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On the dimension of homogeneous spaces.
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Let $\mathfrak{G}$ be a topological group and $\mathfrak{H}$ a closed subgroup of $\mathfrak{G}$ . We
shall prove in this paper that the equality

(1) $\dim \mathfrak{G}=\dim \mathfrak{H}+\dim \mathfrak{G}/\mathfrak{H}$

holds, when $\mathfrak{G}$ is a locally compact group satisfying the second axiom
of countability. It is known that the equality (I) does not hold in
general [8], but it holds if $\mathfrak{G}$ is a Lie group or a compact group, etc,
$[1, 2]$ . The equality (I) for the locally compact group would be easily
dedueed, if it could be shown that every locally compact finite dimen-
sional group $\mathfrak{G}$ admits a local cross-section over a closed subgroup $\mathfrak{H}$ .
But the author could not decide whether this is the case.

This paper consists of two parts. The part I is of a preliminary
character; we shall provethere some lemmas used in the part II. In
the part II we shall first reduce the general case to the case where $\mathfrak{G}$

is a locally compact finite dimensional connected group, and the prove
the equality (I) for this case. We need for the proof the fact that
every locally compact finite dimensional connected group satisfying the
second axiom of countability is a projective limit group of Lie groups
[4]. Perhaps a proof of our theorem without using this fact would be
desirable.

In the following $G$ denotes invariantly a locally compact group
satisfying the second axiom of countability, and $H,$ $H^{\prime}$ , etc. closed
subgroups of $G$ .

Then the spaces and the homogeneous spaces of such groups $G$,
$G/H$, etc. are metric separable and we shall assume that also other
spaces considered are all metric separable, so that we can make free
use of the dimension theory.
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I. Some lemmas.

Let us begin with proving the following
LEMMA 1. If $G\supset H\supset H^{\prime}$ , then

(1) $\dim G/H^{\prime}\leqq\dim H/H^{\prime}+\dim G/H$ .

PROOF. If the dimension of $H,/H^{\prime}$ is infinite, then (1) holds formally
and the lemma is trivial. When then dimension of $H/H^{\prime}$ is finite, then
we may assume moreover that $\dim G/H^{\prime}>\dim G/H$. Now let us denote
by $\overline{U}$ a compact neighborhood of the coset of $H^{\prime}$ in the homogeneous
space $G/H^{\prime}$ , and by $p$ the natural projection of the homogeneous space
$G/H^{\prime}$ onto the homogeneous space $G/H$ by the inclusion of cosets. If
we restrict the natural projection $p$ to $\overline{U}$ then $p$ is a closed mapping,
and the dimension of the inverse image of each point of $p(\overline{U})$ does not
exceed $\dim H/H^{\prime}$ . So we gave by Hurewicz’s theorem [9],

$\dim G/H^{\prime}=\dim\overline{U}\leqq\dim H/H^{\prime}+\dim p(\overline{U})=\dim H/H^{\prime}+\dim G/H$ .
As a special case of lemma 1 we have
LEMMA $1^{\prime}$ .

$\dim G\leqq\dim H+\dim G/H$ .
In the sequel we shall denote by $G^{*}$ the component of the identity

of the group $G$ . Then, by lemma 1‘, it is easy to see that we have
$\dim G=\dim G^{*}$ since we have obviously $\dim G/G^{*}=0$ .

LEMMA 2. If there is an open mapping $p$ of $a$ O-dimensional
locally compact space $X$ onto a space $Y$, then we have

$\dim Y=0$ .
PROOF. Take anarbitrary point $y$ in $Y$ and an arbitrary open

neighborhood $U$ of $y$ . Furthermore let us take a point $x$ belonging to
$p^{-1}(y)$ , then there exists a compact open neighborhood $\overline{V}$ of $x$ such that

$p^{-1}(U)\supset\overline{V}\ni x$

because $X$ is a locally compact O-dimensional space. Since $p$ is an open
mapping, $p(\overline{V})$ is a compact open neighborhood of $y$ which is included
in the neighborhood $U$. In other words $\dim Y=0$.

COROLLARY 1. If $\dim G=0$ , then $\dim G/H=0$
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COROLLARY 2. If $G\supset H\supset G^{*}$ , then
$\dim G/H=0$ .

PROOF. The dimension of $G/G^{*}$ is zero and there exists the natural
projection which is an open mapping of $G/G^{*}$ onto $G/H$ by the in-
clusion of cosets into cosets. By lemma 2 $\dim G/H=0$.

LEMMA 3. Let $\dim G=n(<\infty)$ . Then a necessary and sufficient
condition for $\dim H=n$ is the inclusion $H\supset G^{*}$ .

PROOF. Sufficiency is obvious from the following relations
$n\geqq\dim H\geqq\dim G^{*}=n$ .

To prove necessity, assume $\dim H=n$ . Let $H^{*}$ be the component of
the identity of $H$. As we have

$\dim H\geqq\dim(H\wedge G^{*})\geqq\dim H^{*}=\dim H$ ,

we have
$n=\dim H=\dim(H\leftrightarrow G^{*})$ .

But the dimension of a proper subgroup of a finite dimensional
connected group is exactly smaller than the dimension of the original
group as shown by Montgomery [5]. Thus we obtain $H\leftrightarrow G^{*}=G^{*}$ .

From corollary 2 for lemma 2 and lemma 3 follows immediately
LEMMA 5. If $\dim G=\dim H=n(<\infty)$ , then

$\dim G/H=0$ .
DEFINITON. We say a topological group $G$ acts on a space $X$

when the following conditions are satisfied:
(1) each elements of $G$ is a homeomorphism of the space $X$ onto

itself,
(2) for every $x\in X$ and $g_{1},$ $g_{2}\in G$

$(g_{1}\cdot g_{2})(x)=g_{1}(g_{2}(x))$ ,

(3) $g(x)$ is a continuous mapping of the product space $G\times X$ onto
the space $X$.

It is easily seen from the definition that the identity of $G$ is the
identity mapping of the space $X$.

LEMMA 5. When a group $G$ acts on a space $X$ and $G(x)$ is the
orbit of the group $G$ for $x\in X$, we have

$\dim G(x)=\dim G/G_{x}$
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where $G_{x}$ is the subgroup of $G$ consisting of all elements which fix the
element $x$ .

PROOF. For an arbitrary element $gG_{x}$ in the space $G/G_{x}$ regarded
as the left coset space, we set $T(gG_{x})=g(x)$ . Then we obtain a con.
tinuous mapping $T$ of the space, $G/G_{x}$ onto the space $G(x)$ . It is clear
that $T$ is an one $\cdot$ to.one mapping. Next we can cover the space $G/G_{x}$

with a countable set of compact neighborhoods, because the space $G/G$.
is a locally compact space satisfying the second axiom of countability.
Let us denote by $C_{i}(i=1,2,\cdots)$ these countable compact neighborhoods.
Then we have

$T(G/G_{\chi})=T(\bigcup_{i=1}^{\infty}C_{l})=\bigcup_{i=1}^{\infty}T(C_{j})$ .

As the continuous mapping $T$ is a homeomorphism on each $C_{i}$ ,
the following relation holds true

$\dim T(C_{i})=\dim C_{j}(=\dim G/G_{x})$ .
On the other hand each $T(C_{i})(i=1,2,\cdots)$ is closed in $G(x)$ , con.

sequently using the sum theorem of the dimension theory, we have

$\dim G(x)=\dim\bigcup_{i=1}^{\infty}T(C_{i})=\dim T(C_{j})=\dim G/G_{x}$ .

REMARK. This lemma holds also true if the dimension of $G/G_{x}$

is infinite.
LEMMA 6. When a group $G$ acts on a space $X$ and the orbit

$G^{*}(x)$ of $G^{*}$ for $xeX$ is closed in $X$, then we have
$\dim G(x)=\dim G^{*}(x)$ .

PROOF. By lemma 5 we have

$\dim G(x)=\dim G/G_{x}$ .
Furthermore, as the orbit $G^{*}(x)$ of $G^{*}$ for $x$ is closed in $X$, we have

$G^{*}(x)=G^{*}G_{x}(x)=\overline{G^{*}G_{x}}(x)$ .
On the other hand, the group $\overline{G^{*}G_{x}}$ acts on the space $X$ in the

same manner as $G$ acts on $X$, consequently making use of lemma 5,
we have

$\dim G^{*}(x)=\dim\overline{G_{*}G_{x}}(x)=\dim\overline{G^{*}G_{x}}/G_{x}$
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Next, the group $\overline{G^{*}G_{x}}$ is a subgroup of $G$ and the group $G_{x}$ is a
subgroup of $\overline{G^{*}G_{x}}$. Therefore we can apply lemma 1, and obtain

$\dim G/G_{x}\leqq\dim\overline{G^{*}G_{x}}/G_{x}+\dim G/\overline{G^{*}G_{x}}$ .

On the other hand we have $\dim G/\overline{G^{*}G_{x}}$ by corollary 2 for lemma
2. Therefore we have

$\dim G/G_{x}\leqq\dim\overline{G^{*}G_{x}}/G_{x}$ .
At the same time

$\dim G/G_{x}\geqq\dim\overline{G^{*}G_{x}}/G_{x}$ ,

holds true, because the spce $\overline{G^{*}G_{x}}/G_{*}$ is a subspace of the space $G/G_{x}$ .
In other words

$\dim G/G_{x}=\dim\overline{G^{*}G_{x}}/G_{x}$

holds, whence follows our conclusion.
THEOREM 1. $DimG/H$ is equal to the dimension of a component

of the homogeneous space $G/H$.
PROOF- As in the proof of lemma 6, we have

$\dim G/H=\dim\overline{G^{*}H/}H$ .

So it is sufficient for the proof to verify that the space $\overline{G^{*}H/}H$

coincides with the component $K$ of the coset of $H$ in thespace $G/H$

The space $\overline{G^{*}}\overline{H/}H$ is obviously included in $K$. Let $p$ be the natural
projection of the space $G$ onto the space $G/H,$ $P$ the natural one of the
space $G$ onto the space $G/\overline{G^{*}H,}$ respectively. If the component $K$ in-
cludes the set $\overline{G^{*}H/}H$ as a proper subset, so $P(p^{-1}(K))$ includes more
than one points, and theset $p^{\prime}\circ p\circ p^{-1}(K)=p^{\prime}(K)=P\circ p^{-1}(K)$ is con.
nected as $P=p^{t}\circ p$ in the diagramm.

$G\underline{P}\rightarrow G/\overline{G^{*}H}$

$\backslash _{\searrow}p$ $/^{\nearrow_{/}}p$

$G/H$

On the other hand, we have clearly $\dim G/\overline{G^{*}H}=0$ . Thus we have
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arrived at a contradiction. Therefore the component $K$ is the space
$\overline{G^{*}H/}H$.

LEMMA 7.
$\dim G^{*}H/H=\dim G^{*}/G^{*}\leftrightarrow H$ .

PROOF. We can consider that the group $G^{*}$ acts on the homo.
geneous space $G/H$ in the same manner as the group $G$ acts on the
homogeneous space $G/H$. Then the orbit of $G^{*}$ for $H$ in $G/H$ is the
space $G^{*}H/H$ and the group $G^{*}\leftrightarrow H$ is exactly the subgroup of $G^{*}$

consisting of all elements which fix the point $H$. By lemma 5 we have
$\dim G^{*}H/H=\dim G^{*}/G^{*}\leftrightarrow H$ .

II. Reduction and the final proof.

LEMMA 8. If the property (I) holds true for all finite dimensional
connected groups and their subgroups, then the property (I) holds also
true in case where the orbit of $G^{*}for$ $H$ is closed in the space $G/H$.

PROOF. When the dimension of the group $G$ is infinite, then by
lemma $1^{\prime}$ the property (I) holds true formally. So we shall assume
$\dim G<\infty$ . Then we can consider that the group $G$ acts on the space
$G/H$. The point $H$ of this space $G/H$ will be denoted by $\hat{e}$ . By lemma
6 we have

$\dim G/^{\prime}H=\dim G(e)=\dim G^{*}(\overline{e})\sim$ ,

and by lemma 7
$\dim G^{*}(\tilde{e})=\dim G^{*}H/H=\dim G^{*}/G^{*}\leftrightarrow H$ .

On the otherhand, we have
$\dim G=\dim G^{*}$ ,

and
$\dim H=\dim(G^{*}\leftrightarrow H)$ .

Therefore to prove the relation $\dim G=\dim H+\dim G/H$ is equi $\cdot$

valent to prove the relation
$\dim G^{*}=\dim(G^{*}\leftrightarrow H)+\dim G^{*}/G^{*}\leftrightarrow H$ .

Thus the proof of (I) in our case is reduced to the case where $G$

is finite dimensional and connected.
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LEMMA 9. If the property (I) holds true for all finite dimensional
connected groups and their subgroups, then the property (I) holds true
for any group and any subgroup.

PROOF. We may assume that the dimension of $G$ is finite. Now
as the group $H/H^{*}$ is a O.dimensional group, there exists a closed and
open subgroup $H^{\prime}$ of the group $H$ such that the homogeneous space
$H/H^{\prime}$ is discrete and the group $H^{\prime}/H^{*}$ is a compact group. From the
discreteness of the space $H/H^{\prime}$, we have

$\dim G/H=\dim G/H^{\prime}$ .
On the other hand we have $\dim H=\dim H^{\prime}$ , so that we can replace

$H$ by $H^{\prime}$ in the proof of (I).
We shall show that for $H^{\prime}$ the orbit of $G^{*}$ in $G/H^{\prime}$ is closed. By

theorem 1, we have

$\dim G/H^{\prime}=\dim\overline{G^{*}H^{\prime}}/H^{\prime}$ .
On the other hand, let $p^{\prime}$ be the projection of the group $G$ onto

the space $G/H^{*}$ , then there exists a compact set $C$ in the group $G$

such that the following relation holds
$p^{r}(C)=H^{\prime}/H^{*}$ ,

because the group $H^{\prime}/H^{*}$ is compact. This shows $H^{\prime}=CH^{*}$ . Then
the set $G^{*}C$ is closed in $G$ , for the set $C$ is compact and the group $G^{*}$

is closed [1]. Furthermore it holds true that
$G^{*}C=G^{*}CG^{*}\supset G^{*}CH^{*}=G^{*}H^{\prime}\supset G^{*}C$ .

Therefore we have
$\overline{G^{*}H^{\prime}}=G^{*}H^{\prime}$ .

In other words the space $G^{*}H^{\prime}/H^{\prime}$ is closed in $G/H^{\prime}$ . Our lemma
follows then from the preceding lemma.

LEMMA 10. Let $G$ be an n-dimensional connected group and $H$ a
subgroup of $G$, then the properted (I) holds true.

PROOF. As the group $G$ is a generalized Lie group, there exists a
neighborhood $U$ of the identity having the following properties:

$U=Z\cdot L$

where $Z$ is a compact O.dimensional central group and $L$ is a local Lie
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group with $\dim L=\dim G$ . Furthermore as any closed subgroup of a
generalized Lie group is also a generalized Lie group, there exists a
neighborhood $V$ of the identity in the group ($\lrcorner^{\backslash }$ such that the following
properties are satisfies:

$U\supset V$ , $V\sim H=Z^{\prime}\cdot L^{\prime}$ , $Z^{\prime}\subset Z$ , $L^{\prime}\subset L$ ,

where $Z^{\prime}$ is a compact O.dimensional central group and $L$ ‘ is a local
Liegroup with $\dim L^{\prime}=\dim H$.

Now $\dim G/Z^{\prime}$ is clearly equal to the dimension of a neighborhood
of the identity of the factor group $G/Z^{\prime}$ , so we have

$\dim G/Z^{\prime}=\dim Z/Z^{\prime}+\dim L=\dim L=\dim G$ .
Furthermore the group $G/Z^{\prime}$ is an n.dimensional group containing

the local Lie group $L_{1}$ which is isomorphic to the local Lie group $L^{\prime}$ ,
therefore there exists a compact local $cross- s\epsilon ction$ set $M$ at the identity
such that the following equality holds

$\dim G/Z^{\prime}=\dim(L_{1}\cdot M)=\dim(L^{\prime}\times M)$ .
On the other hand $L$ ‘ may be regarded as an $n\cdot dimensional$ cell,

therefore by the Hurewicz’s theorem we have
$\dim(L^{\prime}\times M)=\dim L^{\prime}+\dim M$

$=\dim H+\dim G/Z^{\prime}L^{\prime}$ .
where $\dim G/Z^{\prime}L^{\prime}$ means the dimension at the coset $Z^{\prime}L$‘ of the local
coset space $G/Z^{\prime}L^{\prime}$ . In other words

$\dim G=\dim H+\dim G/H$ . Q. E. D.

From lemma 9 and 10 follows immediately
THEOREM 2.

$\dim G=\dim H+\dim G/H$ .
By lemma 5 we can generalize this theorem to the following

theorem.
THEOREM 3. Let $G$ be a group acting on a space $X,$ $G(x)$ the

orbit of $G$ for $x\in X$, and $G_{x}$ the subgroup of $G$ consisting of the $ele$ .
ments which fix the point $x$ . Then we have

$\dim G=\dim G_{x}+\dim G(x)$ .
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Finally we have also as a generalization of lemma 6
THEOREM 4. If we use the same notations as in lemma then we

have
$\dim G(x)=\dim G^{*}(x)$ .

PROOF. In case where the dimension of the group $G$ is finite, the
following relations holds true

$\dim G^{*}(x)=\dim G^{*}/G^{*}-G_{x}=\dim G^{*}-\dim(G^{*}-G_{x})$

$=\dim G-\dim G_{x}$

$=\dim G/G_{x}$

$=\dim G(x)$ .
If $\dim G$ is infinite, we can prove in the same way as in the proof

of lemma 9.

Tokyo University.
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