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1. Formulation of problem.

In the preceding papers1) we have dealt with a mixed boundary
value problem in potential theory. In case the unit circle laid on the
z-plane is taken as the basic domain, the previous problem has been
formulated as follows: To determine a function $u(z)$ harmonic and
bounded in the unit circle $|z|<1$ and satisfying the boundary condi.
tions

$u(e^{;\varphi})=U_{j}(\varphi)$ for $a_{j}<\varphi<b_{j}$ ,
$(j=1,\cdots, m)$ ,

$\frac{\partial u(e^{i^{\varphi}})}{\partial\nu}=V_{j}(\varphi)$ for $b_{j}<\varphi<a_{j+1}$

$a_{m+1}$ being supposed to be coincident with $ a_{1}+2\pi$ and $\partial/\partial\nu\equiv\partial/\partial\nu_{\varphi}$

denoting the differentiation along the inward normal at $e^{;\varphi}$ . The pre-
scribed boundary functions $U_{j}(\varphi)$ and $V_{j}(\varphi)$ are supposed, for instance,
continuous and bounded over their respective intervals of definition.

It has been shown that the solution of the problem is surely ex-
istent and uniquely determined and further that it can be represented
by the integral formula

$ u(z)=\frac{1}{\underline{\gamma}_{\pi}}\sum_{j\Leftrightarrow 1}^{m}\{\int_{a_{j}^{j}}^{b}U_{j}(\varphi)\frac{\partial}{\partial\nu}lg|\Phi(e^{i^{\varphi}}, z)|d\varphi$

$-\int_{b_{j}}^{a_{j+1}}V_{j}(\varphi)lg|\Phi(e^{i\varphi}, z)|d\varphi\}$ .

Here, $\Phi(\zeta, z)$ denotes the function mapping $|\zeta|<1$ schlicht and con.
formally onto the exterior of the unit circle cut along $m$ radial slits
starting orthogonally at points on the unit circumference in such a way
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that the arcs $|\zeta|=1,$ $a_{j}<\arg\zeta\leq b_{j}(j=1,\cdots, m)$ correspond as the whole
to the unit circumference, while the arcs $|\zeta|=1,$ $b_{j}<\arg\zeta<a_{j+1}$

$(j=1,\cdots, m)$ correspond to the radial slits, and it is further normalized
at a preassigned parameter point $\zeta=z$ such as $(\zeta-z)\Phi(\zeta, z)\rightarrow 1$ for
$\zeta\rightarrow z$.

In the present Note we shall deal with another mixed boundary
value problem on analytic functions, which is closely related to the
above.mentioned one on harmonic functions and has been once, together
with the latter, discussed by A. Signorini.2) The problem is to determine
a function

$f(z)=u(z)+i_{lt}^{\sim}(z)$

analytic and bounded in the unit circle $|z|<1$ and satisfying the
boundary conditions

$u(e^{i^{(}r})=U_{j}(\varphi)$ for $a_{j}<_{\varphi}<b_{i}$ ,
$(j\rightarrow 1, m)$ ,

$’.\sim(e^{j\varphi})=\tilde{U}_{j}(\varphi)$ for $b_{j}<\varphi<a_{j^{I}1}$

$a_{\iota+1}$ coinciding here again with $ a_{1}+2\pi$ and the boundary functions
$U_{j^{(}}\varphi)$ and $\tilde{U}_{j}(\varphi)$ being supposed, for instance, continuous and bounded
in their respective intervals of defmition; $u(z)$ and $\circ’\sim(z)$ represcnt, of
course, the real and imaginary parts of $f(z)$ .

The close relation between the present problem and the former
one will rcadily be suggested by a heuristic consideration. Namely, if,
in particular, the solution $f(z)$ of the present problem remains regular
even on the boundary $|z|=1$ , then a Cauchy-Riemann equation implies

$\partial u(e_{\nu^{i^{\varphi}}})(J\eta=-(\gamma^{\sim}\cdot(e)(0\varphi^{i^{\varphi}}=-\tilde{U}_{j}^{\prime}(\varphi)$ for $b_{j}<\varphi<a_{j+1}$ $(j=1, \cdot\cdot, m)$ .

The harmonic function $u(z)=\backslash \dagger\grave{\iota}f(z)$ is, therefore, the solution of the
former problem in which the boundary functions $V_{j}(\varphi)(j=1,\cdots, m)$ are
replaced by the - I), $(\varphi)$ , respectively. Converscly, denoting by $’\sim’(z)$

a harmonic function conjugate to the solution $u(z)$ of the former pro-
blem, the function defined by $f(z)=u(z)\vdash i\tilde{\nu}(z)$ is then the solution of
the present problem in which the boundary functions $\tilde{U}_{j}(\varphi)(j=1,\cdots,m)$

are replaced by the $\tilde{U}_{j}(b_{j})-\int_{t_{j}}^{\bigvee_{)^{)}}}V_{j}(\psi)d\psi$ , respectively, the $\tilde{U}_{j}(b_{j})$

$(j=1,\cdot. , m)$ being the constants to be determined suitably.
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On the other hand, in connection $wit^{l}n$ the last-mentioned fact, we
are now in position to emphasize that there exists an essential difference

between two problems. In fact, the boundary functions $U_{j}(\varphi)$ and
$V_{j}(\varphi)(j=1,\cdots, m)$ of the former problem can be prcscribed quite in-
dependently, $i.e.$ , with no functional restriction among them, while the
boundary functions $U_{j}(\varphi)$ and $\tilde{U}_{j}(\varphi)(j=1,\cdots, m)$ of the present pro-
blem must be subjected to certain relations, provided nz is greater than
1, in order that the existence of a solution is assured. In fact, as
already pointed out by A. Signorini and also shown in the following

lines, certain $m-1$ definite relations are necessary and sufficient for
the existence of a solution.

Although A. Signorini has once discussed the present problem in
detail, it seems his results are not yet of completely explicit nature.
Accordingly, it will not be quite useless to attempt here again deriving

an explicit integral formula for the solution more $concr_{t^{1}}tely$ in terms
of the familiar canonical mapping functions.

The simpler cases of the former problem where there exist merely
one or two pairs of the boundary arcs bearing alternately the boundary

values of the desired function itself and of its normal derivative have
been treated in the preceding paper in particular details. The corres-
ponding cases of the present problem will be also illustrated in details
by expressing the kernels contained in the general formula concretely

in terms of elementary or elliptic functions.
We shall confine ourselves throughout the present Note to the case

where the prescribed boundary functions are continuous and bounded
in their respective intervals of definition. However, our integral $r()-$

presentation of the solution, which will be derived in the following

lines under these assumptions, defines surely a definite analytic function
regular in $|z|<1$ , provided the boundary functions are merely supposed

integrable and of order $o(|\varphi-c|^{-1,\cdot)}-)$ at every junction $\varphi=c$ of the ad-
jacent arcs. Consequently, the converse problem will arise successively.

Though we shall omit the precise discussion of the last problem, it will
readily be verified that the function thus defined satisfies, in general,

the boundary conditions almost everywhere and further that it satisfies
them surely at every continuity point of the boundary functions.

Finally, it would especially be noticed that our problem remains
invariant under any $CO’ lfo\prime^{J}n\tau a/$ inapping. Namely, if the basic domain
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$|z|<1$ is mapped, by means of an analytic function $z=z(2)$ , onto a
domain $D^{A}$ laid on the 2-plane, then the solution $f(z)$ of the original
problem is transferred into the function $\hat{f}(\hat{z})\equiv f(z(Z))$ analytic and
bounded in $DA$ and satisfying the boundary conditions

$\mathfrak{R}f(8)=U_{j}(\varphi)$ for $z(B)=e^{i^{\varphi}}$ , $a_{i}<\varphi<b_{j}$ ,
$(j=1,\cdots, m)$ .

$\backslash \infty_{;\hat{f}(2)=\theta_{j}(\varphi)}$ for $z(2)=e^{j\varphi}$ , $b_{j}<\varphi<a_{j+1}$

Thus, it depends on a mere convenience to restrict the basic domain
to the unit circle, and the result covers the case of any simply con-
nected basic domains too.

2. Construction of solution.

It may previously be noted that the $uni\dot{\alpha}ty$ assertion for the solu.
tion of our present problem is quite evident, provided once its existence
is established. In fact, we have only to remember that, in general, a
function $f_{0}(z)=u_{0}(z)+i\tilde{u}_{0}(z)$ analytic and bounded in $|z|<1$ and satisfy-
ing the boundary conditions

$u_{0}(e^{i^{\varphi}})=0$ for $a_{i}<\varphi<b_{j}$ ,
$(j=1,\cdots, m)$

$\tilde{u}_{0}(e^{i^{\varphi}})=0$ for $b_{j}<\varphi<a_{j\$ 1}$

must reduce to the constant $0$ , a fact which is quite obvious.
For a later use, we notice further that the apparently weaker

boundary conditions

$u_{0}(e^{i\varphi})=e_{i}$ for $a_{j}<\varphi<b_{j}$ ,
$(j=1,\cdots, m)$ ,

$l\sim J_{0}(e^{i^{\varphi}})=0$ for $b_{j}<\varphi<a_{j+1}$

the $\epsilon_{j}$ being constant, imply also the constancy of the function $f_{0}(z)$ ,
a fact which can be readily verified, based on the assertion that any
point set laid on $m$ straight lines parallel to the imaginary $aXls\sim$or on
the real axis alone cannot be the boundary of a bounded domain.

We first propose to construct an integral representation for the
solution under the assumption that it exists at any rate. The conditions
for its existence will be spontaneously obtained during our following
procedure.
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Let now $\omega^{(1)}(z, \varphi)$ denote the harmonic measure of $th\dot{e}$ boundary
part consisting of (both banks of) the arcs

$|\zeta|=1$ , $a_{j}\leqq\arg\zeta\leqq b_{j}(j=1,\cdots, \kappa-1)$ and $ a_{\kappa}\leqq\arg\zeta\leqq\varphi$ ,

for any pprametric value $\varphi$ with $a_{\kappa}<\varphi\leq b_{\kappa}$ , with respect to the fixed
m.ply connected slit domain laid on the $\zeta$-plane and bounded by $m$

circular slits

$|\zeta|=1$ , $a_{J_{-}^{\backslash }}^{\prime}.\varphi\leqq b_{j}$ $(j=1,\cdots, m)$ .
Let $\tilde{\omega}^{t1)}(z, \varphi)$ be a harmonic function conjugate to $\omega^{(1)}(z, \varphi)$ ; for instance,
we may put

$\tilde{\omega}^{(1)}(z, \varphi)=\int_{0}^{z}(--\partial\omega^{(1)}(z_{-}, \varphi)_{- dy-}\partial^{-}x\underline{\partial\omega^{t1}}_{\partial^{)}y}(Z, \varphi)dx)$ , $z=x+iy$ .

Consider then an analytic function defined by

$f^{(1)}(z)\equiv u^{(1)}(z)+i\tilde{u}^{(1)}(z)=_{j}\geq_{- 1}^{m_{\lrcorner}}\urcorner\int_{a^{j}}^{b_{j}}\omega^{t1)}$ .

It is regular and bounded in $|z|<1$ and satisfies the boundary condi-
tions

$u^{(1)}(e^{i^{\varphi}})=U_{j}(\varphi)$ for $a_{i}<\varphi<b_{j}$ ,
$(j=1,\cdots, m)$ .

$-\frac{u^{(1)}}{\partial}=0\partial\underline{(e^{i^{\varphi}})}\nu$ for $b_{j}<\varphi<a_{j+1}$

The latter relations may be verified, for instance, by remembering the
symmetry property of the harmonic measure $\omega^{(1)},$ $i$ . $e$ .

$\omega^{(1)}(1/\overline{z}, \psi)\equiv\omega^{(1)}(z, \psi)$ ,

an identity which implies immediately

$\frac{\partial\omega^{(1)}(}{\partial}e,$

$\psi$ )
$\nu^{i\varphi}=0$ for $b_{j}<\varphi<a_{j\$ 1}$ $(j=1,\cdots, m)$ .

These relations further yield that $\iota^{\sim_{\vee}(1)}(e^{i^{\varphi}})$ remains constant for every
value of $\varphi$ with $b_{j}<\varphi<a_{j+1}$. Consequently, we put

$\tilde{u}^{t1)}(e^{;\varphi})=\alpha_{j}$ for $b_{j}<\varphi<a_{j+1}$ $(j=1,\cdots,m)$ .
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Next, let $\omega^{t2)}(z, \varphi)$ denote the harmonic measure of the boundary
part consisting of (both banks of) the arcs

$|\zeta|-1$ , $b_{j}\backslash \arg\zeta\backslash a_{j}1(j=1,\cdots, \kappa-1)$ and $b_{\kappa}$

’

$\arg\zeta$ sl $\varphi$ ,

for any parametric value $\varphi$ with $b_{\kappa}\nearrow\varphi\backslash a_{\kappa}1$ , with respect to the fixed
m.ply connected slit domain laid on the $\zeta$ -plane bounded by $m$ circular
slits

$|\zeta|$ 1, $b_{j}<\arg\zeta\backslash a_{j+1}$ $(j-1,\cdots, m)$ .
Let $r^{\sim_{)}t^{\underline{\prime y}})}’(z, \varphi)$ bc a harmonic function conjugate to $\omega^{(2)}(z, \varphi)$ ; it is defined,
for instance, by

$r_{l}^{\sim_{)}(2)}(z, \varphi)=r_{(!}^{z}(\backslash -’)_{\wedge,(yX}d\gamma-(/(D^{(}\wedge\underline{\prime\prime}\partial^{)}y(z, \varphi)dx),$ $z-x+iy$ .

Consider then an analytic function defined by

$f^{(2)}(z)-l^{\sim}(\underline{J})(z)-i_{ll^{(2)}}(z)$

$-\frac{\backslash ^{\prime\prime l_{\urcorner}}}{j- 1}\int_{b_{j}^{j\}1}}^{a}()$

It is regular and bounded in $|z|<1$ and satisfies the boundary condi-
tions

$\ddot{i}^{\sim.(2)}(e^{j_{\Psi}})=t^{\sim}j_{j}(\varphi)-(\iota_{j}^{\prime}$ for $b_{j}\nearrow\varphi<a_{j,1}$ ,
$(j-1,\cdots, l’ l)$ .

($\tau\prime i^{\sim}(\underline{J})(e^{i}$
”

$)=0$ for $a_{j}<\varphi_{\backslash }^{r}\prime b_{j}$

$()\nu\wedge$

Thus, $u^{()}\underline{)}(e^{l4^{\Gamma}})$ remaining constant for every value of $\varphi$ with $a_{j^{e}}^{\prime}\varphi<b_{j}$ ,
we put

$u^{(-)}(c^{i\backslash })=-\beta_{j}$ for $a_{j}<\varphi<b_{j}$ $(j-1,\cdots. m)$ .

We then consider the analytic function defined by

$f_{\backslash }^{(}z)^{--}-u(z)+i_{\iota^{\sim_{\iota^{\prime}}}}(z)=f^{(1\rangle}(z)+lf^{f)}((z)+\mathcal{B}_{1}$ .

Its real and imaginary parts being then given by

$u(z)=u^{(1)}(z)+u^{(2)}(z)\dashv-\beta_{1}$ ,

$\iota^{\sim,}(z)=\dot{i}^{\sim_{\vee}}r^{(1)}(z)+’\iota^{\sim_{\dot{\nu}}(2)}(z)$ ,
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respectively, they satisfy the boundary conditions
$u(e^{j\varphi})=U_{j}(\varphi)-\beta_{j}+\beta_{1}$ for $a_{j}<\varphi<b_{j}$ ,

$(j=1,\cdots, m)$ .
$o\iota^{\sim_{\nu}}’(e^{;\varphi})=\tilde{U}_{j}(\varphi)$ for $b_{j}<\varphi<a_{j\dashv 1}$

In view of the unicity assertion announced above, it is readily
concluded that a necessary and sufficient condition for the existence ofa solution is expressed by $m-1$ relations

$\beta_{1}=\beta_{2}=\cdots=\beta_{;l}$ ;

the solution is then uniquely determined.
In the following lines we confine ourselves merely to the case

where the last-mentioned condition for existence is surely fulfilled.
The solution is then represented in its full form by

$f(z)---\lambda^{n_{\urcorner}}j- 1l\{\int_{a^{j}}^{b_{j}}U_{j}(\varphi)d(\omega^{(1)}(z, \varphi)+i_{\tilde{\omega}^{(1)}}(z, \varphi))$

$+i\int_{b_{j}}^{a_{j+1}}\omega^{(2)}$

the constants $\alpha_{j}$ and $\beta_{1}$ being given by

$\alpha_{j}=\lambda_{I}^{\neg}\kappa m\int_{a_{\kappa}^{\kappa}}^{tr}U_{\kappa}(\varphi)d_{\tilde{\omega}^{(1)}}(e^{;(b_{j}+0)}, \varphi)$ ,

$\beta_{j}-\geq^{m_{\lrcorner}}\kappa 1\urcorner\int_{b_{\kappa}^{l_{\kappa^{1}1}}}^{r}(\tilde{U}_{\kappa}(\varphi)-c\gamma_{\kappa})d_{\tilde{\omega}^{(\underline{J})}}(e^{t^{(}a}J^{+0)}, \varphi)$ .

We make here, by the way, a preparation, in order that we shall
bring later the solution just obtained into another clear form. Consider
now the problem to determine a function

$g(z)=v(z)+i\tilde{v}(z)$

analytic and bounded in $|z|<1$ and satisfying the boundary conditions
$v(e^{i^{\varphi}})=\tilde{U}_{j}(\varphi)$ for $b_{j}\leq\varphi<a_{j+1}$ ,

$(j=1,\cdots, m)$ .
$\tilde{v}(e^{i\varphi})=-U_{j}(\varphi)$ for $a_{j}<\varphi<b_{j}$
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Again in virtue of the unicity assertion, the solution is $evidenti_{y}$ given
by

$g(z)=-if(z)$ .
Hence, applying the above result to $g(z)$ , we may write the solution of
the original problem also in the form

$f(Z)=\sum_{j\Leftarrow 1}^{m}\{\int_{a_{j}}^{b_{j}}\omega^{(1)}\tilde{\omega}^{(1)}$

$+i\int_{b_{j}^{j+1}}a_{\theta_{j}(\varphi)d(\omega^{(2)}(z,\varphi)+i(z,\varphi))\}+i\delta_{1}}\tilde{\omega}^{(2)}$ ,

the constants $\gamma_{j}$ and $\delta_{1}$ being given by

$\gamma_{j}=\sum_{\kappa=1}^{m}\int_{b^{\kappa+1}}^{a_{\kappa}}$ U. $(\varphi)d\tilde{\omega}^{(2)}(e^{i(a_{j}+0)}, \varphi)$ ,

$\delta_{j}=\sum_{\kappa=1}^{m}\int_{a^{K}}^{b_{\kappa}}(-U_{\kappa}(\varphi)-\gamma_{K})d\tilde{\omega}^{(1)}(e^{i(b_{j}+0)}, \varphi)$ .

A necessary and sufficient condition for the existence of a solution may
also be expressed in the form

$\delta_{1}=\delta_{2}=\cdots=\delta_{m}$ .
Comparison of both representations derived above for $f(z)$ implies

now immediately the relations

$\sum_{j=1}^{m}\gamma_{j}\int_{a_{j}}^{b_{j}}\omega^{(1)}\tilde{\omega}^{t2)}$ ,

$\sum_{j=1}^{m}\gamma_{j}\int_{a_{j}^{j}}^{b}d\tilde{\omega}^{(1)}(z, \varphi)+\delta_{1}=-\sum_{j\Leftarrow 1}^{m}\alpha_{j}\int_{b_{j}^{j+1}}^{a}d\omega^{(2)}(z, \varphi)$ .

Thus, the solution is also representable in the form

$f(z)=\sum_{j- 1}^{m}\{\int_{a_{j}}^{b_{j}}\tilde{\omega}^{(1)}J$

$+i\int_{b_{j}^{j+1}}a_{\theta_{j}(\varphi)d(\omega^{(2)}(z,\varphi)+i(z,\varphi))-i\alpha_{j}\int_{b_{j}^{j+1}}^{a}d_{\omega^{(2)}}(z,\varphi)\}}\tilde{\omega}^{(2)}$ .
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3. Another expression for the solution.
We now propose to bring the expression of the solution derived

just above into another more clear form in terms of the functions
mapping the basic domain onto certain canonical domains. The main
task is to establish the connections of the harmonic measures and their
harmonic conjugates availed above with such canonical maps.

At the beginning of the present paper we have introduced a cano.
nical mapping function $\Phi(\zeta, z)$ . Together with it, we further introduce
another function $\Psi(\zeta, z)$ mapping $|\zeta|<1$ schlicht and conformally onto
the exterior of the unit circle cut along $m$ radial slits starting ortho.
gonally at points on the unit circumference in such a way that the
arcs $|\zeta|=1,$ $b_{j}<\arg\zeta\leqq a_{j+1}(i=1,\cdots, m)$ correspond as the whole to
the unit circumference, while the arcs $|\zeta|=1,$ $ a_{j}<\arg\zeta<b_{j}(j=1,\cdots$ ,
m) correspond to the radial slits, and it is moreover normalized at a
Parameter point $\zeta=z$ such as $(\zeta-z)_{\Psi(\zeta,z)}\rightarrow 1$ for $\zeta\rightarrow z$.

Both functions $\Phi(\zeta, z)$ and $\Psi(\zeta, z)$ can be prolonged analytically, by
means of the inversion principle, beyond the arcs $|\zeta|=1,$ $a_{j}<\arg\zeta<b_{j}$

and $|\zeta|=1,$ $b_{j}<\arg\zeta<a_{j+1}$ , respectively, the defining equations for
prolongation being, of course, given by

$\Phi(1/\overline{\zeta}, z)=1/\Phi(\zeta, z)$ , $\Psi(1/\overline{\zeta}, z)=1/\Psi(\zeta, z)$ .
Consequently, the function $\Phi(\zeta, z)$ or $\Psi(\zeta, z)$ may also be characterized
as the one which maps the whole plane cut along $m$ crrcular slits

$a\leqq\arg\zeta\leqq b_{j}(j=1,\cdots,m),$
$respectively,ontothewholeplanecutalong|\zeta_{j}|=1,b_{j}=^{\arg\zeta_{--}}<\leq a_{j+1}(j=1,\cdot\cdot,m)oralongmcircularslits|\zeta|=1$

,

$m$ radial slits centred at the origin in such a manner that the points
$\zeta=z$ and $\zeta=1/\overline{z}$ correspond, in either case, to the point at infinity and
the origin, respectively, andfurther that the same normalization at $\zeta=z$,
as stated above, is preassigned. It will also be evident that the func-
tions thus prolonged satisfy the further functional equations

$-\Phi\overline{(1/\overline{\zeta},1/\overline{z}})=-z^{2}\Phi(\zeta, z)$ , $\overline{\Psi(1/}\overline{\zeta},\overline{1/\overline{z}}$) $=-z^{2}\Psi(\zeta, z)$ .
We are now in position to state the main theorem of the present

Note:
The solution of our mixed boundary value problem is represented

by the integral formula
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$f(z)=\overline{2}^{1}\pi^{- L^{1}}j^{)}=1\{\int_{j}^{b_{j}}(lU_{j}-$

$+i\int_{b_{j}}^{a_{j+1}}-\arg_{{}^{t}l^{r}}(e^{i}\{z)+ilg|\Phi(e^{i\varphi}, z)|)\}$ ,

provided the condition for the existence of the solution is fulfilled.
We begin with considering the harmonic measure $\omega^{(1)}(z, \varphi)$ . It

satisfies, as a function of $z=rc^{i\theta}$) harmonic in $|z|<1$ , the boundary

conditions

$\omega^{(1)}(e^{i\theta}, \varphi)=\left\{\begin{array}{l}1fora_{j}<\theta<b_{j}(j=1,\cdot 1,\kappa^{-1)}anda_{\kappa}\swarrow_{\backslash }\theta\swarrow t/J\\0for\varphi<.\theta<b_{\kappa}anda_{j}<\theta<b_{j}(j=\kappa-\vdash 1,\cdot\cdot,m),\end{array}\right.$

$\partial\underline{\omega^{(1)}}_{\partial\nu^{-}}$

( C/J
$=0$ for $b_{j}<\theta<a_{j+1}$ (j-l, $\cdots$ , $m$ )

for any value of $\varphi$ with $a_{\kappa}<\varphi<b_{\kappa},$ $\partial/\partial\nu^{--}-\partial/()\nu_{\theta}\neg$ denoting the differ-
entiation along the inward normal at $\ell^{r^{j0}}$ . Hence, applying the formula
referred to at the beginning of the present paper which remains valid
for the boundary functions with a finite number of jumps, we get,

for $a_{\kappa}<\varphi<b_{\kappa}$ ,

$\omega^{(1)}(z, \varphi)=^{\kappa- 1}\frac{1}{2\pi}\lambda^{\neg}j1\int_{j}^{b_{l}}j\frac{\partial}{\hat{o}\nu}lg|\Phi(e^{;0}, z)|d\theta+2_{\pi}^{1}\int_{l}^{\varphi_{\kappa}}--lg|\Phi(e^{\iota\theta}, z)|d\theta\hat{o}^{\partial}\nu$

$=-\frac{1}{2\pi}\kappa j\lambda_{1}^{\urcorner}-- 1\int_{a_{j}}^{b}jd\arg\Phi(e^{j\theta}, z)-- 2_{\pi^{-}}1\int_{a_{\kappa}}^{\varphi}d\arg\Phi(e^{i\theta}, z)$ .

In view of an evident relation $\Phi(e^{ib_{j}}, z)=\Phi(e^{ia_{j+1}}, z)$ , it further becomes

$\omega^{t1)}(z, \varphi)=-\frac{1}{2\pi}\arg\Phi(e, z)\Phi(e_{ia_{1^{\prime}}}^{i\varphi}z)$

a relation which connects $\omega^{(1)}(z, \varphi)$ with $\Phi(e^{i\varphi}, z)$ and is independent
of $\kappa$ .

Quite similarly, we obtain a corresponding connection

$\omega^{(2)}(z, \varphi)=-\frac{1}{2\pi}\arg\Psi(e, z)\psi(e_{ib^{\varphi_{1}}}^{i},z)$
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Our next step is to investigate a harmonic conjugate of the har.
monic measure. For that purpose, we consider, for a while, any analytic
function regular in the closed unit circle. Let it be $f^{*}(z)=u^{*}(z)\dashv-i_{\dot{\nu}}^{\sim,*}’,,(z)$ ,
and put

$u^{t}(e^{i\varphi})=U_{j}^{\star}(\varphi)$ for $a_{j}<\varphi<b_{j}$ ,
$(j=1,\cdots, m)$ .

$l^{\sim\cdot\}\prime}\iota(e^{j\varphi})=\tilde{U}_{j}^{*}(\varphi)$ for $b_{j}<\varphi<a_{j+1}$

Since $f^{*}(z)$ is supposed regular even along the unit circumference, there
holds a Cauchy.Riemann relation

$\partial u^{*}(e^{l\varphi})_{=-}\partial\hat{u}^{1^{\prime}}(e^{j\varphi})\partial\nu\partial_{7^{J}}^{\backslash }=-\tilde{U}_{j}^{*\prime}(\varphi)$ for $b_{j}<\varphi<a_{jt1}$ $(j=1,\cdots, m)$ .

The integral formula for the solution of the former mixed bound-
ary value problem implies thus

$ u^{*}(z)=\frac{1}{2\pi}\sum_{j=1}^{m}\{\int_{(l}^{b_{j}}U_{j}^{*}(\varphi)j\partial^{\partial}\nu lg|\Phi(e^{\iota\varphi}, z)|d\varphi$

$+\int_{b_{j}^{j11}}^{a}\tilde{U}_{j}^{*/}(\varphi)lg|\Phi(e^{i\varphi}, z)|d\varphi\}$

$=-\frac{1}{2\pi}\sum_{j- 1}^{m}\{\int_{a_{j}}^{b_{j}}U_{j^{\backslash }}^{\nu_{-}}(\varphi)d\arg\Phi(e^{j\varphi}, z)+.\int_{b_{j}}^{a_{j+1}}\tilde{U}_{j^{y}}\cdot(\varphi)dlg|\Phi(e^{j\varphi}, z)|\}$ .

On the other hand, applying the general formula derived in the last
section, we have

$u^{*}(z)=\backslash )\{f^{*}(z)$

$=\sum_{j-1}^{m}\int_{j}(\ell\omega^{(1)}b_{j(U_{\dot{j}^{\prime}}(\varphi)+\gamma_{j}^{\star})d(z,\varphi)-\downarrow_{b_{j}^{j11}}^{tl}\tilde{\omega}^{(2)}}\}$ ,

the constants $\gamma_{j}^{\grave{y}}$ being defined by

$\gamma_{j}^{*}=\sum_{\kappa-- 1}^{\prime\prime l}\int_{b_{\kappa}^{\kappa\{1}}^{a_{\tilde{U}_{\kappa}^{*}(\varphi)d(e^{i(a_{j^{+0)}}}}}\tilde{\omega}^{(2)},$ $\varphi$).

By virtue of the relation already established between $\omega^{(1)}$ and $\Phi$ , the
last equation for $u^{k}(z)$ becomes
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$u^{*}(z)=-$ $\sum_{\approx,J1}^{m}\{\frac{1}{2\pi}\int_{a_{j}^{j}}^{b}U_{j}^{*}(\varphi)d\arg\Phi(e^{i\varphi},z)+\int_{b^{j+1}}^{a_{j}}\tilde{U}_{j}^{*}(\varphi)d\tilde{\omega}^{(2)}(z, \varphi)\}$

$-\sum_{j-1}^{l\hslash}\frac{1}{2\pi}\arg\frac{\Phi(e^{ib}jZ)}{\Phi(e^{ia}jZ)}\sum_{\kappa\approx 1}^{m}\int_{b^{\kappa+1}}^{a_{\kappa}}\tilde{U}_{\kappa}^{*}(\varphi)d\tilde{\omega}^{(2)}(e^{i(a}j^{+0)}\varphi)$

$=-\frac{1}{2\pi}\sum_{J-1}^{m}\{\int_{a_{j}}^{b_{j}}U_{j}^{*}(\varphi)d\arg\Phi(e^{i\varphi}, z)+\int_{b^{j+1}}^{a_{j}}U_{j}^{\star}(\varphi)d(2\pi\tilde{\omega}^{(2)}(z, \varphi)$

$+\sum_{\kappa-1}^{\prime n}\tilde{\omega}^{(2)}(e^{i(a_{\kappa}+0)}, \varphi)\arg\frac{\Phi(e^{ib_{\kappa}},z)}{\Phi(e^{ia_{\kappa}},z)})\}$ .

Comparing this expression with the previous one for $u^{*}(z)$, we
obtain

$0=\sum_{j\Leftarrow 1}^{m}\int_{\iota_{j}^{j+1}}^{a}\theta_{j}^{\star}(\varphi)d(\tilde{\omega}^{(2)}(z, \varphi)$

$+\frac{1}{2\pi}\sum_{\kappa\Leftrightarrow 1}^{m}\tilde{\omega}^{(2)}(e^{i(a_{\kappa}+0)}, \varphi)\arg\frac{\Phi(e^{ib_{\kappa}},z)}{\Phi(e^{ia_{\kappa}},z)}-\frac{1}{2\pi}lg|\Phi(e^{i\varphi}, z)|)$

$=\sum_{j-1}^{m}\{[\theta_{j}^{\star}(\varphi)(\tilde{\omega}^{(2)}(z, \varphi)+\frac{1}{2_{\pi}}\sum_{\kappa-1}^{m}\tilde{\omega}^{(2)}(e^{i(a_{\kappa}+0)}, \varphi)\arg-\Phi(e^{ib_{\kappa}},z)\Phi(e^{ia_{\kappa}},z)$

$-\frac{1}{2\pi}lg|\Phi(e^{i\varphi}, z)|)]_{\varphi=b_{j}}^{a_{j+1}}-\int_{b_{j}^{j+1}}^{a}(\tilde{\omega}^{(2)}(z, \varphi)$

$-\frac{1}{2\pi}\sum_{\kappa=1}^{m}\tilde{\omega}^{t2)}(e^{i(a_{\kappa}+0)}, \varphi)\arg\frac{\Phi(e^{ib_{\kappa}},z)}{\Phi(e^{ia_{\kappa}},z)}\frac{1}{2_{\pi}}lg|\Phi(e^{i\varphi}, z)|)d\tilde{U}_{j}^{*}(\varphi)\}$ .

Since $U_{j}^{\star}(\varphi)$ may be chosen here as a boundary function along $ a_{j}<\varphi$

$<b_{j}$ of any function $u^{*}(z)$ regular harmonic in $|z|\leqq 1$ , the fundamental
lemma in the calculus of variations in its slightly extended form implies
thus the identity

$\tilde{\omega}^{(2)}(z, \varphi)+\frac{1}{2\pi}\sum_{\kappa-1}^{m}\tilde{\omega}^{(2)}(e^{i(a_{\kappa}+0)}, \varphi)\arg\frac{\Phi(e^{ib_{\kappa}},z)}{\Phi(e^{ia_{l}},z)}=_{\overline{2}\pi^{-}}^{1}lg|\Phi(e^{i\varphi}, z)|$ .

Quite similarly, we conclude a corresponding relation

$\tilde{\omega}^{(1)}(z, \varphi)+\frac{1}{9_{\pi}}\sum_{=1}^{m}\tilde{\omega}^{(1)}(e^{i(b_{\kappa}+0)},\varphi)\arg^{Z}\frac{\Psi(e^{ia_{\kappa+1}}}{\Psi(e^{ib_{\kappa}},z}=\frac{1}{2\pi}lg|\Psi(e^{i\varphi}, z)|)^{)}$
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The differentials with respect to $\varphi$ of the last two equations, after
multiplied by $\theta_{j}(\varphi)$ and $U_{j}(\varphi)$ , respectively, integrated over $b_{j}$ to $a_{j+1}$

and $a_{j}$ to $b_{j}$, respectively, and then added with respect to $j$, imply
the relations

$\sum_{j-1}^{n}\int_{b_{j}^{j+1}}a_{\theta_{j}(\varphi)d(z,\varphi)-\sum_{\kappa\rightarrow 1}^{m}\gamma_{\kappa}\int_{a_{\kappa}^{\kappa}}^{b}d\omega^{(1)}(z,\varphi)}\tilde{\omega}^{(2)}$

$=\frac{1}{2\pi}\sum_{j\Leftrightarrow 1}^{n}\int_{b^{j+1}}^{a_{j}}U_{j}(\varphi)dlg|\Phi(e^{i\varphi},z)|$ ,

$\sum_{j=1}^{m}\int_{a_{j}}^{b_{j}}U_{j}(\varphi)d_{\tilde{\omega}^{(1)}}(z, \varphi)-\sum_{\kappa\rightarrow 1}^{m}|\alpha_{\kappa}\int_{b^{\kappa+1}}^{a_{\kappa}}d\omega^{(2)}(z, \varphi)$

$=\frac{1}{2\pi}\sum_{j\approx 1}^{m}\int_{a_{j}^{j}}^{b}U_{j}(\varphi)dlg|\Psi(d^{\varphi}, z)|$ .

Substituting these relations, together with those obtained above
between $\omega^{(1)}$ and $\Phi$ and between $\omega^{(2)}$ and $\Psi$ , into the formula at the
end of the last section, we reach really the desired formula to be
proved.

4. Case of a single pair of arcs.
If there exists merely a single pair of boundary arcs bearing

respectively the prescribed boundary values of the real and imaginary
parts of an analytic function to be determined, the kernels contained
in the integral representation of the solution can be explicitly expressed
within the range of elementary functions. Let the proposed problem
be formulated as follows: To determine a function $f(z)=u(z)+i\tilde{u}(z)$

analytic and bounded in $|z|<1$ and satisfying the $ bounda\eta$ conditions
$u(e^{i\varphi})=U(\varphi)$ for $a<\varphi<b$ ,

$\tilde{u}(e^{i\varphi})=U(\varphi)$ for $ b<\varphi<a+2\pi$ ,

the fundions $U(\varphi)$ and $U(\varphi)$ being supposed continuous and bounded
in their respective intervals of definition.

We first remember the formula on the solution of the corresponding
mixed boundary value problem
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$\Delta u(z)=0$ in $|z|<1$ ,

$u(e^{i\varphi})=U(\varphi)$ for $a<\varphi<b$ ,

$-(7u_{\partial\nu}(e_{-}^{i\varphi})=V(\varphi)$ for $ b<\varphi<a\vdash 2\pi$ .

In our previous papers3) it has been solved in two apparently different
but mutually equivalent ways. We prefer here, for instance, the
formula of the form

$ u(z)=\backslash 1_{t}^{\tau}\{\overline{2}^{1}\pi-\int_{a}^{b}U(\varphi)(\sin\varphi_{s ,2^{e^{i(2\varphi-a- b)/}}in2)^{1^{\mathfrak{d}}2}}^{-ab^{4}-\varphi}’ 1^{/}z-C1^{/}\overline{z-e^{ib}}z^{ia}-c^{i\varphi}d\varphi$

$---1\pi-\int_{b}^{a\prime 2_{tl}}V(\varphi)$

$\times lg---\frac(e^{i(b-a)/8}\underline{(s}in^{\varphi}-\frac{-b}{2})^{1/2}t^{/}\prime z_{n-(z-e^{i\varphi})^{8(\sin}}^{-e_{2}^{ia}}si^{b-a^{+e^{-i(b- a)^{\prime}}}}\varphi-a2)^{12}1^{/}z-e^{ib})^{2}d\varphi\}$ ,

the square roots $1^{/}z-e^{\overline{i}a}$ and 1 $z-e^{i/2}$ denoting here and below the
branch which attains the values $ie^{ia^{\gamma}2}$ and $ie^{ib2}$ , respectively at the
origin.

We consider accordingly an analytic function defined by

$f^{(1)}(z)\equiv u^{(1)}(z)+i_{l^{\sim_{\dot{\nu}}(1)}}(z)$

$=\frac{1}{2\pi}\int_{a}^{b}U(\varphi)\frac{e^{i(2\varphi- a-b)/4},}{(/\sin\varphi-ab-t/J}1^{/}z-e|\overline{z-e}^{ib}z^{ir\iota}-c^{i\varphi}d\varphi$
.

It is evidently regular and bounded in $|z|<1$ and further satisfies the
boundary conditions

$u^{(1)}(e^{i\varphi})=U(\varphi)$ for $a<\varphi<b$ ,

$l^{\sim t1)}t(c^{i\varphi})=0$ for $ b<\varphi<a+2\pi$ .
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In fact, the first relation is immediate from the definition of $f^{(1)}(z)$ ,
while the second will be derived by actual computation; namely, we
get, for $ b<\varphi<a-\vdash 2\pi$ ,

$l^{\sim}:^{(1)}(e^{i\varphi})=_{t}\backslash \backslash \frac{1}{2\pi}.\int^{b_{l}}U(\psi)(\sin\psi-a_{\sin-}^{\underline{9}/-ll/)}b^{\prime 4}-\psi 2^{i}2e(’))^{1)}-$

$i_{()}^{i(\varphi+a/4}(\sin\varphi-a2)^{12}ie^{i^{(}\varphi+/,)4}(\sin\varphi-\underline{b}2)^{1/\underline{J}}$

’

$ d\psi$

$ c^{i(\forall}\sqrt{})^{\prime})\varphi-\psi$

2

$=\backslash \backslash \backslash 2\pi 1.|_{(l^{1}}^{\prime}U(\psi)(\backslash \sin\sin\psi-at/J-a22\sin\sin\underline{b}-\psi(/J-b\underline{\prime y}2)^{1/}2\sin/-\psi 1_{r_{2}}d\psi=0$ .

We next $consid_{(}\cdot r$ an analytic function $f^{J.)}|(z)$ obtained by replacing
$a,$ $b,$ $U(\varphi)$ in the expression of $f^{11)}(z)$ by $b,$ $a$ } $2_{\pi},\tilde{U}(\varphi)$ , respectively.
Since $|z-(j^{(a\}})\kappa)$ must then be identified with $-1z-t$) $ia$ we accord-
ingly get

$f^{t2)}(z)$ $\dot{\grave{i}}^{\sim,(.)}’$

)

$(z)-i)$

$=\frac{i}{2_{\pi}}.|_{b}^{a}-)r_{\tilde{U}(\varphi)}(\sin\varphi-a_{s^{\rho}i^{-}n^{a}}^{i)}2^{()}(-(/J-bb)/,l2)^{1/)}1^{/}z-C1^{/}\overline{z-e^{il\prime}}\overline{z^{ia}}-t^{i\varphi}d\varphi$
,

the square roots denoting, of course, again the same branch as above.
It is also regular and bounded in $|z|<1$ and further, as verified simi-
larly as above, satisfies the bounclary conditions

$’\sim\leftarrow(e^{i\varphi})=\tilde{U}(\varphi)$ for $b$ ,
”

$\varphi$ $ a+2\pi$ ,

$u^{(2)}(c^{i\rho})=0$ for a $\varphi^{r}b$ .
Thus, the analvtic function $d()fi_{il}ed$ by

$f(z)=f(l)(z)\dashv if$
$\underline{)}$ )

$(z)-$ $u(z)+j_{l}^{\sim,}(z)$
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$=\frac{1}{2\pi}\{\int_{a}^{b}U(\varphi)\frac{e^{i(2\varphi-a-b)/4}}{(\sin\frac{\varphi-a}{2}\sin_{\frac{b-}{2})^{1/2}}^{\underline{\varphi}}}\frac{\sqrt{z-e^{ia}}1/\overline{z-e^{ib}}}{z-e^{i\varphi}}d\varphi$

$-\int_{b}^{a+2\iota}\tilde{U}(\varphi)\frac{e^{i(2\varphi-a-b),^{\prime}4}}{(\sin\frac{\varphi-a}{2}\sin\frac{\varphi-b}{2})^{1/2}}\frac{1^{/\overline{z-e^{ia\sqrt{z-e^{ib}}}}}}{z-e^{i\varphi}}d\varphi\}$

,

the square root $1^{/}\overline{z-e^{ic}}$ denoting the branch which attains the value
$ic^{ic/2}$ at the origin, is regular and bounded in $|z|<1$ and satis.$\hslash es$ the
boundary conditions

$u(e^{i\varphi})=U(\varphi)$ for $a<\varphi<b$ ,

$\tilde{u}(e^{i\varphi})=\tilde{U}(\varphi)$ for $ b<\varphi<a+2\pi$ ,

and hence solves the mixed boundary value problem in consideration.
By the way, it may be noted that, by means of the identities

$2i\frac{\partial}{\partial\varphi}$

$(e^{i(b-a)/8}(\sin\frac{b-\varphi}{2})^{1/2}1^{/}\overline{z-e^{ia-ie^{-j(b-a)/8}(\sin_{2}^{\varphi_{-}-\underline{a}}\underline{)^{1/2}1^{/}\overline{z-c^{ib}})^{2}}}}-$

$xlg\overline{z-e^{t\varphi}}-$

$=\frac{e^{i(2\varphi-a-b)/4}}{(,\backslash \sin\underline{\varphi}\frac{-a}{2}\sin\frac{b-r^{y}}{2})^{1_{J}2}}\frac{1^{/}\overline{z-e^{ia}}1^{/}}{z-e^{i\varphi}}\overline{z\underline{-e^{ib}}_{-}}$

and

2 $\frac{\partial}{\partial\varphi}$

$(e^{;(b- a)/8}(\sin\frac{\varphi-b}{2})^{1/2}1^{/}\overline{z-e^{ia}}+e^{-i(b- a)/8}(\sin\frac{\varphi-a}{2})^{1/2}1^{/}\overline{z-e^{ib}})^{2}$

$xlg_{\ovalbox{\tt\small REJECT},z-e^{i\varphi}}$

$=\frac{e^{i(2\varphi- a- b)/4}}{(\sin\frac{\varphi-a}{2}\sin\frac{\varphi-b}{2})^{1/2}}\frac{1^{/}z\overline{-\ell^{ia}}1^{/}\overline{z-e}^{ib}}{z-e^{i\varphi}}$

,
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the formula for the solution just obtained can be written also in the
form

$f(z)=\frac{1}{\pi}\{i\int_{a}^{b}U(\varphi)$

$\times dlg_{\ovalbox{\tt\small REJECT}_{Z-e^{i\varphi}}}(e^{i(b- a)/8}(\sin\frac{b-\varphi}{2})^{1/2}\sqrt{z-e^{ia}}-ie^{-i(b-a)/8}(\sin\frac{\varphi-a}{2})^{1/2}\underline{\sqrt{z-e^{ib}})^{2}}$

$-\int_{b}^{a+2u}U(\varphi)$

$\times dlg\underline{(e^{i(b- a)/8}(\sin\frac{\varphi-b}{2})}^{1/2}1^{/\overline{ia}_{Z-}}z-e+e_{e^{i\varphi}}^{-i(b- a)_{/^{\prime}}8}(\sin\frac{\varphi-a}{\ovalbox{\tt\small REJECT} 2})^{1/2}\sqrt{z-e^{ib}})^{2}\}$

.

Finally, an attention should be called to the fact that in this
simplest case there exists always a unique solution without any func-
tional restriction on the prescribed boundary functions $U(\varphi)$ and $\tilde{U}(\varphi)$ .

5. Case of two pairs of arcs.

In case there exist two pairs of boundary arcs bearing alternately
the prescribed boundary values of the real and imaginary parts of an
analytic function to be determined, the kernels contained in the integral
representation of the solution are $explicit$ly expressible within the range
of elliptic functions. The proposed original problem is to determine a
function $f(z)=u(z)+i\tilde{u}(z)$ analytic and bounded in $|z|<1$ and satisfying
the boundary conditions

$u(e^{i\varphi})=U_{1}(\varphi)$ for $a_{1}<\varphi<b_{1}$ , $u(e^{i\varphi})=U_{2}(\varphi)$ for $a_{2}<\varphi<b_{2}$ ,

$\tilde{u}(e^{i\varphi})=U_{1}(\varphi)$ for $b_{1}<\varphi<a_{2}$ , $\tilde{u}(e^{i\varphi})=\tilde{U}_{2}(\varphi)$ for $b_{2}<\varphi<a_{1}+2_{\pi}$ ,

the boundary functions $U_{1}(\varphi),$ $U_{2}(\varphi),$ $U_{1}(\varphi)$ and $U_{2}(\varphi)$ being supposed
continuous and bounded in their respective intervals of definition.

Now, based on the conformal invariance of our problem, we may
choose any simply connected domain instead of the unit circle. Simi.
larly as in the preceding paper, we again prefer here, for convenience
sake, a rectangle of the form
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$lgq<\backslash )_{\backslash }^{1}\hat{z}<0$ , $ 0<\mathfrak{J}\hat{z}<\pi$ ,

laid on the $\hat{z}$ -plane, as the basic domain, $q$ being a positive constant
less than unity. As well-known, the unit circle $|z|<1$ can be mapped
onto a rcctangle of this form in such a manner that the points $e^{ia_{1}}$ ,
$e^{\iota b_{1}},$ $c^{ia_{-}}$’ and $e^{i/))}$ on $|z|=1$ correspond to the vertices $0,$ $j_{\pi}$ $lgq+i_{\pi}$

and $lgq$ , respectively. Since the ratio of the length of adjacent sides
of the rectangle is a conformal invariant called its moduln $\backslash \sigma$ , the number
$q$ is uniquely $c1(^{\backslash }tet^{-}\min_{1^{\prime}}d[)y$ the assigned correspondence. Moreover,
the mapping fun($\tau tion$ is $1^{\cdot}(allyd_{\llcorner^{1}}fine(1\})y$ the equations

$\hat{z}=i.|_{\infty}^{\backslash }|4(\chi-(1)(\aleph^{\prime}dY^{\prime}c)(\backslash - \{)$ ,

$(\chi,,\}$ $(z,$ $(f;_{\mathfrak{l}}, c^{;_{a}}\cdot\cdot, c^{r/}’)$ ,

where the triple of the real constants $c_{1},$ $e.$ ’ and $e_{\gamma}$ with $c_{1}^{)}>c.$) $>c’\circ$, is
subjected to the conditions

$e_{1}+c_{\lrcorner}|c_{3}-0$ , $e_{1}^{1}\iota’-$

”
$(\sin ’’ -b_{1}2\sin a’-a_{1}\sim^{)})(\sin b_{-})-a_{1}2\sin a_{\sim^{)}}-b_{1}2)$

and a remaining freedom of a common factor for the triple is to be
determined in such a way that $\uparrow$ he primitive $p(lriodsot$ the elliptic
function $\chi$

$\delta^{3}$

’
$( j_{7})$ are

2 $\prime\prime)_{\downarrow}^{--2\pi}$

$-$

)
$|$ }

$2\iota 1\iota:q$

The number $q$ is then $de\Gamma_{l}\rangle$ [) $y$ the $(^{\backslash }(|u_{c}’\iota tion$

$(\sin b_{:_{2}^{-}}a_{1}\sin a_{\underline{1}}-b_{1}\underline{)})(\sin b_{\llcorner})-b_{1}2\sin a,-a_{1}\underline{)})$
$\iota’-(c_{1^{l}}-c,.,$

$=||r^{\sim}1(1Iq^{- l}1-q_{r_{l-\iota^{1}}^{)}})^{\backslash }$ ,

which is also equivalent to the $(^{)}(|u_{c}’\iota tion$

$lgq$ $-K^{\prime}/\kappa$ ,

where $K$ and $K^{\prime}$ denote, as usu,$\gamma 1$ , the quantities.given [) $y$

$K-|_{(11}^{1}(1-l^{\sim^{\prime}})(1-k^{\prime}\cdot t^{\prime})c//$

.
$K^{\prime}$

$|_{(}^{1_{I|}}(1-l’)(1-k^{t_{\sim}}\mathfrak{l}t^{\prime}\sim)rtt$

with
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$k^{\prime 2}=1-k^{2}=e_{1}-e_{2}$

$e_{1}-e_{3}$

According to the remark just statcd, we now choose, for the sake
of mere convenience, a rectangle as the basic domain, which is laid
on the $z$-plane–for brevity sake, we again write $z$ instead of $\hat{z}-$ .
Let it be accordingly expressed by

$lgq<\backslash J1z<0$ , $ 0<\backslash ^{\backslash }|z<\pi$ .

The problem is then to dctermine an explicit expression for a function
$f(z)=u(z)\vdash i_{l^{\sim}}\iota(z)$ analytic and bounded in the rectangle and satisfying
the boundary conditions

$u(it)=-- M(t)$ and $u(lgq+it)_{-}=N(t)$ for $ 0<l<\pi$ ,

$l\ell\sim(s)=\tilde{M}(s)$ and $l_{\vee}^{\sim,}(s+i_{\pi})-\tilde{N}(s)$ for $lg^{r}q\swarrow s<0$ ,

As a $conse\mathfrak{c}[uence$ of the general discussion, the condition for the
existence of a solution must be given by a single functional relation
among the prescribed boundary functions. Although the relation will
be dcrived naturally during the following arguments, it can also be
previously formulated in quite a brief manner. We now commence
with the statement on the condition for the existence of a solution:

A necessary and $s\ell fficient$ condition for the existence of a solution
of our mixed boundary value problem is given by

$\int_{0}^{\kappa}(M(t)-N(t))dt\dagger-\int_{1q}^{0_{k^{r}}}(\tilde{M}(s)-\tilde{N}(s))ds=0$ .

The necessity of the condition is quite evident. In fact, by consi.
dering the contour integral of $f(z)$ extended along the whole boundary
of the basic rectangle, we get

$0--\int f(z)dz=\int_{0}^{\pi}(M(t)-N(t))cll-\vdash\int_{1q}^{0_{\mathfrak{t}_{x}^{\prime}}}(\tilde{M}(s)--\tilde{N}(s))ds$ .

The sufficiency proof may proceed as follows. Let $g(z)=\tilde{v}(z)-iv(z)$

be any function analytic and bounded in the rectangle, continuous on
its closure and further satisfying the conditions

$\tilde{v}(s)=\tilde{M}(s)$ and $\tilde{v}(s+i\pi)=\tilde{N}(s)$ for $lgq<s<0$ .
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Such a function can be constructed in various ways. Now, the func-
tion $w=e^{z}$ maps the basic rectangle onto the upper half of the annulus

$q<|w|<1$ , $\backslash \infty_{|w>0}$ .
We then solve a Dirichlet problem for the annulus $q<|w|<1$ obtained
by duplicating the semi.annulus, of which the boundary conditions are
given in the form

$u^{*}(e^{i\psi})=u^{*}(e^{-i\psi})=M(\psi)-v(i\psi)$ ,
for $ 0<\psi<\pi$ .

$u^{*}(qe^{i\psi})=u^{*}(qe^{-;\psi})=N(\psi)-v(lgq+i\psi)$

Let $u^{*}(w)$ be its solution and let $\tilde{u}^{*}(w)$ denote a branch of any harmonic
function conjugate to $u^{*}(w)$ . The symmetry character of the boundary
conditions implies immediately the relation

$\frac{\partial}{\partial}\frac{u^{*}\tilde}{\backslash J}\frac{w)}{w}\grave{\iota}(=-\frac{\partial}{\partial}u_{d}^{*}(w\underline{)}\overline{\sim}_{w}=0$ for $q<|w|<1$ , $\mathfrak{J}w=0$ .

Hence $\tilde{u}^{*}(w)$ must remain constant along each boundary segment of
the upper semi-annulus; we put

$\tilde{u}^{*}(w)=c_{\pm}$ for $q<|w|<1$ , $\backslash $) $\grave{\iota}w$ liii $0$ , $\backslash \backslash _{\}w=0}$ .
Consider then the function defined by

$f(z)\equiv u(z)+i\tilde{u}(z)=u^{*}(e^{z})+i(\tilde{u}^{*}(e^{z})-c_{k})+v(z)+i\tilde{v}(z)$ .
It is analytic and bounded in the original rectangle and satisfies the
boundary conditions

$u(it)$ $=u^{*}(e^{il})+v(it)$ $=M(t)$ ,
for $ 0<t<\pi$ ;

$u(lgq+it)=u^{*}(qe^{i\ell})+v(lgq+it)$ $=N(t)$

$\tilde{u}(s)$ $=\tilde{u}^{*}(e^{s})-c_{+}+\tilde{v}(s)$ $=\tilde{M}(s)$ ,
for $lgq<s<0$ .

$\tilde{u}(s+i_{\pi})=\tilde{u}^{*}(-e^{s})-c_{+}+\tilde{v}(s+i_{\pi})=c_{-}-c_{+}+\tilde{N}(s)$

By taking into account the necessity condition satisfied by $f(z)$ , we
have

$0=\oint f(z)dz=-lgq\cdot(c_{-}-c_{+})$ .
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Hence, the function $f(z)$ satisfying entirely the boundary conditions, it.
is just a solution of the problem, what completes the desired proof.

Once the existence of a solution having been ensured, its uniqueness
is a matter of course.

By the way, it may be noticed that the condition in consideration
ensures the one-valuedness of the function $\tilde{u}^{*}(w)$ in the whole annulus
$q<|w|<1$ . In fact, the relation $c_{-}=c_{+}$ implies that the function
$f^{*}(w)=u^{*}(w)+i\tilde{u}^{*}(w)$ analytic in the upper semi.annulus is analytically
prolongable, based on the functional equation

$f^{*}(\overline{w})=\overline{f^{*}(w)}+2ic_{+}$ ,

beyond the boundary segments on the real axis into the lower semi-
annulus.

Moreover, the connection of the condition in consideration with
the so-called monodromy condition4) will also be evident. Namely, in
view of the former together with itself applied to $ig(z)$ defined above,
we get

$\int_{-\pi}^{l}u^{*}(e^{i\psi})d\psi-\int_{-\pi}^{ll}u^{*}(qe^{i\psi})d\psi$

$=2\int_{0}(M(\psi)-v(i\psi))d\psi-2I_{0}^{t}(N(\psi)-v(lgq+i\psi))d\psi$

$=2\{\int_{0}^{\tau t}(M(\psi)-N(\psi))d\psi+\int_{lgq}^{0}(\tilde{M}(s)-\tilde{N}(s))ds\}$

$-2\{\int_{0}^{t}(v(i\psi)-v(lgq+i\psi))d\psi+\int_{1gq}^{0}(\tilde{v}(s)-\tilde{v}(s+i_{\pi}))ds\}=0$ .

The last relation is nothing but the monodromy condition ensuring
again that the harmonic function $\tilde{u}^{*}(w)$ conjugate to $u^{*}(w)$ is one.valued
throughout the whole annulus.

We now turn our attention to the main discourse. As shown in
the previous paper, the corresponding mixed boundary value problem

$\Delta u(z)=0$ in $lgq<\backslash J\grave{\backslash }z<0$ , $ 0<\mathfrak{J}z<\pi$ ,

$u$ (it) $=M(t)$ and $u(lgq+it)=N(t)$ for $ 0<t<\pi$ ,

$\partial u(s)=P(s)$ and $\partial u(s+i\pi)=Q(s)$ for $lgq<s<0$
$\partial\nu$ $\partial\nu$
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is solved by the formula

$u(z)=\backslash J\iota^{\iota}\{\pi 1_{i}\int_{0}^{\pi}(^{2?’ Z}lg^{3}q(M(t)-N(t))$

$+M(t)(\zeta(i_{Z\dashv}- t)+\zeta(iz-t))-N(t)$ ( $\zeta_{3}(iz+t)+\zeta_{3}$ (iz-t))) $dl$

$+\pi 1\int_{1}^{0_{k^{(:}}},()/Zs(P(s)+Q(s))$

$-\vdash P(s)lg\sigma(iz-is)-|Q(s)lg\sigma_{1}^{1}(iz|is)\sigma(iz-is))ds\}$ ,
$\sigma$ ( $iz|$ is)

the notations from thc Weierstrassian thcory of elliptic functions re-
ferring here to those with the $pri_{ll1}iti\iota_{(}^{r}\backslash $ ]) $\iota^{\iota}riods$

$2\omega_{1}$ $\underline{)}_{\pi}$
$\underline{\prime)}_{(\prime)s^{=}\sim}$ $-’$

)$ilgq$ .

Accordingly, we first consider an analytic function dcfined by

$f^{(1)}(z)-u^{t1)}(z)|i_{i^{\sim,}}(z)$
$\pi i\rceil J_{(1}^{\pi}(\frac{\prime)}{1’}/\mathfrak{i}k^{\tau}q^{z}(M(t) N(t))$

$|M(t)(\zeta(iz|l)\neq\zeta(i_{Z}-t))-N(l)(\zeta_{3}(iz+t)\dashv-\zeta_{3}(iz-t)))dt$ .

It is regular and bounded in the basic rectangle and satisfies the
boundary conditions

$u^{(1)}(it)=M(t)$ and $u^{(1)}(lgq-|\cdot it)=N(l)$ for $0\nearrow t\nearrow_{\pi}$ ,

$\tilde{u}^{(1)}(s)=0$ and $l^{\sim t1)}/(s-|- i\pi)=-\frac{1}{1_{k^{r}}q}\int_{0^{r}}^{\prime}(M(l)-N(t))dt$ for $lgq<s<0$ .

In fact, the former is an immediatc $cons\iota\cdot C\downarrow ueIlCe$ of the definition,
while the latter will be verified by actual computation. Namely, we
get, for $lgq<s<0$ ,

$\tilde{u}^{(1)}(s)_{\backslash }^{\backslash }=\backslash \{\frac{1}{\pi i}\int_{0}^{\pi}(_{lg^{3}q}^{2\eta s}(M(t)-N(t))+M(t)(\zeta(is+t)- t-\zeta(is-t))$

$-N(t)(\zeta_{3}(is+t)+\zeta_{3}(is-l)))dt\}=0$ ,
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$\tilde{u}^{(1)}(s+i_{\pi})_{\backslash }^{\backslash }=\backslash \{\frac{1}{\pi i}\int_{0}^{\pi}(\underline{2\eta}_{3}(s+i_{\pi})1gq(M(t)-N(t))$

$+M(t)(\zeta(is-\pi+t)+\zeta(is-\pi-t))$

$-N(t)(\zeta_{3}(is-\pi+t)-\zeta_{\tau}(is-\pi-t)))dt\}$

$=\pi 1(_{i^{?\pi}}2_{1^{\prime}g^{3}q}+2/1)\int_{0}^{\chi}(M(t)-N(t))dt$

$=-Jg^{1}q\int_{0^{t}}(M(t)-N(t))dt$ .

Here we have taken into account the facts that, since the primitive
periods $2\omega_{\downarrow-- 2\pi}^{--}$ and $2_{(\ell)}3--2ilgq$ are real and purely imaginary re-
spcctively, and hence the quantities $\eta_{1}$ and $i\eta_{?}$, are both real and further
the relations

$\zeta(w)=\zeta(\iota v)$ , $\zeta_{3}(w)=\zeta_{I}(\overline{w})$

are valid identically, together with the fundamental properties

$\zeta(w+\pi)--\zeta(\iota v)+\cdot\cdot 1/1$ , $\zeta_{?}(\ell v\}\pi)=\zeta_{?}(\iota\{f)+)’\iota$

as well as the Legendre’s $i(1_{(}\cdot ntity$

$\pi i,/\cdot)$ /1 $\mathfrak{i}^{-}/\gamma’$ ) $=-ilgq-\eta_{\gamma}\pi$ .
We next consider a function $f^{(..)}Q(\hat{z})$ analogous to $f^{(1)}(z)$ , which is

obtained from the latter by replacing $z,$ $t,$ $q,$ $M(t)$ and $N(t)$ respectively
by

$\hat{\sim}=-lgq(iz-ilgq)$ ,
$\backslash \prime i^{--}-1^{\pi}gq(s-lgq)$ ,

$\hat{/}l^{-\exp}lgq$ ,
$\pi$ $\pi^{2}$

$\tilde{M}(--lgq\pi(_{\backslash }\hat{\backslash \cdot}-\tau_{l}\cdot))$ and $\tilde{N}(=_{\pi}lg\underline{q}(\backslash ^{\wedge}\backslash \backslash -\pi))$ ,

$i$ . $e$ .
$f(2)(\hat{z})^{-}--\iota^{\sim_{\hat{l}^{(2)}}}(\hat{z})-i?\wedge l^{(?)}(\hat{z})$

$=$ $\pi 1_{i}|_{0^{r}}(2_{J^{\wedge\wedge}}\wedge^{\wedge}\cdot(\tilde{M}(-lgq\pi(_{\backslash }\backslash \bigwedge_{\backslash -\pi}))-\tilde{N}(-lgq\pi(\hat{s}-\pi)))$
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$+\tilde{M}(\frac{-lgq}{\pi}(\hat{s}-\pi))(\hat{\zeta}(i2+\hat{s})+\xi(i\hat{z}-\hat{s}))$

$-\tilde{N}(=_{\pi}lgq(\hat{s}-\pi))(\hat{\zeta}_{3}(iE+\hat{s})+\hat{\zeta}_{3}(i\hat{z}-\hat{s})))d\hat{s}$ ,

the notations from the Weierstrassian theory of elliptic functions,
marked by $\wedge$ now referring to those with the primitive periods

$ 2\hat{\omega}_{1}=2\pi$ , $2\hat{\omega}_{3}=-2ilg\hat{q}$ .
By making use of the identities

$\hat{\omega}_{1}\xi(\hat{\omega}_{1}Z)=\omega_{3}\zeta(\omega_{3}Z)$ , $\hat{\omega}_{1}\hat{\zeta}_{3}(\hat{\omega}_{1}Z)=\omega_{3}\zeta_{1}(\omega_{3}Z)$ ,

$\hat{\omega}_{1}\partial_{1}=\omega_{3}\eta_{3}$ , $\hat{\omega}_{1}\hat{\eta}_{3}=-\omega_{3}\eta_{1}$ ; $\hat{\omega}_{3}/\hat{\omega}_{1}=-\omega_{1}/\omega_{3}\pi$ ,

the functions depending on the primitive periods $ 2\hat{\omega}_{1}=2\pi$ and $2\hat{\omega}_{3}$

$=-2ilg\hat{q}$ can be replaced by those on $ 2\omega_{1}=2\pi$ and $2_{\omega_{3}}=-2ilgq$ .
Thus, returning to the original variable

$-lgq(\hat{z}-i_{\pi})$ ,
$z=-i_{\pi}$

after substituting the new integration variable by means of $s$

$=(-ilgq/\pi)(\hat{s}-\pi)$ , we get

$f^{(2)}(z)\equiv f^{(2)}(\hat{z})\equiv\tilde{u}^{(2)}(z)-iu^{1}(2)(z)$

$=-\frac{1}{\pi}\int_{lq}^{0_{g\pi i}}(2\eta_{1}z+\pi(\tilde{M}(s)-\tilde{N}(s))$

$+\tilde{M}(s)(\zeta(iz-is)+\zeta(iz+is))-\tilde{N}(s)(\zeta_{1}(iz-is)+\zeta_{1}(iz+is)))ds$ .

The function $f^{(2)}(z)$ thus defined is regular and bounded in the original
rectangle and satisfies the boundary conditions

$\tilde{u}^{(2)}(s)=\tilde{M}(s)$ and $\tilde{u}^{t2)}(s+i\pi)=\tilde{N}(s)$ for $lgq<s<0$ .
$u^{(2)}(it)=-\frac{1}{\pi}\int_{lgq}^{0}(\tilde{M}(s)-\tilde{N}(s))ds$ and $u^{(2)}(lgq+it)=0$ for $ 0<t<\pi$ .

In fact, the former is evident from the manner of constructing $f^{(2)}(z)$
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and the latter will be verified by actual computation; or else one may
also remark the relation

$u^{t2)}(it)=\frac{1}{lgq}\int_{0}^{l}(\tilde{M}(-lgq\pi(\hat{s}-\pi))-\tilde{N}(\underline{-l}gq\pi(\hat{s}-\pi)))d\hat{s}$

$=-\frac{1}{\pi}\int_{lgq}^{0}(\tilde{M}(s)-\tilde{N}(s))ds$ for $ 0<t<\pi$ ,

which follows immediately from our previous consideration on $\tilde{u}^{(1)}(s+i_{\pi})$

with $lgq<s<0$ .
We finally define an analytic function by

$f(z)\equiv u(z)+i\tilde{u}(z)$

$=f^{(1)}(z)+if^{(2)}(z)+1_{\frac{g}{\pi}}q_{\frac{-z}{gq}\int_{lgq}^{0}}l(\tilde{M}(s)-\tilde{N}(s))ds$ .

It is regular and bounded in the basic rectangle and satisfies the
boundary conditions

$u$ (it) $=u^{(1)}(it)+u^{(2)}(it)+\frac{1}{\pi}\int_{lgq}^{0}(\tilde{M}(s)-\tilde{N}(s))ds$

$=M(t)-\frac{1}{\pi}\int_{lgq}^{0}(\tilde{M}(s)-\tilde{N}(s))ds+\frac{1}{\pi}\int_{lgq}^{0}(\tilde{M}(s)-\tilde{N}(s))ds=M(t)$ ,

$u(lgq+it)=u^{(1}$‘ $(lgq+it)+u^{(2)}(lgq+it)=N(t)$ for $ 0<t<\pi$ :
$\tilde{u}(s)=_{\nu\vee}4\sim,(1)(s)+\tilde{u}^{(2)}(s)=\tilde{M}(s)$ ,

$\tilde{u}(s+i_{\pi})=p\iota\sim(1)(s+i_{\pi})+\tilde{u}^{(2)}(s+i_{\pi})-\frac{1}{lgq}\int_{lq}^{0_{g}}(\tilde{M}(s)-\tilde{N}(s))ds$

$=-lg^{1}q\int_{0}^{t}(M(l)-N(t))dt+\tilde{N}(s)$

$-lg^{1}q\int_{lq}^{0_{g}}(\tilde{M}(s)-\tilde{N}(s))ds=\tilde{N}(s)$ for $lgq<s<0$ ;

in the last equation the condition for the existence of the solution is
taken into account. Thus, the function $f(z)$ solves surely the mixed
boundary value problem in consideration.
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By remembering again the condition for the existence of the solu.
tion and also by making use of the.Legendre’s identity

$2\eta_{!}/\pi\dashv- 1/lgq=2\eta_{\rceil}i/lgq$ ,

the final expression of the solution in its fully cxplicit $form$ becomes

$f(z)=$ $\pi 1_{i}\int_{0}^{\pi}-\ell$ }-t) $|-\zeta_{1}(iz-t)))dt$

$+\frac{1}{\pi i}\int_{lgq}^{0}$ ( ($i_{Z}\dashv\backslash \backslash i|\zeta_{1}$ ( $iz$ t-is))) $ds$ .

$D_{(}\backslash partm(\backslash nt$ of Mathematics,
Tokyo Institute of Technology.
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