On lattice points in an *n*-dimensional ellipsoid.

By Masatsugu Tsuji

(Received May 10, 1953)

1. Main theorems.

1. Let $\sum_{i,k=1}^{n} a_{ik} x_i x_k$ $(n \ge 2)$ be a positive definite quadratic form with the determinant $D = |a_{ik}| > 0$, then

$$\sum_{i,k=1}^{n} a_{ik} x_i x_k < r^2 \tag{1}$$

is the inside of an n-dimensional ellipsoid and V(r) be its volume:

$$V(r) = \frac{\pi^{\frac{n}{2}} r^n}{+ D I' \left(\frac{n}{2} + 1\right)}.$$
 (2)

Let n(r) be the number of lattice points contained in (1) and put

$$n(r) = V(r) + \Omega(r). (3)$$

Then Landau¹ proved that

$$Q(r) = O\left(r^{n-\frac{2n}{n+1}}\right) \quad (n \ge 4) \tag{4}$$

and many researches are made concerning the order of $\mathcal{Q}(r)$ by Landau, Walfisz, Jarnik and others. We shall prove

THEOREM 1.
$$\int_{1-r^{n-1}}^{r} dr = O(1) \qquad (n \ge 2).$$

We remark that the integral diverges, if we put the value of $\mathcal{Q}(r)$ of (4) in it.

Let $a_i, k_i \ge 0$ $(i=1, 2, \dots, n)$ be integers and consider lattice points (x_1, \dots, x_n) contained in (1), such that

$$x_i = a_i \pmod{k_i} \quad (i=1,2,\cdots,n) \tag{5}$$

1) E. Landau: Zur analytischen Zahlentheorie der definiten quadratischen Formen. Berliner Akademieber. 1915.

and n(r; a, k) be the number of such lattice points and put

$$n(r; a, k) = \frac{1}{k_1 \cdots k_n} V(r) + \mathcal{Q}(r; a, k).$$
 (6)

Then

THEOREM 2.
$$\int_{1}^{r} \frac{\Omega(r; a, k)}{r^{n-1}} dr = O(1) \quad (n \ge 2).$$

2. Let $\alpha_1, \dots, \alpha_n$ be n linearly independent vectors in an n-dimensional space R_n through the origin O, then they span an n-dimensional parallelopiped D_0 . Let G be the group of translations, which is generated by these vectors, then D_0 is its fundamental domain. Let Q be a point of D_0 and $Q^{(\nu)}(\nu=0,1,2,\cdots)$ be its equivalents by G and n(r,Q) be the number of $Q^{(\nu)}$ contained in a sphere S_r of radius r about the origin O and v(r) be the volume of the inside of S_r . Then Theorem 1 and 2 can be deduced easily from the following theorem.

THEOREM 3.
$$\int_{1}^{r} \frac{n(r,Q)}{r^{n-1}} dr = \frac{1}{v(D_0)} \int_{0}^{r} \frac{v(r)}{r^{n-1}} dr + O(1) \qquad (n \ge 2),$$

where $v(D_0)$ is the volume of D_0 .

To prove Theorem 3, we shall use a potential function on a torus. First we shall prove its existence.

2. Existence of a potential function on an *n*-dimensional torus.

1. If we identify the equivalent points of the opposite faces of D_0 , then we obtain an *n*-dimensional torus \mathcal{Q} . A harmonic function $u(x_1,\dots,x_n)$ on \mathcal{Q} is, by definition, a harmonic function in the (x_1,\dots,x_n) -space, such that

$$\Delta u = \frac{\partial^2 u}{\partial x_1^2} + \cdots + \frac{\partial^2 u}{\partial x_n^2} = 0.$$

If we put $r = \sqrt{(x_1 - x_1^0)^2 + \cdots + (x_n - x_n^0)^2}$, then

$$u = \log \frac{1}{r} \quad (n=2), \qquad u = \frac{1}{r^{n-2}} \quad (n \ge 3)$$

are the simplest harmonic functions.

Let $P \in D_0$, $Q \in D_0$ and $Q^{(v)}$ be the equivalents of Q, then we define the distance r = PQ by $r = \text{Min. } PQ^{(v)}$, thus we define the metric on Q.

We shall prove

THEOREM 4. Let Q_1 , Q_2 be two points of Ω , then there exists a potential function $v(P; Q_1, Q_2)$ on Ω , which is harmonic, except at Q_1 , Q_2 , where if $n \ge 3$,

$$v(P;Q_1,Q_2)-rac{1}{PQ_1^{n-2}}$$
 is harmonic and vanishes at $P=Q_1$, (i)

$$v(P; Q_1, Q_2) + \frac{1}{PQ_2^{n-2}}$$
 is harmonic and vanishes at $P = Q_2$.

(ii) Let Q_2 be fixed and $U(Q_2)$ be its neighbourhood and Q_1 vary in $\Omega - U(Q_2)$, then there exist constants $\rho > 0$, K > 0, which are independent of Q_1 , such that if P lies in a ρ -neighbourhood of Q_1 , then

$$\left|v(P;Q_1,Q_2)-\frac{1}{PQ_1^{n-2}}\right| \leq K.$$

A similar relation holds at Q_2 with $\frac{1}{PQ_2^{n-2}}$ instead of $\frac{-1}{PQ_1^{n-2}}$, if Q_2 varies in $\Omega - U(Q_1)$.

If n=2, then $\frac{1}{PQ_1^{n-2}}$, $\frac{1}{PQ_2^{n-2}}$ are replaced by $\log \frac{1}{PQ_1}$, $\log \frac{1}{PQ_2}$ respectively.

PROOF. We assume that $n \ge 3$, the case n=2 can be proved similarly, if we take $\log \frac{1}{PQ}$ instead of $\frac{1}{PQ^{n-2}}$.

Let k be a positive integer and $S_k(k \ge k_0)$ be a sphere of radius $\frac{1}{k}$ about Q_2 and (S_k) be its inside, where k_0 is taken so large that (\overline{S}_{k_0}) does not contain Q_1 .

We put $\Omega_k = \Omega - (\overline{S_k})$. Then by Parreau's method,²⁾ we can prove that, there exists a Green's function $g_k(P; Q_1)$ on Ω_k with Q_1 as its pole, such that $g_k(P; Q_1)$ is harmonic on Ω_k , except at Q_1 , where $g(P; Q_1) - \frac{1}{PQ_1^{n-2}}$ is harmonic at $P = Q_1$ and $g_k(P; Q_1) = 0$ on S_k .

We draw about Q_1 a sphere σ_0 of radius ρ_0 and a sphere σ_1 of radius ρ_1 ($\rho_0 < \rho_1$), where ρ_1 is taken so small that σ_1 is contained in Ω_{k_0}

²⁾ M. Parreau: Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann. Thèse. Paris. 1952.

and let (σ_0) , (σ_1) be the inside of σ_0 , σ_1 respectively. Let

$$M_k = \max_{P \in \sigma_0} g_k(P; Q_1) \quad (k \geq k_0), \qquad (1)$$

then by the maximum principle,

$$u_k(P) - M_k - g_k(P; Q_1) = 0$$
 in $\Omega_k - (\sigma_0)$.

Since $u_{k_0}(P) - u_k(P)$ is harmonic in Ω_{k_0} and $u_{k_0}(P) = 0$ on σ_0 , and $u_k(P_0) = 0$ at some point P_0 on σ_0 , we have

$$\max_{P_k,\sigma_0} \left(u_{k_0}(P) - u_k(P) \right) \geq 0,$$

so that by the maximum principle, $\max_{P \in \sigma_1} (u_{k_0}(P) - u_k(P)) \ge 0$, or

$$\operatorname{Min}_{P \in \sigma_1} u_k(P) \leq \operatorname{Max}_{P \in \sigma_1} u_{k_0}(P) .$$
(2)

Since $u_k(P) > 0$ in $\mathcal{Q}_k - (\sigma_0)$, by Harnack's theorem, for any compact domain $\mathcal{A} \subset \mathcal{Q} - (\overline{\sigma_0}) - (Q_2)$, which has a positive distance from σ_0 , we have from (2), if $k \ge k_1$,

$$u_k(P) = |M_k - g_k(P; Q_1)| \le K(J), \quad P \in J, \quad (k \ge k_1),$$
 (3)

where k_1 is taken so large than $J \in \mathcal{Q}_{k_1}$ and K(J) is a constant depending on J only.

Hence

$$g_k(P; Q_1) - M_k - \frac{1}{PQ_1^{n-2}} \Big| \le \text{const. on } \sigma_1(k \ge k_0).$$
 (4)

Since the left hand side of (4) is harmonic in (σ_1) , the same relation holds in (σ_1) , so that if we put

$$\lim_{P \to Q_1} \left(g_k(P; Q_1) - \frac{1}{PQ_1^{n-2}} \right) - \gamma_k , \qquad (5)$$

then $|\gamma_k - M_k| < \text{const.}$ $(k \ge k_0)$, hence by (3),

$$|g_k(P;Q_1)-\gamma_k| \leq K(\Delta), \quad P \in \Delta, \quad (k \geq k_2),$$
 (6)

where Δ is any compact domain in $\Omega - (Q_1) - (Q_2)$.

Hence we can find k_{ν} , such that

$$\lim_{N \to \infty} (g_{k_{\nu}}(P; Q_1) - \gamma_{k_{\nu}}) = v(P; Q_1, Q_2)$$
 (7)

converges uniformly in the wider sense in $\mathcal{Q}-(Q_1)-(Q_2)$, so that $v(P;Q_1,Q_2)$ is harmonic on \mathcal{Q} , except at Q_1,Q_2 .

Since

$$|g_k(P;Q_1) - \gamma_k - rac{1}{PQ_1^{n-2}}| \leq ext{const.} \quad ext{on } \sigma_1(k \geq k_0)$$
 ,

the same relation holds in (σ_1) , so that

$$\left|v(P;Q_1,Q_2)-rac{1}{PQ_1^{n-2}}
ight| \leq ext{const.} \quad ext{in } (\sigma_1)$$
 ,

hence

$$v(P; Q_1, Q_2) - \frac{1}{PQ_1^{n-2}}$$
 is harmonic and vanishes at Q_1 . (8)

Next we shall prove that $v(P;Q_1,Q_2)+\dfrac{1}{PQ_2^{n-2}}$ is harmonic at Q_2 . We put

$$v_k(P) = g_k(P; Q_1) - \gamma_k , \qquad (9)$$

then since $v_k(P)$ is harmonic in a ring domain $J(k, k_0)$, which is bounded by S_k and S_{k_0} , we have for $P \in J(k, k_0)$,

$$v_{k}(P) = \frac{1}{(n-2)} A_{n} \int_{S_{k_{n}}} \left(v_{k} \frac{\partial}{\partial \nu} \left(\frac{1}{r^{n-2}} \right) - \frac{1}{r^{n-2}} \cdot \frac{\partial v_{k}}{\partial \nu} \right) d\sigma_{Q}$$

$$+ \frac{1}{(n-2)} A_{n} \int_{S_{k}} \left(v_{k} \frac{\partial}{\partial \nu} \left(\frac{1}{r^{n-2}} \right) - \frac{1}{r^{n-2}} \cdot \frac{\partial v_{k}}{\partial \nu} \right) d\sigma_{Q}, \qquad (10)$$

$$v_{k} = v_{k}(Q), \quad r = PQ,$$

where A_{μ} is the area of a unit sphere, ν is the inner normal and $d\sigma_{Q}$ is the surface element.

Since $\hat{v}_k = -\gamma_k$ on S_k ,

$$\int_{S_k} v_k \frac{\partial}{\partial \nu} \left(\frac{1}{r^{n-2}} \right) d\sigma_Q = -\gamma_k \int_{S_k} \frac{\partial}{\partial \nu} \left(\frac{1}{r^{n-2}} \right) d\sigma_Q = 0,$$

and since

$$\int_{S_k} \frac{\partial v_k}{\partial \nu} d\sigma_Q = \int_{\sigma_0} \frac{\partial v_k}{\partial \nu} d\sigma_Q = (n-2) A_n,$$

we have

$$\int_{S_k} \frac{1}{r^{n-2}} \cdot \frac{\partial v_k}{\partial \nu} d\sigma_Q \to \frac{(n-2) A_n}{PQ_2^{n-2}} \quad (k \to \infty).$$

Hence we have from (10), for $P \in (S_{k_0})$

$$v(P;Q_1,Q_2) = \frac{1}{(n-2)A_n} \int_{S_{k_0}} \left(v \frac{\partial}{\partial \nu} \left(\frac{1 \cdot r^{n-2}}{r^{n-2}}\right) - \frac{1}{r^{n-2}} \cdot \frac{\partial v}{\partial \nu}\right) d\sigma_Q - \frac{1}{PQ_2^{n-2}},$$

so that

$$v(P; Q_1, Q_2) + \frac{1}{PQ_2^{n-2}}$$
 is harmonic at Q_2 . (11)

If we put $P=Q_2$ in the integral and make $k_0\to\infty$, then we see than $v(P;Q_1,Q_2)+\frac{1}{PQ_2^{n-2}}$ vanishes at $P=Q_2$.

Hence the part (i) is proved. The part (ii) can be proved easily from the above proof.

REMARK. We have taken a partial sequence k_{ν} in (7), but we see easily that

$$\lim_{k} (g_k(P;Q) - \gamma_k) = v(P;Q_1,Q_2)$$

converges uniformly in the wider sense in $\mathcal{Q}-(Q_1)-(Q_2)$.

2. Let a be a vector through a point Q ($\neq Q_2$) and Q_1 be a point on a, such that $\overline{QQ_1} = \Delta \nu$, then in

$$v(P; Q_1, Q_2) - v(P; Q, Q_2)$$

the singularity at Q_2 vanishes, so that

$$\lim_{\Delta v \to 0} \frac{v(P; Q_1, Q_2) - v(P; Q, Q_2)}{\Delta v} = \frac{\partial v(P; Q, Q_2)}{\partial v} = v_1(P; Q)$$
(12)

is harmonic on Q except at Q, where

$$v_1(P;Q) - \frac{(n-2)\cos\theta}{r^{n-1}}, \qquad r = PQ$$
 (13)

is harmonic, θ being the angle subtained by two vectors α and \overrightarrow{QP} . Hence we have

THEOREM 5. There exists a potential function $v_1(P; Q)$ on Ω , which is harmonic except at Q, where

$$v(P;Q) - \frac{\cos \theta}{r^{n-1}}, \qquad r = \overline{QP}$$

is harmonic.

By differentiating $v_1(P; Q)$ with Q, we obtain a potential function on Q with a polar singularity of any order $\geq n-1$ at Q.

3. Proof of Main theorems.

1. Rroof of Theorem 3.

We follows the same idea as I have used in the former paper on Fuchsian groups.³⁾ We assume that $n \ge 3$, the case n=2 can be proved similarly.

Let D_0 be the *n*-dimensional parallelopiped, which is spanned by *n* vectors $\alpha_1, \dots, \alpha_n$ through the origin O. By identifying the opposite faces of D_0 , we obtain an *n*-dimensional torus \mathcal{Q} and let $v(P; Q, Q_1)$ be the potential function on \mathcal{Q} , which is defined by Theorem 4. We put

$$u(P; Q, Q_1) = \frac{1}{(n-2)} v(P; Q, Q_1), \qquad (1)$$

then $u(P;Q,Q_1)$ has singularities $\frac{1}{(n-2)}\cdot\frac{1}{PQ^{n-2}}$, $\frac{-1}{(n-2)}\cdot\frac{1}{PQ_1^{n-2}}$ at Q and Q_1 respectively.

 $u(P; Q, Q_1)$ is invariant by the group G of translations, which is generated by $\mathfrak{a}_1, \dots, \mathfrak{a}_n$.

Let S_r be a sphere of radius r about the origin O. We assume that there are no equivalents $Q^{(\nu)}$, $Q_1^{(\nu)}$ of Q, Q_1 on S_1 and S_R (R>1). Then applying Green's formula:

$$\int_{S} \left(u \frac{\partial v}{\partial \nu} - v \frac{\partial u}{\partial \nu} \right) d\sigma = 0,$$

where S is the boundary, $d\sigma$ the surface element and ν the inner normal of S, to harmonic functions:

$$u(P)=u(P;Q,Q_1), v(P)=\frac{1}{r^{n-2}}-\frac{1}{R^{n-2}}, r=OP$$

³⁾ M. Tsuji: Theory of Fuchsian groups. Jap. Journ. Math. 21 (1951).

for the domain, which is obtained from the ring domain $\Delta = \Delta(1, R)$: 1 < r < R, by taking off the insides of small spheres about $Q^{(\nu)}, Q_1^{(\nu)}$ contained in Δ and then making the radii of these spheres tend to zero, we have

$$\frac{(n-2)}{R^{n-1}} \int_{S_R} u(P; Q, Q_1) d\sigma_P + A_n \sum_{\nu} \left(\frac{1}{r_{\nu}^{n-2}} - \frac{1}{R^{n-2}} \right) \\
-A_n \sum_{\nu} \left(\frac{1}{r_{\nu}^{n-2}} - \frac{1}{R^{n-2}} \right) = (n-2) \int_{S_1} u(P; Q, Q_1) d\sigma_P + \text{const.}, \quad (2)$$

where A_n is the area of a unit sphere, $r_0 = OQ^{(v)}$, $r_2' = OQ_1^{(v)}$ and $d\sigma_P$ is the surface element and we sum up for all $Q^{(v)}$, $Q_1^{(v)}$ contained in Δ .

Let n(r,Q) be the number of $Q^{(r)}$ contained in S_r , then

$$\sum_{\nu} \left(\frac{1}{r^{n-2}} - \frac{1}{R^{n-2}} \right) = \int_{1}^{R} \left(\frac{1}{r^{n-2}} - \frac{1}{R^{n-2}} \right) dn(r, Q)$$

$$= \left[\left(\frac{1}{r^{n-2}} - \frac{1}{R^{n-2}} \right) n(r, Q) \right]_{1}^{R} + (n-2) \int_{1}^{R} \frac{n(r, Q)}{r^{n-1}} dr$$

$$= (n-2) \int_{1}^{R} \frac{n(r, Q)}{r^{n-1}} dr + O(1),$$

so that if we put $d\omega_P = \frac{d\sigma_P}{R^{n-1}}$ and writing r instead of R, we have from (2),

$$\frac{1}{A_n}\int_{S_r}u(P;Q,Q_1)d\omega_P+\int_1^r\frac{n(r,Q)}{r^{n-1}}\frac{dr}{r}=\int_1^r\frac{n(r,Q_1)dr}{r^{n-1}}+O(1).$$

We put u'=u, if $u \ge 0$ and u'=0, if $u \le 0$, then u=u'-(-u)', hence

$$\frac{1}{A_n} \int_{S_r} u^r(P; Q, Q_1) d\omega_P + \int_1^r \frac{n(r, Q)}{r^{n-1}} dr = \frac{1}{A_n} \int_{S_r} \left(-u(P; Q, Q_1) \right)^r d\omega_P + \int_1^r \frac{n(r, Q_1)}{r^{n-1}} dr + O(1).$$
(3)

We assumed that there are no $Q^{(v)}$, $Q_1^{(v)}$ on S_1 and S_R , but we see easily that (3) holds, if there are $Q^{(v)}$, $Q_1^{(v)}$ on S_1 and S_R , hence (3) holds in general.

As Nevanlinna, we put

$$m(r, Q) = \frac{1}{A_n} \int_{S_r} u^+(P; Q, Q_1) d\omega_P,$$

$$N(r, Q) = \int_1^r \frac{n(r, Q) dr}{r^{n-1}},$$

$$T(r, Q) = m(r, Q) + N(r, Q),$$
(4)

then from (3),

$$T(r,Q) = \frac{1}{A_n} \int_{S_r} \left(-u(P;Q,Q_1) \right) d\omega_P + \int_1^r \frac{n(r,Q_1)dr}{r^{n-1}} + O(1).$$
 (5)

Let $U(Q_1)$ be a neighbourhood of Q_1 . We consider Q_1 as fixed and Q vary in $D_0 = U(Q_1)$, then by the part (ii) of Theorem 4, the term O(1) in (5) is uniformly bounded. Hence for any Q, Q_0 in $D_0 = U(Q_1)$, we have

$$T(r,Q) = T(r,Q_0) + O(1). \tag{6}$$

Let dv_O be the volume element, then for any $P \in D_0$,

$$\int_{D_0 \cap U(Q_1)} u^+(P;Q,Q_1) dv_Q \sim ext{const.}$$
,

so that from (4) and (6)

$$\int_{D_0-U(Q_1)} N(r,Q) \, dv_O + O(1) - v \left(D_0 - U(Q_1) \right) \left(T(r,Q_0) + O(1) \right). \tag{7}$$

For $Q \in U(Q_1)$, we put

$$T_1(r,Q) = \frac{1}{A_n} \int_{S_r} \left(-u(P;Q_0,Q) \right)^{\frac{1}{2}} d\omega_P + N(r,Q), \qquad (8)$$

then from (5),

$$T_1(r, Q_1) = T(r, Q_0) + O(1)$$
.

If we consider -u instead of u, we have similarly as (6), $T_1(r,Q) = T_1(r,Q_1) + O(1)$ for $Q \in U(Q_1)$, so that

$$T_1(r, Q) = T(r, Q_0) + O(1), \quad Q \in U(Q_1).$$
 (9)

Since for any $P \in D_0$,

$$\int_{U(Q_1)} \left(-u(P;Q_0,Q)\right)^+ dv_Q \leq \text{const.},$$

we have from (8), (9)

$$\int_{U(Q_1)} N(r, Q) dv_Q + O(1) = v \left(U(Q_1) \right) \left(T(r, Q_0) + O(1) \right). \tag{10}$$

Hence from (7), (10),

$$T(r, Q_0) = \frac{1}{v(D_0)} \int_{D_0} N(r, Q) \, dv_Q + O(1)$$

$$= \frac{1}{v(D_0)} \int_1^r \frac{dt}{t^{n-1}} \int_{D_0} n(t, Q) \, dv_Q + O(1)$$

$$= \frac{1}{v(D_0)} \int_1^r \frac{v(t) \, dt}{t^{n-1}} + O(1) , \qquad (11)$$

where v(t) is the volume of the inside of S_t .

Hence from (6), we have

$$T(r,Q) = T(r) + O(1),$$
 (12)

where

$$T(r) = \frac{1}{v(D_0)} \int_0^r \frac{v(r) dr}{r^{n-1}}.$$
 (13)

This is an anlogue of R. Nevanlinna's first fundamental theorem for meromorphic functions.

We shall prove that m(r, Q) = O(1).

Let $r_1=r-d$, $r_2=r+d(d>0)$ and $Q^{(\nu)}$ be equivalents of Q and $U(Q^{(\nu)})$ be a neighbourhood of $Q^{(\nu)}$ of radius d, then $u^+(P;Q,Q_1)$ is bounded outside of $U(Q^{(\nu)})$ ($\nu=0,1,2,\cdots$), hence

$$\int_{S_r} u^+(P; Q, Q_1) d\omega_P = O(1) + \sum_{\nu} \int_{S_r, U(Q^{(\nu)})} u^+(P; Q, Q_1) d\omega_P, \qquad (14)$$

where we sum up for all $Q^{(\nu)}$, contained between S_{r_1} and S_{r_2} . Now

$$\int_{S_{\bullet},U(Q^{(\nu)})} u^{+}(P;Q,Q_{1}) d\sigma_{P} \leq K(=\text{const.}) \ (\nu=0,1,2,\cdots),$$

where $d\sigma_P$ is the surface element, so that

$$\int_{S_{r}.U(Q^{(\nu)})} u^{+}(P;Q,Q_{1}) d\omega_{P} \leq \frac{K}{r^{n-1}}.$$

Since $n(r_2, Q) - n(r_1, Q) = O(r^{n-1})$, we have

$$\sum_{\nu} \int_{S_{n},U(Q^{(\nu)})} u^{+}(P;Q,Q_{1}) d\omega_{P} \leq \frac{K}{r^{n-1}} (n(r_{2},Q) - n(r_{1},Q)) = O(1), \quad (15)$$

so that from (14), (15),

$$m(r,Q) = \frac{1}{A_n} \int_{S_r} u^*(P;Q,Q_1) d\omega_P = O(1).$$
 (16)

Hence from (12), N(r, Q) = T(r) + O(1), or

$$\int_{1}^{r} \frac{n(r,Q) dr}{r^{n-1}} = \frac{1}{v(D_0)} \int_{0}^{r} \frac{v(r)}{r^{n-1}} dr + O(1).$$
 (17)

We assumed that Q lies outside of $U(Q_1)$, but if we consider -u instead of u, we see that (17) holds, if Q lies in $U(Q_1)$. Hence (17) holds for any $Q \in D_0$. Hence our theorem is proved.

2. Proof of Theorem 1.

By an orthogonal transformation, we transform

$$\sum_{i,k=1}^{n} a_{ik} x_i x_k < r^2 \tag{1}$$

into

$$\frac{\xi_1^2}{a_1^2} + \dots + \frac{\xi_n^2}{a_n^2} < r^2 \tag{2}$$

and then by $\xi_1 = a_1 X_1, \dots, \xi_n = a_n X_n$, into

$$X_1^2 + \dots + X_n^2 < r^2$$
 (3)

Let a unit cube: $0 \le x_1 \le 1, \dots, 0 \le x_n \le 1$ be transformed into a parallelopiped D_0 in the (X_1, \dots, X_n) -space, then $v(D_0) = \frac{1}{a_1 \cdots a_n}$. The number n(r) of lattice points contained in (1) is equal to the number n(r, O) of equivalents of the origin O contained in (3). Let v(r) be the volume of (3).

Since $\frac{v(r)}{v(D_0)} = a_1 \cdots a_n \ v(r) = V(r)$, where V(r) is the volume of (1), we have by Theorem 3,

$$\int_{1}^{r} \frac{n(r)}{r^{n-1}} dr = \int_{1}^{r} \frac{n(r, O)}{r^{n-1}} dr = \frac{1}{v(D_0)} \int_{0}^{r} \frac{v(r)}{r^{n-1}} dr + O(1) = \int_{1}^{r} \frac{V(r) dr}{r^{n-1}} + O(1),$$

or

$$\int_{1}^{r} \frac{\mathcal{Q}(r)}{r^{n-1}} dr = O(1). \tag{4}$$

Hence Theorem 1 is proved.

Similarly we can prove Theorem 2.

REMARK. Let $\lambda > 1$, then by (4) for any r > 1,

$$\int_{r}^{\lambda r} \frac{Q(r)}{r^{n-1}} dr = \text{const.} .$$
 (5)

If Q(r) is of constant sign in $\{r, \lambda r\}$, then considering inf |Q(r)| we see that there exists τ $(r \le \tau \le \lambda r)$, such that

$$|\mathcal{Q}(\tau)|$$
 [const. τ^{n-2} . (6)

Now $[r, \lambda r]$ can be divided into a finite number of disjoint intervals, in each of which $\mathcal{Q}(r)$ is continuous and decreasing, so that, if $\mathcal{Q}(r)$ changes its sign in $[r, \lambda r]$, then there exists τ , such that $\mathcal{Q}(\tau) = 0$ or in one of the intervals $[r, \lambda r]$, $[\lambda r]$, $[\lambda r]$, $[\lambda r]$, $[\mu r]$, $[\mu r]$ is of constant sign, hence there exists τ , which satisfies (6). Hence we have

THEOREM 6. For any r = 1, there exists $\tau = (r \le \tau \le \lambda r)$, such that $|\mathcal{Q}(\tau)| = \text{const. } \tau^{n+2} = (n-2)$.

Hence if n=2, $|\mathcal{Q}(\tau)|$ const. We remark that in Landau's estimation $|\mathcal{Q}(r)-O(r^{n-\frac{2n}{n+1}}), |n-\frac{2n}{n+1}| = n-2.$

Mathematical Institute, Tokyo University.