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On lattice points in an n-dimensional ellipsoid.
By Masatsugu Tsuji
(Reccived May 10, 1953)
1. Main theorems.

1. Let.%lld;kx;xk (12>2) be a positive definite quadratic form with

the determinant D=|a;;| >0, then

n
. /L‘]aikxixk- S (1)

is the inside of an 7-dimensional ellipsoid and V(») be its volume:

n

O A — 2)
. 1)/'(;’ +1)
Let n(») be the number of lattice points contained in (1) and put
n(r)=Vwr)+ 2. : (3)
Then Landau? proved that
LN=0(rmut) (n74) 4)

and many resecarches are made concerning the order of £ (») by Landau,
Walfisz, Jarnik and others. We shall prove

THEOREM 1. ‘\" “U7) dr=0(1) (172).
O

If)l‘l
We remark that the integral diverges, if we put the value of £(»)
of (4) in it.
Let a,, k; -0 (i-21,2,-,:) be integers and consider lattice points
(X1, X)) contained in (1), such that

x; a; (modk) (i=1,2,,n) (5)

1) E. Landau: Zur analytischen Zahlentheorie der definiten quadratischen Formen.
Berliner Akademicber. 1915.
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and n(r; a, k) be the number of such lattice points and put
1

1" R

n(r;a k)= Vir'+e(r;a, k). (6)

Then

THEOREM 2. r 2(r

165 gr=0(1) (n=2).
J1 y A

2. Let a,-,a, be #n linearly independent vectors in an #-dimen-
sional space R, through the origin O, then they span an n-dimensional
parallelopiped D,. Let G be the group of translations, which 1S gene-
rated by these vectors, then D, is its fundamental domain. Let @ be
a point of D, and @ (»=0,1,2,---) be its equivalents by G and n(7, Q)
be the number of @™ contained in a sphere S, of radius » about the
origin O and v(») be the volume of the inside of S,. Then Theorem 1
and 2 can be deduced easily from the following theorem.

Taworem 3. | 20D gy— L "2 gri0()  (nz2),

1 2)( DO) 0 rn~l
where v(D,) is the volume of D,

To prove Mheorem 3, we shall use a potential function on a torus.

First we shall prove its existence.

2. Existence of a potential function on
an n-dimensional torus.

1. If we identify the equivalent points of the opposite faces of
D,, then we obtain an z-dimensional torus 2. A harmonic function
u(x, -, %) on £ is. by definition, a harmonic function in the (%1, Xn)-
space, such that

azu_+...+ QZ”.:O_

92 ax%

If we put 7= 1/ (x— %+ +(x,— 2%}, then
u=log 1 (n=2), u=—1_ (n=3)
r A

are the simplest harmonic functions.
Let PeD,, Qe D, and Q™ be the equivalents of @, then we define the

distance »=PQ by r=Min. PQ®, thus we define the metric on £.
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We shall prove

THEOREM 4. Let Q,, Q; be two points of 2, then there exists a
Dotential function v(P; Q, Q;) on 2, which is harmonic, except at Q,, Q,,
where if n=3,

v(P; Qy, Q,)— ~---~:2~ ts harmonic and vanishes at P=Q,,
(1)

is harmonic and vanishes at P=Q,.

P; Q, F o
7)( Ql QZ) P g_vz
(ii) Let @, be fixed and U(Q,) be its neighbourhood and & vary in
R—U(Qy), then there exist constants p=>0, K>0, which are independent
of @, such that if P lies in a p-neighourhood of Q,, then

v(P; @y, Qz)-—[",Q,;j <K.

A similar relation holds at Q, tvzth F;)»é:z- instead of - Q" 5 if Q.

varies in 2—U(Q,).

1 1 1
If n=2, then , are rveplaced by log— log -~
PQit’ Py ? y 105 -+ 198 5o
respectively. '
PrROOF. We assume that #>>3, the case #=2 can be proved
similarly, if we take log PlQ instead of p 5”_2 . |

Let % be a positive integer and S;.(2=>k,) be a sphere of radius ~11e

about @, and (S;) be its inside, where %, is taken so large that (Sk,)
does not contain Q,.

We put 2,=2-—(S;). Then by Parreau’s method,? we can prove
that, there exists a Green’s function g.(P; @, on £, with @, as its
pole, such that g:(P; ;) is harmonic on £ except at @, where
g(P; Q) — P Q is harmonic at P=@Q, and g.(P; @,)=0 on S,.

We draw about &, a sphere oy of radius p, and a sphere o, of
radius py (py<p;), where p, is taken so small that o, is contained in 2,

2) M. Parreau: Sur les moyennes des fonctions harmoniques et analytiques et la
classification des surfaces de Riemann. Theése. Paris. 1952.
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and let (oy), (o;) be the inside of ay, o, respectively.
Let
M, = Il\ﬂa'}x (P, Q) (kR , (1)
then by the maximum principle,
Py M, g(P; Q) 0in £, (a).

Since ., (P)- 1, (P) is harmonic in £, and ., (P) -0 on &, and
1, (Py)=0 at some point P, on o, we have

Max (24, (P)-10,(P)) -0,

1)(”'0
so that by the maximum principle, 1[\{Iax (e, (P)—u(P))” -0, or

Min ¢, (P) ~ Max i, (P) . (2)

e oy Peo
Since u,(P) -0 in £;,—(s,), by Harnack’s theorem, for any compact
domain 4« £2—(o,)- (@), which has a positive distance from o, we
have from (2), if k== k,
up(P)=|M—g.(P; Q)| ~ K1), Peda, (kR=Fk), (3)

where k; is taken so large than 4 "2, and K(4) is a constant depend-
ing on . only.
Hence

P Q) ~ Mo~ L1l const. on ay(k k). 4

I_)Qir 2 1

Since the left hand side of (4) is harmonic in (o)), the same relation
holds in (s,), so that if we put '

T
1’111;1;]" (gk(P9 Ql) PQ

then |vyg-- M|~ const. (k> ky), hence by (3),

. )i (5)

|ge(P; Q) — v SK(4), Pea, (RZky), (6)

where 4 is any compact domain in £ —(Q;)—(Q,).
Hence we can find k., such that

li‘{n (gk., (P; Ql)“ka)=v(P; ¢, @) (7)
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converges uniformly in the wider sense in £— (@Q,)—(Q.), that
v(P @1, (J) is harmonic on £, except at @,, Q..
Since
oy 1 P -
(P; Q) —yp— =_const. on o, (k>2Fk),
ge(P; Q1) — v PQre = oy (k= k)

the same relation holds in (o), so that

1

iv(P; Q1 @) — P2 | = const. in (o),
hence
2(P; @, Q) — PQ{ , is harmonic and vanishes at @, . (8)
Next we shall prove that v(P; @, @)+ leu--; is harmonic at Q..
We put '
Uk(P)::g/c(P; Ql)*”yk y - (9)

then since ¢,(P) is harmonic in a ring domain .(k, k,), which is
bounded by S, anc S,, we have for Pe 1(k, k),

1 v o 13 1 ov
P = /1,‘ . . e e * L d
vr(P) (1—2) A, \ -"/‘.,"‘ P ( g2 ) -t ) oq
. 1 ¢ g/ 1) 1 ovy, )
+ Uy ol B , " doy, 10)
(12--2)A, -\5/‘( “ ow < rd ) v g oY (

Uk:Uk((Q), VZPQ,

where A, is the arca of a unit sphere, » is the inner normal and doy
is the surface clement.
Sinice o=~ v, on Sy,

- o 1 v o [ 1

Vv o doey=—y, ( \ doy=0
R 5, ov ( e 2 ) @ \ Sy Ov ru—.’Z J Q ’

and since

(o
|, o dog=|, O dog=(n=2) Au,

ov
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we have

(1 o g4 _, (n—2) A, e
‘Ssk PR PQ;? (b= ).

Hence we have from for Pe(Sy,)

o(P; G, QZ)zmr—lz_)j:jsko(.v_a@;( rnl—;) B ",,71—_2‘ ) ‘aas‘)dao“ P@lgfz_ ,

so that

v(P; @y, Q)+ 'P(;;'ti is harmonic at @,. (11)
2

If we put P=@Q, in the integral and make Fk,— o, then we see
. 1
than U(P’ Ql) Q2)+ 'PQQ/_Z

Hence the part (i) is proved. The part (ii) can be proved easily
from the above proof.

REMARK. We have taken a partial sequence k., in (7), but we
see easily that

vanishes at P=@Q,.

lim (£(P; Q) —vx) =0(P; @1, )

converges uniformly in the wider sense in 2—(Q,)—(Q).
2. Let a be a vector through a point @ (F@.) and @, be a point
on a, such that QQ,=4v, then in
v(P; @, Q)—v(P; Q,Q,)
the singularity at @, vanishes, so that

lim 2P Qu@)—0(P;Q,Q) _ 9v(PiQ.@) _, (p; Q) (12)

4v-0 Adv ov

is harmonic on £ except at @, where

o(P; @— 222080 . =pQ (13)

—_

is harmonic, 6 being the angle subtained by two vectors a and QP.
Hence we have

THEOREM 5. There exists a potential function v(P; Q) on 2, which
is harmonic except at Q, where
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v (P; Q)— 89 r=QP

rn-l
is harmonic. ,
By differentiating »,(P; Q) with @, we obtain a potential function

3. Proof of Main theorems.

1. RrROOF of THEOREM 3.

We follows the same idea as I have used in the former paper on
Fuchsian groups.® We assume that n—=>3, the case =2 can be proved
similarly.

Let D, be the #n-dimensional parallelopiped, which is spanned by #
vectors ay,---, a, through the origin O. By identifying the opposite faces
of D, we obtain an #-dimensional torus £ and let v(P; @, @,) be the
potential function on £, which is defined by Theorem 4.

We put

w(P;Q,Q)= —1 _4(P;Q,¢), 1)
(n—2)

then «(P;@Q,&,) has singularities

1 1 -1 . 1
(n—2) PQ"?%’ (n—2) PQ7?

at & and @, respectively.

u#(P; €,Q)) is invariant by the group G of translations, which is
generated by qj,---, a,.

Let S, be a sphere of radius 7 about the origin O. We assume that
there are no equivalents @, Q{” of @, &, on S, and Sg (R>1). Then
applying Green’s formula :

[ 220 2 amo,

ov ov

where S is the boundary, do the surface element and » the inner
normal of S, to harmonic functions :

WP =u(P;Q,@), w@)=L___ 1 _op

7,n~2 Rn—z

3) M. Tsuji: Theory of Fuchsian groups. Jap. Journ. Math. 21 (1951).
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for the domain, which is obtained from the ring domain 4=4(1, R):
1 <R, by taking off the insides of small spheres about @, ¢7”
contained in . and then making the radii of these spheres tend to
zero, we have

(122 p.¢> ~ 1 1
Rn—lri“ SR”(P’ Q’ Ql) d(TP-l [1":_,"(\ r{:*‘_’ o _-Rn- 2 )

—A,,}](~ ,1 , vl ,,\:(n*-Z)\ w(P; @,%,) dop+const., (2)
T\ gz gt s

where A, is the area of a unit sphere, »=0Q”, »,=0&{” and dop is
the surface clement and we sum up for all @, ¢ contamed in d.

Let #n(7, @) be the number of Q@ contained in S,, then

}"?( r:‘il_z - R‘.}r—;’ )_ ‘\R( nl—’ R,,l_z \) (ln(r,Q)

_.{< no R*- ;v\)n<r Q)l 1(11* 2) \ ‘)il(} @) dr

n 1
=(n—2) \f ”(’;'23 dr o,

([(l']l

so that if we put dwp= Jonn

and writing » instecad of R, we have

from (2),

fll “ u(P;Q,Ql)dm,}-P'\T 1»1(1’,_(\))(17"_'\’ n(r,Q)dr +0(1).
S

. pncl n !
N o1 v J1 v

We put 2 <=2, if 2>>0and 2 =0, if 2~ 0, then zz=u2' —(—u) ", hence

Al ‘\S 1 (P Q, Q) dop-t- \r ;z(rﬂ(vl) dr /11 ‘\S (___U(P; o, Ql))‘dm,,
I\': n(r/i)ll) dr +0(1). 3)

We assumed that there are no @2, @ on S, and Si, but we see
casily that (3) holds, if there are @, @” on S; and Sk, hence (3)
holds in general.

As Nevanlinna, we put
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11

mir, Q)= 1| w0 (PrQ,Q)dwp,
A, s,
N(i’ Q):: “'r ll(i', (J) (1/ (4)
’ AR yrl ’
T(r, Qy=m(r, )+ Nir, ),
then from (3),
T(r, Q) 11 '\ (w5 Q,6)) dop \’l ”(""’(]‘{‘l)‘” 1+ O(1). (5)

Let U(G) be a neighbourhood of . We consider ¢J) as fixed and
vary in D, U}, then by the part (i) of [Theorem 4, the term O(1)
in (5) is uniformly bounded. Hence for any @, ¢, in Dy—U(Q), we
have

T(r,QG)=T(r, )1 O1). (6)
Let dv, be the volume clement, then for any Pel),
\: ut (P; , ) dv, const.,
DG Uy

so that trom (1) and (6)

%'“ LN @ deg O iy UW@)) (T Q)1 0M) . (D)
For Q¢ U((), we put
Tl(/" (J)-‘. Al ‘\ ( ,[[(1); (J”, (J)) ! ([(,)1,._%_ N(',‘ (\)) , (8)

then from (5),
Ty (r, Q) =T (r, )+ O(1).

If we consider —ua instead of . we have similarly as (6),
T,(r, Q)=T(r, Q)+ O for - U(G}), so that
Ti(», Q) =T(r, Q)+ OQ), GcUW). (9)

Since for any Pe D,

(P Qu @) dug const.,

BEVAY SIS

we have from (8), (9)
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[ N, @ dvg+OM)=0(U@)) (T(r, @)+0()).

U@y
Hence from (7), [(10), |
T(r, Q)= 1D) _ N(7, Q) dvg+0(1)
0 0
:v(lDo) L tffl . 1(6,Q) dvg+0(1)
1 7 v(t) dt
=53 L i TO(),

where »(¢) is the volume of the inside of S,.
Hence from (6), we have

T Q)=T(+0(),
where
v(r) dr

N=_1 (7
T(n)= v(D,) jo yn1

(10)

(11)

(12)

(13)

This is an anlogue of R. Nevanlinna’s first fundamental theorem for

meromorphic functions.
We shall prove that m (7, Q)=0(1).

Let nn=r—d, »,=r+d(d”>0) and Q® be equivalents of @ and
U(Q™) be a neighbourhood of @™ of radius d, then «*(P; @, Q,) is

bounded outside of U(Q’) (»=0,1,2,---), hence

[, #®;Q @)dwop=0)+5

tv)
, S,.Uw@

where we sum up for all @, contained between S,, and S,,.

Js, ora
S,.0@)

where dop is the surface element, so that

[ (P @ Q) dwp< K
S,.U@™) 7

1 .

Since n(r;, Q)—n(r, @)=0(r""1), we have

vj
s, v rn1

4 (P Q,Q)dep,

u* (P; Q’ QI) ddpg__K('-_—'C()nSt.) (VZO’ 1: 2’“'):

(14)

u* (P; Q, Q) dop < —E_(n(r, Q—n(r, Q))=0(1), (15)
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so that from (14), (15).

m(f'.Q)-_fl—{ u' (P, Q,0)dowr=0(1). (16)
A, Js

n >

Hence from [12), N(», @)= T2 O1) or
E" n(r, QO dr _

r () . ~
] e D0 ‘\ﬂ :”(77_1 dr4- 0. (17N
We assumed that @ lies outside of U(@,), but if we consider —u
instead of #, we see that (17) holds, if @ lies in U(Q,). Hence (17)
holds for any Qe D,. Hence our theorem is proved.

2. PRrROOF of THEOREM 1.

By an orthogonal transformation, we transform

%:‘ilaik X Xp = 7'2 (])
into
2 2
i£ R B i’zf <2 (2)
1 ”
and then by & =a, X, -, & =a, X,, into
X+ -+ X2 2. 3

Let a unit cube: 0<Cx;<{1,--,0=x,=1 be transformed into a parall-
elopiped D, in the (X, --, X,)-space, then v (D)= 1 o
(ll... -
n(») of lattice points contained in (1) is equal to the number n(», O) of
equivalents of the origin O contained in (3). Let »(#) be the volume
of (3). '
Since. : ((Z’;)) =a-an v(»)=V(r), where V() is the volume of (1), we
0
have by Theorem 3,

The number

*n() ,._ (" n(r, O) () _ V(r)dr
.(] r"‘l dr—‘gl rn-l dr= v(D())j yn 1 dr+0(1) s +O(1)
or
("2 ar=0q). (4)
1 7

Hence Theorem 1 is proved.
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Similarly we can prove Theorem 2.

REMARK. TLet A1, then by (4) for any »~ -1,
(* « ()
\7 v’ !

dr const. . (5)

If ©(r) is of constant sign in {» Ar], then considering inf 1 Q7)) we
sce that there exists 7 (7.7 As7), such that

[ &(r) “const. (6)

Now [7,a7] can be divided into a finite number of disjoint intervals,
in cach of which £(») is continuous and decreasing, so that, if 2(»)
changes its sign in [#, Ar], then there exists 7, such that 2(+) 0 or in
onc of the intervals {7,0 Aric o0 i arl £ s of constant sign, hence
there exists 7=, which satisfies (6. Henee we have

THrorREN 6. For any 1, there exists = (r- 1 a9, such that

1) const. 7777 (- -2).
Hence if 7-=2, '@+ _const. . We remark that in Landau’s esti-
. ) . , REIEEN 2” .
mation L (#)—~O(r* »1 ), u 1 n =2
o

Mathematical Institute, Tokyo University.
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