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In a previous $note^{[1]}$ I have obtained an extension of the well-known
Hilbert’s norm theorem concerning cyclic fields to the case of abelian
extensions, but only for the case of $p$-adic number fields as ground
fields. The present investigation started at its first stage to fill up this
lack, but the problem was quite difficult to overwhelm, and the results
we have obtained have an entirely different meaning.

Instead of the factor sets treated in 1), we take up generally the
cochain of degree $n$ , with finite abelian operator domain.

For the case of $n=2$ , O. Schreier has obtained a normal form for
the factor sets, in his famous research on group extension.[2] A part
of this result is generalized by Lyndon,[3] and we shall reproduce the
results by another approach. We then give a more precise normal
form, which is a direct generalization of the fact, that the Galois.
cohomology group of dimension 2 by a cyclic field is isomorphic to
the norm residue class group.

The main principle which governs this paper lies in the concept
of splitting groups, which have slightly weakend property compared
with Artin’s splitting group.

Several parts of our investigation were also obtained by S. Taka-
hashi independently and appeared in a recent number of Tohoku
Mathematical Journal. $\subset 4J$

\S 1. Throughout this paper we treat the cocycles with values in
an abelian group $\Omega$ and with an abelian operator domain $G$ . We call
a cocycles to be splitting or bounding, if it is a bounding cocycle.
Then we have the following (weakend) analogy of Artin’s splitting
group, which is known as the reduction theorem.

THEOREM 1. To each cocycle $f$, we find an extension $\Omega^{*}$ of $\Omega$ ,
in which $f$ splits.

PROOF. For the sake of brevity, we shall assume that the dimen-
sion $n$ of $f$ is 3. We have by the assumption
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(1) $\frac{f(\beta,\gamma,\delta)f(\alpha,\beta\gamma,\delta)f(\alpha,\beta,\gamma)^{\delta}}{f(\alpha\beta,\gamma,\delta)f(\alpha,\beta,\gamma\delta)}=1$ .

or
(2) $f(\alpha, \beta, \gamma)^{\delta}=\{\frac{f(\beta,\gamma,\delta)f(\alpha,\beta\gamma,\delta)}{f(\alpha\beta,\gamma,\delta)f^{\gamma}(\alpha,\beta,\delta)}I^{-1}$

if we put

(3) $f^{\gamma}(\alpha, \beta, \delta)=f(\alpha, \beta, \gamma\delta)$ .
Now we observe the group $\Omega^{*}$ of l.cochain, that is, the group

whose ekments are functions with parameter $\delta$ in $G$ and values in $\Omega$ .
We identify the element $c$ in $\Omega$ to the function $c^{\delta}$ in $\Omega^{*}$ . We also
make $G$ to an operator domain by the convention
(4) $g^{\gamma}(\delta)=g(\gamma\delta)$ $(\gamma\in G)$ .
By these conventions, the equation (2) becomes the following equality,
which asserts that $f$ splits in $\Omega^{*}$ , as was required:

(5) $f(\alpha, \beta, \gamma)=\frac{c(\beta,\gamma)c(\alpha,\beta\gamma)}{c(\alpha\beta,\gamma)c(\alpha,\beta)^{\gamma}}=(\delta c)(\alpha, \beta, \gamma)$

$\left(\begin{array}{llll}c(\alpha, & \beta)=f(\alpha, & \beta, & \delta)^{-1}e\Omega^{*}\\\delta.\cdot & coboundary & & operator\end{array}\right)$ .

\S 2. Now, as well known, one can find in every cohomology class
a cocycle which takes the value 1 whenever at least one variable reduces
to 1. We shall call every cocycle or cochain with this property norm-
alized. Furthermore we shall call a cocycle $f$ weakly normal, if it
satisfies the following relation

(6) $f(\alpha_{1}\beta_{1}, \alpha_{2}\beta_{2},\cdots, \alpha_{n}\beta_{n})=f(\alpha_{1},\alpha_{2},\cdots, \alpha_{n})^{\beta_{1}h\beta a\cdots\beta n}$

. $f(\beta_{1}, \alpha_{2}, \alpha_{3},\cdots, \alpha_{n})^{\beta_{2}\beta s\cdots\beta n}$

. $f(\beta_{1}, \beta_{2}, \alpha_{3},\cdots, \alpha_{n})^{\beta a\cdots\beta_{n}}$

. $f(\beta_{1}, \beta_{2}, \beta_{3},\cdots, \beta_{n})$

for $\alpha_{i}\in A,$ $\beta_{i}\in B$.
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We now proceed to the second step and prove the
THEOREM 2. If $G=A\times B$, then there exists a normalized, weakly

normal cocycle $f$ in every cohomology class.
PROOF. The theorem is obvious if $n=0$. We shall prove the

theorem, by mathematical induction on $n$ , and suppose we have already
completed the proof for smaller values of $n$ . By theorem 1 the given
cocycle $f$ splits in some extension $\Omega^{*}$ of $\Omega$ :

(7) $f=\delta c$ .
It follows then $c$ is a $(n-1)$-cocycle with values on $\Omega^{*}/\Omega$, for

$\delta c=f\equiv 1(mod. \Omega)$ . By the assumption of induction we have an $(n-1)$ .
cochain $d(\gamma_{1},\cdots, \gamma_{n-1})$ such that

(8)
$\left\{\begin{array}{l}c^{t}(\gamma_{1},\prime\cdot\cdot,\gamma_{n- 1})\equiv c(\gamma_{l},\cdots\gamma_{n- 1})(\delta c)(\gamma_{1},\cdots,\gamma_{n- 1})\\(mod.\Omega),\\c(\alpha_{1}\beta_{1},\cdots,\alpha_{n- 1}\beta_{n- 1})\equiv c^{\prime}(\alpha_{1},\alpha_{2},\cdots,\alpha_{n-1})^{\beta_{1}\cdot\cdot\beta n-1}\\c^{/}(\beta_{1},\alpha_{2},\cdots,\alpha_{n- 1})^{\beta_{3}\cdots\beta n-1}\\(mod.\Omega),\end{array}\right.$

SO that
$d(\gamma_{1},\cdots, \gamma_{n- 1})=c(\gamma_{1,} \gamma_{n- 1})(\delta\overline{c})(\gamma_{1},\cdots, \gamma_{n-1})$

$b(\gamma_{1},\cdots, \gamma_{n-1})$

$(b(\gamma_{I},\cdots, \gamma_{n-1})e\Omega)$ .
Now the n-cocycle $f^{\prime}=\delta c^{\prime}$ satisfies the relation

(9) $f^{\prime}=\delta c,=\delta c\cdot\delta\delta\overline{c}\cdot\delta b=\delta c\cdot\delta b=f\cdot\delta b\sim f$ (in $\Omega$).

On the other hand if we put

$c^{\prime\prime}(\alpha_{1}\beta_{1},\cdots, \alpha_{n-1}\beta_{n-1})=d(\alpha_{1}, \alpha_{2},\cdots, \alpha_{n-1})^{\beta_{1}\cdots\beta n-1}$

$c^{\prime}(\beta_{1}, \alpha_{2},\cdots, \alpha_{n-1})^{\beta_{l}\cdots\beta_{n-1}}$

$l(\beta_{1}, \beta_{2},\cdots, \beta_{n-1})$ ,
we have
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$c^{\prime\prime}(\alpha_{1}, \alpha_{2\prime}\cdots, \alpha_{n-1})=c^{\prime}(\alpha_{1}, \alpha_{2},\cdots, \alpha_{n-1})$ ,

$c^{\prime\prime}(\beta_{1}, \alpha_{2},\cdots, \alpha_{n-1})=c^{\prime}(\beta_{1}, \alpha_{2},\cdots, \alpha_{u-1})$ ,

so that
(10) $c^{tt}(\alpha_{1}\beta_{1}, \alpha_{2}\beta_{2},\cdots, \alpha_{n-1}\beta_{n-1})=c^{\prime\prime}(\alpha_{1},\alpha_{2},\cdots,\alpha_{n-1})^{\beta_{1}\beta_{2}\cdots\beta n-1}$

$c^{r/}(\beta_{1},\alpha_{2},\cdots,\alpha_{n-1})^{\beta_{2}\cdots\beta n-1}$

and moreover by (8)

$d^{\prime}(\gamma_{1}, \gamma_{2},\cdots,\gamma_{n-1})\equiv d(\gamma_{1},\gamma_{l},\cdots,\gamma_{n-1})$ $(mod. \Omega)$ ,
and hence

$f^{\prime\prime}=\delta c^{\prime\prime}\sim f^{\prime}=\delta c^{\prime}$ (in $\Omega$).

By our assumption of the induction, $c^{\prime}(\gamma_{1},\cdots,\gamma_{n})mod$ . $\Omega$ may be
supposed to be normalized, so that, as is easily seen from the construc.
tion of $f^{\prime\prime},$ $f^{\prime\prime}$ may be taken as normalized, and as $f^{\prime\prime}$ is weakly normal,
as will be shown in the next \S , this proves our assertion.

\S 3. In the preceding paragraph we have proved except the point
of which we shall complete the proof in this paragraph, that every
cohomology class contains a normalized weakly normal cocycle. More
pesecisely we can suppose

(1t.) $f=\delta c$ ,
where $c$ is di normaliZed weakly normal cochain, ,that is

(12) $c(\alpha_{1}\beta_{1},\alpha_{2}\beta_{2},\cdots, \alpha_{\sim 1}\beta_{n-1})=d\alpha_{1},\alpha_{2},\cdots,\alpha_{n-1})^{\beta_{1}\beta_{2}\cdots\beta.n-1}$

$c(\beta_{1},\alpha_{2*}\cdots,\alpha_{n-1})^{\beta_{2}\cdots\theta n-1}$

We have left thereby the following result unproved.
THEOREM 3. If we put

$f(\gamma_{1},\gamma_{2},\cdots,\gamma_{n})=(\delta c)(\gamma_{1},\gamma_{2},\cdots,\gamma_{n})$ ,

where $c$ is a normalized cochain satisfying the relation given in (12),
then $f$ is normalized weakly normal.
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PROOF. We prove this by induction on $n$ .
We first prove that the following identity holds, when we regard

$\delta$ as a parameter, as was done in \S 1:

(13) $c(\alpha_{1}\beta_{1},\cdots,\alpha_{n-2}\beta_{n-2}, \delta)=c^{\beta_{1}\cdots\beta_{n-}}(\alpha_{1},\alpha_{2},\cdots,\alpha_{n-2},\delta)$

$c^{\beta_{2}\cdots\beta n-2}(\beta_{1},\alpha_{2\prime}\cdots,\alpha_{n-2},\delta)$

$c\langle\beta_{1},\cdots,\beta_{n-2},$ $\delta$).

Indeed the $left\cdot hand$ side of (13) is
$c(\alpha_{1},\alpha_{2},\cdots,\alpha_{n-2},\alpha)^{\beta_{1}h\cdots\beta_{\hslash-2}\beta}$

$d\beta_{1},\alpha_{2},\cdots,\alpha_{n-2},\alpha)^{\beta_{2}\beta a\cdots\beta n_{-2}\beta}$

$c(\beta_{1},\beta_{2},\cdots,\beta_{n-2},\beta)$ ,

where $\alpha\beta=\delta$, and the right-hand side of (13) is, by the definition of
the symbolic power $f^{\gamma}(\delta)=f(\gamma\delta)$,

$c(\alpha_{1},\alpha_{2},\cdots,\alpha_{n-?},\beta_{1}\cdots\beta_{n-2}\delta)$

$c(\beta_{1},\alpha_{2},\cdots,\alpha_{n-2},\beta_{2}\cdots\beta_{n-2}\delta)$

$c(\beta_{1},\beta_{2},\cdots,\beta_{n-2},\delta)$

$=c(\alpha_{1},\alpha_{2},\cdots, \alpha_{n-2},\alpha)^{\beta_{1}\cdots\beta_{n-2}\beta}$

$ c(\beta_{1},\alpha_{2},\cdots, \alpha_{n-2},\alpha)^{\beta_{2}\cdots\beta n-2}\beta$

$c(\beta_{1},\beta_{2},\cdots,\beta_{n-2}, \alpha)^{\beta}$

$c(\beta_{1},\beta_{2},\cdots,\beta_{n-2},\beta)$ ,

which proves the required identity.
To prove our theorem, put $\gamma_{i}=\alpha_{i}\beta_{i}$ and $\delta=\alpha\beta$, then by the de-

finition $f=\delta c$, we have
$ f(\gamma_{1},\gamma_{2},\cdots,\gamma_{n-1},\delta)=c(\gamma_{2},\cdots,\gamma_{n-1},\delta)c(\gamma_{1}\gamma_{2},\cdots,\gamma_{n- 1},\delta)^{-1}\cdots$
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$c(\gamma_{1},\cdots,\gamma_{n-2},\gamma_{n-1}\delta)^{\pm 1}c(\gamma_{1},\cdots,\gamma_{n- 1})^{:p\delta}$

$=(\delta_{n-1}c)(\gamma_{1},\cdots,\gamma_{n-- 1},\delta)c(\gamma_{1},\cdots,\gamma_{n-1})^{\mp\delta}$

or $\delta_{n-1}c=f\cdot c^{\pm\delta}$ . The formula (13) proved above shows that the cochain
$c$, constituted as a function with values in $\Omega^{*}$ , is weakly normal; hence
by the assumption of induction, we have for $f^{\prime}=\delta_{n-1}c$ (this is a func.
tion of $\delta$ ),

$f^{\prime}(\gamma_{1},\cdots,\gamma_{n-1})=f^{\prime}(\alpha_{1},\alpha_{2},\cdots,\alpha_{n-1})^{\beta_{1}\cdots\beta n-1}$

$f^{\prime}(\beta_{1},\alpha_{2},\cdots,\alpha_{n-1})^{\beta_{2}\cdots\beta_{\hslash-1}}$

$=(f(\alpha_{1},\alpha_{2},\cdots,\alpha_{n-1})\cdot c(\alpha_{1},\alpha_{2},\cdots,\alpha_{n-1})^{\pm\delta})\beta_{1}\cdots\beta_{\hslash-1}$

$(f(\beta_{1},\alpha_{2\prime}\cdots,\alpha_{n-1})\cdot c(\beta_{1},\alpha_{2},\cdots,\alpha_{\pi-1})^{\pm\delta})^{\beta_{2}\cdots\beta n-1}$

$(f(\beta_{1},\beta_{2},\cdots,\beta_{n-1})\cdot c(\beta_{1},\beta_{2},\cdots,\beta_{n- 1})^{\pm\delta})$

$=f(\alpha_{1},\alpha_{2},\cdots,\alpha_{n-1}, \beta_{1}\cdots\beta_{n-1}\delta)$

$f(\beta_{1},\alpha_{2},\cdots,\alpha_{n-1}, \beta_{2}\cdots\beta_{n-1}\delta)$

$f(\beta_{1},\beta_{2},\cdots/,\beta_{n-1}, \delta)$

$c(\alpha_{1},\beta_{1\prime}\cdots,\alpha_{n-1}\beta_{n-1})^{\pm\delta}$ ,

so that we have the equality
$f(\gamma_{1}.\gamma_{2}\ldots.,\gamma_{n-1}, \delta)$

$=f(\alpha_{1},\alpha_{2},\cdots,\alpha_{n-I}, \beta_{1}\cdots\beta_{n-1}\delta)$

$f(\beta_{I},\alpha_{2},\cdots,\alpha_{n-1}, \beta_{2}\cdots\beta_{n-1}\delta)$

$f(\beta_{1},\beta_{2},\cdots,\beta_{n-1},\delta)$ .
Our final goal is to prove the equality of this expression and

$f(\alpha_{1},\alpha_{2},\cdots,\alpha_{n-\cdot 1},\alpha)^{\beta_{1}\cdots\beta_{n-1}\beta}$

$f(\beta_{1},\alpha_{2},\cdots,\alpha_{n-1},\alpha)^{\beta_{2}\cdots\beta_{n-1}\beta}$
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$f(\beta_{1},\beta_{2},\cdots,\beta_{n-1},\beta)$ .
This will truely hold, if we can prove generally

$f(\beta_{I},\cdots,\beta_{k-1},\alpha_{k},\cdots,\alpha_{n-1},\alpha\beta)$

$=f(\beta_{1},\cdots,\beta_{k-1},\alpha_{h},\cdots,\alpha_{n-1},\alpha)^{\beta}$ $(k<n)$ ,

and $f(\beta_{1},\cdots,\beta_{n-1},\alpha\beta)$

$=f(\beta_{1},\cdots,\beta_{n-1\prime}\alpha)^{\beta}$

$f(\beta_{1},\cdots,\beta_{\iota-1},\beta)$ ,

but this will follow immediately from the very definition of $f$, the first
one for instance

$f(\beta_{1},\cdots,\beta_{k-1},\alpha_{\hslash},\cdots,\alpha_{r-1},\alpha\beta)$

$=c(\beta_{2},\cdots,\beta_{k-1},\alpha_{h},\cdots,\alpha_{n-1}, \alpha\beta)$

$c(\beta_{1}\beta_{2},\cdots,\beta_{k-1},\alpha_{k},\cdots,\alpha_{n-1},\alpha\beta)^{-1}$

$=c(\beta_{2},\cdots,\beta_{k-1},\alpha_{k},\cdots,\alpha_{n-1}, \alpha)^{\beta}$

$c(\beta_{1}\beta_{2},\cdots,\beta_{h-1}, \alpha\iota,\cdots,a_{n-1},\alpha)^{-\beta}$

$=f(\beta_{1},\cdots,\beta_{k-1},\alpha_{k},\cdots,\alpha_{n-1\prime}\alpha)^{\beta}$ ,

and our theorem is now proved.
\S 4. The results of the preceding paragraphs can be generalized

to the case of direct product $G=AxB\times C$ or groups with more than
3 direct factors, the proof of which is almost same as for the case
$G=A\times B$. We have for instance

THEOREM 4. For the case of $G=A\times B\times C$ the theorem 2 remains
true, if we understand by weakly normal cochains, those which satisfy
the relation

$f(\alpha_{1}\beta_{1}\gamma_{1},\cdots,\alpha_{n}\beta_{n}\gamma_{n})=f(\alpha_{1},\alpha_{2},\cdots,\alpha_{n})^{(\beta_{1}\gamma_{1})\cdots(\beta n^{\gamma_{k})}}$

$f(\beta_{1},\alpha_{2},\cdots,\alpha_{n})^{\gamma_{1}(\beta_{2}\gamma_{2})\cdot\cdot(\beta n^{\gamma_{\hslash})}}$

(14)
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$f(\gamma_{1},\cdots,\beta_{k},\cdots,\alpha_{l},\cdots)^{\gamma_{k}\cdot\cdot(\beta_{l}\gamma_{l})}$

$f(\gamma_{1},\gamma_{2},\cdots,\gamma_{n})$

where $\alpha,$ $\beta,$
$\gamma$ denote the elements of $A,$ $B$ and $C$ respectively.

\S 5. Before going further we shall explain the concept of the
“ strict normality” for the case of 2.cocycles. This will be done most
rapidly, if we utilize the extension group of $\Omega$ by $G$ . This is the
group which contains $\Omega$ as normal subgroup and with representants
$u_{\sigma}(\sigma\in G)$ , which satisfy

$u_{\sigma}u_{\tau}=u_{\sigma\tau}f(\sigma, \tau)$ ,
$u_{\sigma}^{-1}zu_{\sigma}=z^{\sigma}$ $(z\in\Omega)$ .

If we choose another system of representants $v_{\sigma}$ , defined by

$v_{\alpha\beta}=u_{\alpha}u_{\beta}$ $(G=A\times B, \alpha\in A, \beta eB)$

then we see easily that the factor set corresponding to $v_{\sigma}$ is weakly
normal. If we put further

$v_{\sigma_{1^{\chi_{1}}}\cdots\sigma_{r^{x_{r}}}}=u_{\sigma_{1^{l_{1}}}\cdots\sigma,^{x_{r}}}$

where $G=\{\sigma_{1}\}\times\cdot:\cdot\times\{\sigma_{r}\}$ is the canonical decomposition of $G$ into the
cyclic groups of orders $e_{1},\cdots,e_{r}$ , and $0\leqq x_{i}<e_{i}$ , we obtain a more speci-
alized normal cocycle, which we call “ strictly normal”. This result
will be generalized in the next lines. One should notice that the above.
mentioned method, employing the group extension, is not applicable for
the case of higher dimensions $n\geqq 3$ .

\S 6. From now on we assume that the cocycles in consideration
are always normalized. We shall modify also for convenience, the de-
finition of the “ weak normality,’‘ $i.e$ . a cocycle $f$ will be called weakly
normal in the sequel if we have

(15) $f(\alpha_{1}\beta_{1}\gamma_{1},\cdots,\alpha_{n}\beta_{n}\gamma_{n})=f(\alpha_{1},\alpha_{2},\cdots,\alpha_{n})$

$f(\alpha_{1},\alpha_{2},\cdots,\alpha_{n-1},\beta_{n})^{\alpha_{n}}$

$f(\alpha_{1},\cdots,\beta_{k},\cdots,\gamma_{l}\cdots)^{\alpha_{k}\cdots(\alpha_{l^{\beta}l^{)}}}$
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instead of (14), which means only that the order $\{\sigma_{1}\},$ $\{\sigma_{2}\},\cdots,\{\sigma_{r}\}$ is
from now on to be inverted to the order $\{\sigma_{r}\},\cdots,$ $\{\sigma_{2}\},$ $\{\sigma_{1}\}$ .

We use following abbreviations:
$[\sigma^{x}]=1+\sigma+\sigma^{2}+\cdots+\sigma^{x-1}$ ,

$N_{i}=1+\sigma_{i}+\sigma_{i}^{2}+\cdots+\sigma_{i^{i^{-1}}}^{e}$ ,
$\Delta;=1-\sigma_{i}$

$[x]_{i}=[\frac{x}{e_{i}}]$ ($[]$ : Gauss’ symbol),

and
$[x_{1}, x_{2},\cdots,x_{r_{1}};y_{1},y_{l},\cdots,y_{r_{B}};\cdots]$

(16)
$=[x_{1}+x_{2}]_{1}[x_{3}+x_{4}]_{1}\cdots[y_{1}+y_{2}]_{2}[y_{3}+y_{4}]_{2}\cdots(r_{1}+r_{2}+\cdots=n)$ .

In the last notation we make the convention, if for instance $r_{1}$ is odd
number, the same symbol means

$=[x_{1}+x_{2}]_{1}[x_{3}+x_{4}]_{1}\cdots[\sigma_{1}^{x_{r_{1}}}][y_{1}+y_{2}]_{2}$ $[$ $]_{2}\cdots$

An $n\cdot cochainf$ is said to have the standard form (or to be strictly
normal), if it is weakly normal with respect to the decomposition
$ G=\{\sigma_{1}\}x\{\sigma_{2}\}\times\cdots$ . and moreover satisfies the conditions for $0\leqq x_{i}<e_{1}$,
$ 0\leqq y_{j}<e_{2}\cdots$

(17) $f(\sigma_{1^{1}}^{x}, \sigma_{1^{2}}^{x},\cdots;\sigma_{2^{1}}^{\nu}, \sigma_{2^{2}}^{y},\cdots)$

$=f(\sigma_{1\prime}N_{1}, \sigma_{1}, N_{1},\cdots;\sigma_{2}, N_{2}, \sigma_{2},\cdots)^{Cx_{1}.x_{2}\ldots.;y_{1}.y_{2}\cdots 1}$

or by a simple example

$f(\sigma_{1}^{x}{}^{t}\sigma_{2^{l_{2}}}, \sigma_{1}^{xa}; \sigma_{2^{1}}^{v}, \sigma_{2^{2}}^{y})=f(\sigma_{I}, N_{1}, \sigma_{1};\sigma_{2}, N_{2})^{\zeta x_{1}.x_{l}.x_{a},y_{1.\theta_{2}J}}$ ,

with
$[x_{1}, x_{2}, x_{3};y_{1},y_{2}]=[x_{1}+x_{2}]_{1}[\sigma_{1}^{xa}][y_{1}+y_{2}]_{2}$

$=[\frac{x_{1}+x_{2}}{e_{1}}](1+\sigma_{1}+\ldots+\sigma_{1}^{xa-1})[\frac{y_{1}+y_{2}}{e_{2}}]$ .

By $f(\sigma_{1}, N_{1}, \sigma_{1};\sigma_{2}, N_{2})$ we mean in obvious manner
$\prod_{i.j}f(\sigma_{1}, \sigma_{1}^{i}, \sigma_{1};\sigma_{2}, \sigma_{2}^{j})$

$(0\leqq i<e_{1}.0\leqq j<e_{2})$ .
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Now we can state the followng theorem:
THEOREM 5. Every cohomology class contains a cocycle with

standard form.
This is precisely the result announced in the preceding paragraph.

We now proceed to the proof, by mathematical induction on $n$ , and
assume the theorem for smaller dimension than $n$ .

As in the proof of the weak normality, we may agree to set
$f(\gamma_{1}, \gamma_{2},\cdots, \gamma_{n})=(\delta c)(\gamma_{1},\cdots, \gamma_{n})$ ,
$c\equiv c^{\prime}\cdot\delta\overline{c}(mod. \Omega)$ ,

where $c^{\prime}$ is strictly normal with respect to the coefficient group $\Omega^{*}/\Omega$ .
If we put

$c=d\cdot\delta\overline{c}\cdot b$ ($b$ :( $n$ –l).cochain with values in.$Q$),
then we have

$f=\delta d\cdot\delta b\sim\delta d$ (in $\Omega$).

Starting from the values $c^{\prime\prime}(\sigma_{I}, N_{1}, \sigma_{I},\cdots;\sigma_{2}, N_{2}, \sigma_{2}, \cdots)=c^{\prime}(\sigma_{1},$ $N_{1},$
$\sigma_{1},\cdots$ ;

$\sigma_{2},$
$N_{2},$

$\sigma_{2},\cdots$ ) and similar formulas as in (17) and (15) we define an
( $n$ -l).cochain $c^{\prime\prime}$ . Then $c^{\prime\prime}$ is strictly normal, and $c^{\prime\prime}\sim c^{\prime}(mod. \Omega)$ , so
that

$f\sim\delta c^{\prime\prime}$ (in $\Omega$).

So it remains only to prove the
THEOREM 6. If $c$ is strictly normal, so is also its coboundary

$f=\delta c$.
PROOF. The relation which we must prove is

$f(\sigma_{1}^{\chi_{1}},\cdots, \sigma_{1}^{x_{r1}} ; \sigma_{2}^{y_{1}},\cdots, \sigma_{2}^{\nu_{r_{2}}},\cdots)$

(17)
$=f(\sigma_{1}, N_{1^{\backslash }},\cdots ; \sigma_{2}, N_{2},\cdots:\cdots)^{\zeta x_{1}\ldots..x_{r_{1}};y_{1}\ldots..y_{r_{2}}}$

;.. $3$

Both sides of this can be represented in terms of $c$, and then, by
its strict normality, by its “ elementary” values $c(\sigma_{1},N_{I},\cdots;\sigma_{Z}, N_{2},\cdots)$ .
We then compare all the elementary values in both sides. The left.
hand side is equal to

$ c(\sigma_{1^{2}}^{x},\cdots, \sigma_{1}^{x_{r1}};\cdots)c(\sigma_{1^{I+x_{2}}}^{x}, \sigma_{1^{3}}^{x},\cdots, \sigma_{1^{1}}^{x}’;\cdots)^{-1}\cdots$

$ c(\sigma_{1^{1}}^{X},\cdots, \sigma_{11\sigma_{3}^{X1}}^{x_{r}},\cdots)^{\pm 1}c(\sigma_{1^{1}}^{x},\cdots, \sigma_{1^{r_{1}}}^{x}, \sigma_{2}^{y_{1}+y_{2}},\cdots)^{*1}\cdots$ .



26 T. TANNAKA

In the following lines we restrict our consideration to the cases
$f(\sigma_{1}^{a}, \sigma_{1}^{b}; \sigma_{2}^{c})$ and $f(\sigma_{1}^{a}, \sigma_{1}^{b}, \sigma_{1}^{c}; \sigma_{2}^{d})$ , for we can see easily that these cover
essentially the general case, as will be seen by the representation (16).

To make the printing easier we shall also use the additive manner
of writing for the group $\Omega^{*}$ , so we have

$f(\sigma_{1}^{a}, \sigma_{1}^{b}; \sigma_{2}^{r})=c(\sigma_{1}^{b}, \sigma_{2}^{c})-c(\sigma_{1}^{a+b}, \sigma_{2}^{c})+c(\sigma_{1}^{a}, \sigma_{1}^{b}\sigma_{2}^{c})-\sigma_{2}^{c}c(\sigma_{1}^{a}, \sigma_{1}^{b})$

$=[b;c]c(\sigma_{1}, \sigma_{2})-[(a+b)_{1}; c]c(\sigma_{1}, \sigma_{2})$

$+\{c(\sigma_{1}^{a}, \sigma_{1}^{b})+\sigma_{1}^{b}c(\sigma_{1}^{a}, \sigma_{2}^{c})\}-\sigma_{2}^{c}c(\sigma f, \sigma_{1}^{b})$

$=\{[b;c]-[(a+b)_{1}:c]+\sigma_{1}^{b}[a;c]\}c(\sigma_{1}, \sigma_{2})$

$+\{[a, b]-[a, b]_{\sigma}2\}c(\sigma_{1}, N_{1})$ ,

where $(a+b)_{1}$ means the least non-negative residue of $a+bmod$ . $e_{1}$ .
In a similar way we have
$[a, b;c]f(\sigma_{1}, N_{1};\sigma_{2})=[a, b;c]\{c(N_{1}, \sigma_{2})-c(\sigma_{1}N_{1}, \sigma_{2})+c(\sigma_{1}, N_{1}\sigma_{2})$

$-\sigma_{2}c(\sigma_{1}, N_{1})\}$

$=[a, b;c]\{N_{1}c(\sigma_{1}, \sigma_{2})+c(\sigma_{1}, N_{1})-c(\sigma_{I}, N_{1})\}$ ,

so that it remains only to prove
$[b;c]-[(a+b)_{1}; c]+\sigma_{1}^{b}[a;c]=[a, b;c]N_{1}$

and
$[a^{\prime}b](1-\sigma_{2}^{c})=[a, b;c]\times(1-\sigma_{2})$ .

Both of these identities are proved by a simple formal computation.
For the case of $f(\sigma_{1}^{a}, \sigma_{1}^{b}, \sigma_{1}^{c};\sigma_{2}^{d})$ , we have first

$f(\sigma_{1}^{a}, \sigma_{1}^{b}, \sigma_{1}^{c};\sigma_{2}^{d})=c(\sigma_{1}^{b}, \sigma_{1}^{c};\sigma_{2}^{d})-c(\sigma_{1}^{a+b}, C_{1}^{c}, \sigma_{2}^{d})$

$+c(\sigma_{1}^{a}, \sigma_{1}^{b+c}, \sigma_{2}^{d})-c(\sigma_{1}^{a}, \sigma_{1}^{b}, \sigma_{1}^{c}\sigma_{2}^{d})+\sigma_{2}^{d}c(\sigma_{1}^{a}, \sigma_{1}^{b}, \sigma_{1}^{c})$

$=\{[b, c;d]-[(a+b)_{1}, c;d]+[\dot{a},(b+c)_{1}; d]$

$-[a, b;d]_{\sigma_{1}^{c}}\}c(\sigma_{1}, N_{1}, \sigma_{2})+(\sigma_{2}^{d}-1)[a, b, c]c(\sigma_{1}, N_{1}, \sigma_{1})$ ,

and on the other hand
$[a, b, c;d]f(\sigma_{1}, N_{1}, \sigma_{1};\sigma_{2})=[a, b, c;d]\{c(N_{1}, \sigma_{1}, \sigma_{2})-c(\sigma_{1}N_{1}, \sigma_{1}, \sigma_{2})$

$+c(\sigma_{1}, N_{1}\sigma_{1}, \sigma_{2})-c(\sigma_{1}, N_{1}, \sigma_{1}\sigma_{2})+\sigma_{2}c(\sigma_{1}, N_{1}, \sigma_{1})\}$

$=[a, b, c;d]\Delta_{1}c(\sigma_{1}, N_{1}, \sigma_{2})-[a, b, c;d]\Delta_{2}c(\sigma_{1}, N_{1}, \sigma_{1})$ ,
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and the equality in question will be prcv\S d by means of the simple
identity

$[b, c]-[(a+b)_{1}, c]+[a, (b+c)_{1}]-[a, b]=0$

or

$[\frac{b+c}{e_{1}}]-[\frac{(a+b)_{1}+c}{e_{1}}]+[\frac{a+(b+c)_{1}}{e_{1}}]-[\frac{a+b}{e_{1}}]=0$

$(0\leqq a, b, c<e_{1})$ .
The last identity is proved without difficulty, if we distinguish all

possible cases $b+c\leqq e_{1}$ or $b+c>e_{1}$ and so on, accordingly also the
proof of our theorem is completed.

\S 7. In the preceding paragraphs we have proved the existence of
strictly normal cocycles in each cohomology class. From this fact
there arises naturally the question how we can characterize the “ $ele$.
mentary” values $f(\sigma_{1}, N_{1}, \sigma_{1},\cdots\sigma_{2}, N_{2}, \sigma_{2},\cdots)$ of a strictly normal cocycle
$f$, or how we can deduce the properties of cocycles from that elementary
values. We consider now this problems.

THEOREM 7. If $f$ is a strictly normal cocycle, then for every set
of natural numbers $i_{1}<i_{2}<\cdots<i_{k}$ and $r_{1},$ $r_{2},\cdots,$ $r_{k}$ with $r_{1}+r_{2}+\cdots+r_{k}$

$=n+1$ we have

(18)
$(-1)^{r1}e(i_{1\prime}r_{1})f(\sigma_{i_{1}},N_{i},\cdots ;\sim r_{1}-1^{1} \sigma_{i_{2}}, N_{i_{2}},\cdots ; \cdots)\sim r_{2}$

$+(-1)^{r1^{+r2}}e(i_{1}, r_{2})f(\underline{\sigma_{i_{1}},}N_{i_{1\sim}},\cdots;\prime 1\frac{\sigma_{i_{2}},N_{i_{2}}}{r_{2}-1}\cdot:\cdots)$

$+(-1)^{r1+r_{2}\cdots+r_{k}}e(i_{k}, r_{k})f(\sigma_{i_{1}}, N_{i1},\cdots;;\sim r_{1}\overline{r_{2}} ;_{\overline{r_{k}-1}})=0$
.

Thereby we have set,

$e(i, r)=$

PROOF. We confine ourselves to give the proof by a special
example :
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$0=(\delta f)(\sigma_{1}, N_{1}, \sigma_{1/}\sigma_{2}, N_{2})$

$=(\delta f)(\sigma_{1}-1, N_{1}, \sigma_{1}-1, \sigma_{2}-1, N_{2})$

$=(\delta f)(\Delta_{1}^{\prime}, N_{1}, \Delta_{1}^{\prime}, \Delta_{2}^{\prime}, N_{2})$ $(\Delta_{i}^{\prime}=\sigma_{i}-1)$

$=(1-1)f(N_{1}, \Delta_{1}^{\prime}, \Delta_{2}^{\prime}, N_{2})-f(\Delta_{1}^{\prime}N_{1}, \Delta_{1}^{\prime}, \Delta_{2}^{\prime}, N_{2})$

$+f(\Delta_{1}^{\prime}, N_{1}\Delta_{1}^{\prime}, \Delta_{2}^{\prime}, N_{2})-f(\Delta_{1}^{\prime}, N_{1}, \Delta_{1}^{\prime}\Delta_{2}^{\prime}, N_{2})$

$+f(\Delta_{1}^{\prime}, N_{1}, \Delta_{1}^{\prime}, \Delta_{2}^{\prime}N_{2})-N_{2}f(\Delta_{1}^{\prime}, N_{1}, \Delta_{1}^{\prime}, \Delta_{2}^{\prime})$

$=-f(\Delta_{1}^{\prime}, N_{1}, \Delta_{1}^{\prime}\Delta_{2}^{\prime}, N_{2})-N_{2}f(\Delta_{1}^{\prime}, N_{1}, \Delta_{1}^{\prime}, \Delta_{2}^{\prime})$

$=-\Delta_{1}^{\prime}f(\Delta_{1}^{\prime}, N_{1}, \Delta_{2}^{\prime}, N_{2})-N_{2}f(\Delta_{1}^{\prime}, N_{1}, \Delta i, \Delta_{2}^{\prime})$

$=-\Delta_{1}^{\prime}f(\sigma_{1}, N_{1*}\sigma_{2}, N_{2})-N_{2}f(\sigma_{1}, N_{1}, \sigma_{1}, \sigma_{2})$ , $q$. $e.d$ .
The factor (1-1) in the first term means, the second factor occurs

once with positive sign and once with negative sign:

$(\delta f)(\Delta_{1}^{\prime}, N_{1},\cdots)=(\delta f)(\sigma_{1}, N_{1},\cdots)-(\delta f)(1, N_{1},\cdots)$

$=\{f(N_{1}, \Delta_{1}^{\prime},\cdots)-\cdots\}$

$-\{f(N_{1}, \Delta_{1}^{\prime},\cdots)-\cdots\}$ .
It will be often convenient, to use the abbreviations, such as

$f(\sigma_{1}, N_{1}, \sigma_{1}, \sigma_{2}, N_{2})=f(1,1,1,2,2)$, for which then holds the following
theorem, which is the converse to theorem 7.

THEOREM 8. If a system $f(i_{1}, i_{1},\cdots, i_{2}, i_{2}\cdots)(i_{1}<i_{2}<\cdots)$ of elements
in $\Omega$ satisfies the same condition (18) as in the theorem 7, then these
elements induce a strictly normal cocycle.

PROOF. We can associate to $f(i_{1}, i_{1},\cdots i_{2}, i_{2},\cdots)$ a strictly normal
cocycle by the formulas similar to (17) and (15). Then as we have
proved earlier, $\delta f$ is also strictly normal, so that if the elementary
values of $\delta f$ vanish (and this condition is nothing other than (17) itself)
then also $\delta f$ vanishes identically. $q.e.d$ .

\S 8. If $n=2$ , all possible $r_{1},$ $r_{2},\cdots,$ $r_{k}$ with $r_{1}+r_{2}+\cdots+r_{k}=n+1=3$

are
3; 1, 2; 2, 1 and 1, 1, 1

so that (18) reduces to
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(19)

$(i<i<k)$ .
These are precisely those formulas to be found in Schreier’s ex-

tension theory.
Similar formulas for $n=3$ are

\S 9. We now prove two theorems, which are easily deduced from
our preceding investigations.

THEOREM 9. If $K/k$ is an abelian field with the Galois group
$G=\{\sigma_{1}\}\times\{\sigma_{2}\}$ , then every element of $K$ with relative norm 1 can be
represented in the form $f(\sigma_{1}, \sigma_{2})/f(\sigma_{2}, \sigma_{1})$ with a suitable cocycle $f$.

PROOF. By the relations (19) of Schreier we have

(21) $\{.\Delta f(2,2)-N_{2}f(1, 2)=0\Delta_{1}f(i,i)=0N_{1}^{i}f(1,2)+\Delta^{2}f(1,1)=0$

,

$(i=1,2)$

the last relation in (19) being meaningless under our assumption.
Let now $A$ be an element of $K$ with norm 1. Then the norm

$N_{1}(A)$ can be represented in the form, additively written, $-\Delta_{2}B_{1}$ with
$\Delta_{1}B=0$ by Hilbert’s norm theorem, and by the same reason we have
a representation of the form

$ N_{2}(A\rangle$ $=\Delta_{1}B_{2}$ with $\Delta_{2}B_{2}=0$ .
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If we put
$B_{1}=f(1,1)$ , $B_{2}=f(2,2)$ , $A=f(1,2)$ ,

we have our theorem for
$A=f(1,2)-f(2.1)$ $(f(2,1)=0)$ .

THEOREM 10. Under the same assumption as in the preceding
theorem, we have the isomorphism

$H_{3}(K^{*}, G)\cong N_{1}(K_{1}^{*})\cap N_{2}(K_{2}^{*})/N(K^{*})$ .
Thereby $K_{i}(i=1,2)$ denote the fields corresponding to the subgroups

$\{\sigma;\}$ of $G$, and $K^{*},$ $K_{1}^{*}$ and $K_{2}^{*}$ mean multiplicative groups of non-zero
elements in $K,$ $K_{1}$ and $K_{2}$ respectively.

PROOF. The formulas (20) reduce to

(22) $\left\{\begin{array}{llll} & & & N_{i}f(i,i,i)=0 (i=1,2)\\ & & & \Delta J(1,1,1)-\Delta_{2}f(1,2,2)=0\\ & & & N_{1}f(1,2,2)+N_{2}f(1,1,2)=0\\ & & & \Delta_{1}f(1,1,2)-\Delta_{2}f(1,1,1)=0.\end{array}\right.$

By virtue of Hilbert’s norm theorem we have
(23) $f(i, i,i)=\Delta_{i}g_{i}$ $(i=1.2)$ .

If we put $g(i, i)=g_{\dot{*}}$ and $Al,$ $ 2\rangle$ $=\alpha$ and cmstntct the coboundary
of the strictly normal cochain generated by these values, we have

$(\delta g)(\sigma_{1}, N_{1}, \sigma_{1})=\Delta_{1}g(1,1)$

$(\delta g)(\sigma_{1}, N_{1}, \sigma_{2})=\Delta_{2}g(1,1)+N_{1}g(1,2)=\Delta_{2}g(1,1)$

$(\delta g)(\sigma_{1}, \sigma_{2}, N_{2})=\Delta_{1}g(2,2)-N_{2}g(1,2)=\Delta_{1}g(2,2)$

$(\delta g)(\sigma_{2}, N_{2}, \sigma_{2})=\Delta_{2}g(2,2)$ ,

so that $f^{\prime}=f-\delta g$ satisfies the conditions
$f^{\prime}(i, i, i)=0$ $(i=1,2)$ ,

$\Delta_{2}f^{\prime}(1,2,2)=0$ $(i.e$. $f^{\prime}(1,2,2)\in K_{2})$ ,

$N_{1}f^{\prime}(1,2,2)+N_{2}f^{\prime}(1,1,2)=0$ ,

$\Delta_{1}f^{\prime}(1,1,2)=0$ $(i$ . $e$. $f^{\prime}(1,1,2)\in K_{1})$ ,
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We now make correspond to the cohomology class containing $f$, the
class

$N_{1}f^{\prime}(1,2,2)(=-N_{?}f^{\prime}(1,1,2))$ $mod$. $N(K^{*})$

in the factor group $N_{1}(K_{1}^{*})-N_{2}(K_{2}^{*})/N(K^{*})$ . It remains only to prove
the isomorphism property of this mapping. Let us assume

$N_{1}f^{\prime}(1,2,2)=NA$ $(A\in K)$ .
Then we have by Hilbert’s norm theorem

$f^{\prime}(1,2,2)=\Delta_{1}B_{2}+N_{2}A$ ,
and likewise from the equality

$-N_{2}f^{\prime}(1,1,2)=NA$

we have
$f^{\prime}(1,1,2)=\Delta_{2}B_{1}-N_{1}A$ .

If we put

$g^{\prime}(1,2)=-A$ , $g^{\prime}(1,1)=B_{1}$ , $g^{\prime}(2,2)=B_{2}$ ,

then we have
$f\sim f^{\prime}=\delta g^{\prime}$ ,

and this proves our assertion.
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