} f^{i}(A)\right)
$$

for every natural number n. Then $C_{n} \neq 0$ and $C_{n} \approx C_{n+1}$.
Proof. First we prove that $C_{n} \neq 0$. Since $\left\{f^{n}(A)\right\}$ is a bulging sequence, there exists a point $p \in f^{n}(A)-\mathbf{U}_{i=0}^{n-1} f^{i}(A)$. Then there exists a point $q \in A$ such that $f^{n}(q)=p$ and then $q \in A \sim f^{-n}\left(f^{n}(A)-\mathbf{U}_{i=0}^{n-1} f^{i}(A)\right)$ $=C_{n}$. Therefore $C_{n} \neq 0$.

Now we prove that $C_{n}, C_{n \mid 1}$. Let x be a point of C_{n+1} and suppose that $x \in C_{n}$. Then there exists an $m n$ such that $f^{n}(x) \in f^{m}(A)$. Therefore $f^{n+1}(x) \in f^{m+1}(A)$, which contradicts $x \in C_{n+1}$.

Lemma 3. Let A be compact and let $\left\{f^{n}(A)\right\}$ be a bulging sequence. Then there exists a point $p \in A$ such that for each natural number n

$$
f^{n}(p) \subset \operatorname{Int}(A)=0 .
$$

Proof. Let C_{m} be the same as in Lemma 2. Take $x_{m} \in C_{m}$. Since A is compact, there exists a subsequence $\left\{x_{m_{i}}\right\}$ which converges to a point $p \in A$. Then $\left\{f^{n}\left(x_{m_{i}}\right)\right\}$ converges to $f^{n}(p)$ for every n. If $m_{i},-n$, then $f\left(x_{m_{i}}\right) \in f^{n}\left(C_{m_{i}}\right) f^{n}\left(C_{n}\right)$ by Lemma 2. Since $f^{n}\left(C_{n}\right)-A=0$ by the definition of $C_{n}, f^{n}\left(x_{m_{i}}\right) \subset A=0$ for every $m_{i}>n$. Then we have $f^{n}(p) \subset \operatorname{Int}(A)=0$ for every n, and the proof is complete.

§2. Proof of Theorem 1.

In §2 we suppose that X is a non degenerated compactum. Take two distinct points a and b of X and let φ be a continuous real-valued function on X such that

$$
\begin{cases}-\frac{1}{2} \pi \leqq \varphi(x) \leqq \frac{1}{2} \pi & \text { for each } x \in X, \\ \varphi(x)=\frac{1}{2} \pi & \text { if and only if } x=a \\ \varphi(x)=-\frac{1}{2} \pi & \text { if and only if } x=b .\end{cases}
$$

The existence of such a function is obvious. Put

$$
\psi(x)=\tan \varphi(x) .
$$

For each real number r put

$$
\begin{aligned}
& A(r)=\{x \mid \psi(x) \geqq r\} \smile a, \\
& B(r)=\{x \mid \psi(x) \leqq r\} \smile b .
\end{aligned}
$$

It is easy to see that
(i) $A(r)$ and $B(r)$ are compact,
(ii) if $r>r^{\prime}$, then $\overline{A(r)} \subset A\left(r^{\prime}\right)$ and $B(r)>\overline{B\left(r^{\prime}\right)}$,
(iii) if r tends to $+\infty$, then $A(r)$ converges to a, and
(iv) if r tends to $-\infty$, then $B(r)$ converges to b.

Now we prove the following
Lemma 4. Let f be a continuous mapping of X into itself such that for each $x \in X-b$ the sequence $\left\{f^{n}(x)\right\}$ converges to a. Then $\mathrm{U}_{n=0}^{\infty} f^{n}(A(r))$ is compact for every r.

Proof. Suppose on the contrary that $U_{n-0}^{\infty} f^{n}(A(r))$ is not compact. Then by Lemma $1\left\{f^{n}(A(r))\right\}$ is a bulging sequence. Therefore by Lemma 3 there exists a point $p \in A(r)$ such that for each n

$$
f^{n}(p) \frown \operatorname{Int}(A(r))=0 .
$$

Then $\left\{f^{n}(p)\right\}$ does not converge to a, which is a contradiction.
Hereafter in $\S 2$ we assume that a homeomorphism h of X onto itself satisfies the condition of Theorem 1. Then we have the following

Lemma 5. For cach r the sequence $\left\{h^{n}(A(r))\right\}$ converges to a.
Proof. Since $U_{n-0}^{\infty}(A(r))$ is compact by Lemma 4 , there exists a real number r_{0} such that $\bigcup_{n-0}^{\infty} h^{n}(A(r)) \subset A\left(r_{0}\right)$. Take $x_{n} \in h^{n}(A(r))$. It is easy to see that if we prove that the sequence $\left\{x_{n}\right\}$ converges to a, then the proof of Lemma 5 is complete.

Since $x_{n} \in A\left(r_{0}\right)$, the set $\bigcup_{n-0}^{\infty} x_{n}$ has a limit point. Now we suppose that $U_{n=0}^{\infty} x_{n}$ has a limit point $p_{e} A\left(r_{0}\right)$ different from a. Then there exists a subsequence $\left\{x_{n_{i}}\right\}$ which converges to p. Then $\left\{l^{-m}\left(x_{n_{i}}\right)\right\}$ converges to $h^{-m}(p)$ for every natural number m. Now put $y_{n_{i}}=h^{-n_{i}}\left(x_{n_{i}}\right)$, then $y_{n_{i}} \in A(r)$. If $n_{i}>m$, then

$$
h^{-m}\left(x_{n_{i}}\right)=h^{-m} h^{n_{i}}\left(y_{n_{i}}\right)=h^{n_{i}-m}\left(y_{n_{i}}\right) \in h^{n_{i}} m(A(r)) \quad A\left(r_{0}\right)
$$

Therefore $h^{-m}(p)=A\left(r_{0}\right)$ for every m. Then $\left\{h^{-m(}(p)\right\}$ does not converge to b, which is a contradiction.

Similarly we have the following
Lemma 6. For each r the sequence $\left\{h^{-n}(B(r))\right\}$ cunverges to b.
Proof of Theorem 1. Let $p \in X-a-b$ and let ε be a given positive real number. Then there exist real numbers r_{1} and r_{2} such that

$$
p \in \operatorname{Int}\left(A\left(r_{1}\right)\right) \quad \text { and } \quad p \in \operatorname{Int}\left(B\left(r_{i}\right)\right),
$$

respectively. Put

$$
\begin{aligned}
& U_{1}=\left\{x \left\lvert\, d(a, x)<\frac{1}{2} \varepsilon\right.\right\} \\
& U_{2}=\left\{x \left\lvert\, d(b, x)<\frac{1}{2} \varepsilon\right.\right\} .
\end{aligned}
$$

and

By Lemma 5 and Lemma 6, there exist natural numbers n_{1} and n, such that $h^{n}\left(A\left(r_{1}\right)\right)<U_{1}$ for every $n n_{1}$ and that $h^{-n}\left(1 \beta\left(r_{2}\right)\right)$, U_{2} for every $n>n_{2}$, respectively. Now let V_{1} and V_{2} be neighbourhoods of p such that $\delta\left(h^{n}\left(V_{1}\right)\right)<\varepsilon$ for every $0 \leqq n \leqq n_{1}$ and that $\delta\left(h^{-n}\left(V_{i 2}\right)\right)<\varepsilon$ for every $0 \leqq n \leqq n_{2}$, respectively. Take $\delta>0$ such that

$$
\{x \mid d(p, x)<\delta\}<V_{1} \frown V_{2} \frown \operatorname{Int}\left(A\left(r_{1}\right)\right) \frown \operatorname{Int}\left(B\left(r_{2}\right)\right)
$$

Then it is easy to see that for each $x \in X$ with $d(p, x)<\delta$ and for each integer m

$$
d\left(h^{\prime \prime \prime}(p), h^{\prime \prime \prime}(x)\right)<\varepsilon .
$$

Therefore h is regular at every point of X except for a and b, and the proof is complete.

§ 3. Another application of bulging sequences.

Let X be a separable metric space and let f be a continuous mapping of X into itself. For each point $x \in X$ the set $\mathrm{U}_{n=1}^{\infty} f^{n}(x)$ will be said to be a positive half-orbit of x. Let $P(f)$ be the set of points whose positive half-orbits are everywhere dense in X and put $Q(f)=X$ $-P(f)$. It is easy to see that if $P(f) \neq 0$ then $P(f)$ is everywhere dense in X. Now we prove the following

Theorem 5. Let X be a locally compact, non compact, separable, metric space and let f be a continuous mapping of X into itself. Then $Q(f)$ is cverywherc dense in X.

Proof. Suppose on the contrary that $Q(f)$ is not everywhere dense in X. Then there exist a point p and a neighbourhood U of p such that $Q(f) \frown U=0$ (i. e. $U \subset P(f)$). Since X is locally compact, there exists a neighbourhood V of p with \bar{V}, U such that \bar{V} is compact.

Now we prove that $\left\{f^{n}(\bar{V})\right\}$ is a bulging sequence. In fact, if $\left\{f^{n}(\bar{V})\right\}$ is not a bulging secquence, then the set $W=U_{n}{ }^{\prime \prime}{ }_{0} f^{n}(\bar{V})$ is compact by Lemma 1 . Since $\bar{V}^{\prime}-U, P(f), W=\bar{W}=X$ is compact, which is a contradiction. Therefore $\left\{f^{\prime \prime}(\bar{V})\right\}$ is a bulging secquence.

Then by Lemma 3 there exists a point $q \in \bar{V}$ such that $f^{n}(q) \in V$ for every natural number u. Therefore $q \in \mathcal{Q}(f)$. Since $q \in \bar{V}, U$, we have $q \in P(f)$, which is also a contradiction, and the proof is complete.

Corollary. Let f be a continuous mapping of E^{n} into itsclf. Then $Q(f)$, i.e. the set of points whose positive half-orbits are not everywhere dense in E^{n}, is cucrywhere dense in E^{n}.

Remark 1. A. S. Besicovitch 11 has shown that there exists a homeomorphism of the plane onto itsclf such that there exists a point whose positive half-orbit by this homeomorphism is everywhere dense
on the plane. His statement that by this homeomorphism the positive half-orbit of every point of the plane except for the origin is everywhere dense on the plane is erroneous, as he has shown in his recent paper [2]. The fault of his assertion can also be seen by the above Corollary. REMARK 2. If h is a homeomorphism of E^{n} onto itself, then the set $Q(f)$ will be seen to be an F_{σ} without difficulty.

Department of Mathematics, Tokyo Institute of Technology and
 Department of Mathematics, Osaka University

References

[1] A. S. Besicovitch, A problem on topological transformations of the plane, Fund. Math., 28 (1937).
[2] , A problem on topological transformations of the plane II, Proc. Cambridge Philos. Soc., 47 (1951).
[3] B. v. Kérékjârtó, Topologische Charakterisierung der linearen Abbildungen, Acta Litt. ac Sci. Szeged, 6 (1934).

