On Neumann's problem for a domain on a closed Riemann surface.

By Masatsugu TsujI

(Received Nov. 4, 1953)
The Neumann's problem is solved usually by means of integral equations. Recently L. Myrberg ${ }^{1)}$ proved simply the existence of the solution of the Neumann's problem for the inside of a unit circle, without use of integral equations. By his method, we shall prove the existence of the solution of the Neumann's problem for a domain on a closed Riemann surface, without use of integral equations.

Let F be a closed Riemann surface spread over the z-plane and D be its sub-domain, whose boundary I^{Γ} consists of a finite number of analytic Jordan curves or Jordan arcs $\Gamma^{\prime}=\sum_{i=0}^{n} \Gamma_{i}$, such that, if Γ_{i}, Γ_{i+1} meet at a point ζ_{i}, then they make an inner angle $\alpha_{i} \pi\left(0<\alpha_{i}<2\right)$ at ζ_{i}. Let $f(\zeta)$ be a given function on Γ, which is continuous on Γ, except at $\left\{\zeta_{i}\right\}$, where $f(\zeta)$ may be discontinuous, but is bounded on Γ, such that

$$
\begin{equation*}
|f(\zeta)| \leqq M \quad \text { on } \Gamma \tag{1}
\end{equation*}
$$

and satisfies the condition :

$$
\begin{equation*}
\int_{\Gamma} f(\zeta)|d \zeta|=0 \tag{2}
\end{equation*}
$$

Then we shall prove
THEOREM. There exists a harmonic function $u(z)$ in D, which is continuous in \bar{D}, such that

$$
\begin{equation*}
|u(z)| \leqq k_{1} M \text { in } \bar{D} \tag{i}
\end{equation*}
$$

where $k_{1}=k_{1}(D)$ is a constant, which depends on D only.

[^0]\[

$$
\begin{equation*}
\frac{\partial u}{\partial \nu} \rightarrow f(\zeta), \quad \zeta \neq \zeta_{i} \tag{ii}
\end{equation*}
$$

\]

when z tends to $\zeta \in I$ along the inner normal ν of at ζ and $\frac{\partial u}{\partial \nu}$ is the derivative of u in the direction ν.
(iii) Let $D[u]$ be the Dirichlet integral of u on D, then $D[u]$ can be expressed by

$$
D[u]=-\int_{\Gamma} u \frac{\partial u}{\partial \nu}|d \zeta|=-\int_{\Gamma} u(\zeta) f(\zeta)|d \zeta|
$$

so that

$$
D[u] \leqq k_{2} M^{2},
$$

where $k_{2}=k_{2}(D)$ is a constant, which depends on D only.
Proof. We may assume that $M=1$, so that

$$
\begin{equation*}
|f(\zeta)| \leqq 1 \quad \text { on } I^{\prime}, \quad \int_{\Gamma} f(\zeta)|d \zeta|=0 \tag{1}
\end{equation*}
$$

and we have to prove that $|u(z)| \leqq k_{1}(D), D[u] \leqq k_{2}(D)$.
Let $z=0 \in D$ and $g(z, 0)$ be the Green's function of D with $z=0$ as its pole. We put

$$
\begin{equation*}
\varphi(\zeta)=f(\zeta) / \frac{\partial g(\zeta, 0)}{\partial \nu} \tag{2}
\end{equation*}
$$

where ν is the inner normal, then

$$
\begin{equation*}
\int_{\Gamma} \varphi(\zeta) \frac{\partial g(\zeta, 0)}{\partial \nu}|d \zeta|=0 \tag{3}
\end{equation*}
$$

Since $g(\zeta, 0)$ is harmonic at $\zeta \neq \zeta_{i}$ on $\Gamma, \frac{\partial g(\zeta, 0)}{\partial \nu}>0$ exists at such points. To investigate the behaviour of $\frac{\partial g(\zeta, 0)}{\partial \nu}$ in a neighbourhood of ζ_{i}, we map the part $U\left(\zeta_{i}\right)$ of D, contained in $\left|z-\zeta_{i}\right|<\rho$ on a halfdisc: $|w|<1, y>0$ on the $w=x+i y$-plane, such that ζ_{i} becomes $w=0$ and the part of I, which lies in $\left|z-\zeta_{i}\right| \leqq \rho$ becomes $-1 \leqq w \leqq 1$ and put $g(z, 0)=G(w)$, then $G(w)$ is harmonic in $|w|<1$ and if $\zeta \in I^{\top}$ corresponds to ξ,

$$
\frac{\partial g(\zeta, 0)}{\partial \nu}|d \zeta|=\left(\frac{\partial G(w)}{\partial \eta}\right)_{\eta=0} d \xi, \quad(w=\xi+i \eta)
$$

Since

$$
\begin{aligned}
& 0<a \leqq\left(\frac{\partial G(w)}{\partial \eta}\right)_{\eta=0} \leqq b \text { for }|\xi| \leqq \delta<1 \\
& a\left|\frac{\partial \xi}{\partial \zeta}\right| \leqq \frac{\partial g(\zeta, 0)}{\partial \nu} \leqq b\left|\frac{d \xi}{d \zeta}\right|
\end{aligned}
$$

Now $\left|\frac{d \xi}{d \zeta}\right|=\left|\frac{d w}{d z}\right|$. By Kellogg's theorem, ${ }^{2)}$ we can prove easily that in a neighbourhood of ζ_{i},

$$
\begin{gather*}
A\left|z-\zeta_{i}\right|^{\frac{1-\alpha_{i}}{\alpha_{i}}} \leqq\left|\frac{d w}{d z}\right| \leqq B\left|z-\zeta_{i}\right|^{\frac{1-\alpha_{i}}{\alpha_{i}}}, \\
A\left|z-\zeta_{i}\right|^{-\frac{1}{\alpha_{i}}} \leqq|w| \leqq B\left|z-\zeta_{i}\right|^{\frac{1}{\alpha_{i}}} \tag{4}
\end{gather*}
$$

where $A>0, B>0$ are constants, so that writing A, B in stead of $A a, B a$, we have

$$
\begin{equation*}
A\left|\zeta-\zeta_{i}\right|^{\frac{1-\alpha_{i}}{\alpha_{i}}} \leqq \frac{\partial g(\zeta, 0)}{\partial \nu} \leqq B\left|\zeta-\zeta_{i}\right|^{\frac{1-\alpha_{i}}{\alpha_{i}}} \tag{5}
\end{equation*}
$$

hence

$$
\begin{equation*}
|\phi(\zeta)| \leqq \frac{1}{A}\left|\zeta-\zeta_{i}\right|^{\frac{\alpha_{i}-1}{a_{\varepsilon}}} \tag{6}
\end{equation*}
$$

Since similarly

$$
A_{1}\left|\zeta-\zeta_{i}\right|^{\frac{1-\alpha_{i}}{\alpha_{i}}} \leqq \frac{\partial g(\zeta, z)}{\partial \nu} \leqq B_{1}\left|\zeta-\zeta_{i}\right|^{\frac{1-\alpha_{i}}{\alpha_{i}}}
$$

we have

$$
\begin{equation*}
|\phi(\zeta)| \frac{\partial g(\zeta, z)}{\partial \nu} \leqq \frac{B_{1}}{A} \tag{7}
\end{equation*}
$$

so that $\boldsymbol{\varphi}(\zeta) \frac{\partial g(\zeta, z)}{\partial \nu}$ is bounded on I^{\prime}, hence we put

$$
\begin{equation*}
v(z)=\frac{1}{2 \pi} \int_{T} \phi(\zeta) \frac{\partial g(\zeta, z)}{\partial \nu}|d \zeta| \tag{8}
\end{equation*}
$$

2) S. Warschawski: Über einen Satz von O. D. Kellogg. Göttinger Nachr. 1932. M. Tsuji : The boundary distortion on conformal mapping, (which will appear in this Journal).
then by (3), $v(0)=0$ and $v(z)$ is harmonic in D and, by means of (6), we can prove easily that

$$
\begin{equation*}
\lim _{z \rightarrow \zeta} v(z)=\varphi(\zeta), \quad \zeta \neq \zeta_{i} \tag{9}
\end{equation*}
$$

Let $h=h(z, 0)$ be the conjugate harmonic function of $g(z, 0)$ and we denote the niveau curve $h(z, 0)=$ const. $=\alpha$ by L_{α} and put

$$
\begin{equation*}
u(z)=\int_{0}^{z} v(t) d g(t, 0) \tag{10}
\end{equation*}
$$

where we integrate on L_{α}, then since $v(0)=0$, the integral is finite. We shall prove that $u(z)$ is harmonic in D.

Let z be different from double points $\left\{a_{i}\right\}$ of the niveau curves $h=$ const., then at z,

$$
\frac{\partial^{2} u}{\partial g^{2}}=\frac{\partial v}{\partial g}, \quad \frac{\partial^{2} u}{\partial h^{2}}=\int_{0}^{z} \frac{\partial^{2} v}{\partial h^{2}} d g=-\int_{0}^{z} \frac{\partial^{2} v}{\partial g^{2}} d g=-\frac{\partial v}{\partial g},
$$

so that $\Delta u=\frac{\partial^{2} u}{\partial g^{2}}+\frac{\partial^{2} u}{\partial h^{2}}=0$, hence $u(z)$ is harmonic at z. Since $u(z)$ is bounded in a neighbourhood of $a_{i}, u(z)$ is harmonic at a_{i}, so that $u(z)$ is harmonic in D.

We see from (9), (10), that when $z \rightarrow \zeta \neq \zeta_{i}$ along the inner normal ν of Γ at ζ,

$$
\begin{equation*}
\frac{\partial u}{\partial \nu} \rightarrow \boldsymbol{\varphi}(\zeta) \frac{\partial g(\zeta, 0)}{\partial \nu}=f(\zeta), \quad \zeta \neq \zeta_{i} \tag{11}
\end{equation*}
$$

Hence $u(z)$ is the solution of the Neumann's problem. Next we shall prove that $u(z)$ continuous in \bar{D}.

Since $u(z)$ is continuous at $\zeta \neq \zeta_{i}$ on Γ, we have only to prove that $u(z)$ is continuous at ζ_{i}. For the sake of brevity, we assume that there is only one ζ_{0} on Γ, where Γ_{0}, Γ_{1} meet at an inner angle $\alpha_{0} \pi\left(0<\alpha_{0}<2\right)$. Let $U\left(\zeta_{0}\right)$ be the part of D, contained in $\left|z-\zeta_{0}\right|<\rho$. We map $U\left(\zeta_{0}\right)$ conformally on $|w|<1, y>0$ on the $w=x+i y$-plane, such that ζ_{0} becomes $w=0$ and the part of I contained in $\left|z-\zeta_{0}\right| \leqq \rho$ becomes $-1 \leqq w \leqq 1$. Let the half-discs $|w| \leqq \frac{1}{4}, y>0$, and $|w| \leqq \frac{1}{2}, y>0$ be mapped on $U_{0}\left(\zeta_{0}\right), U_{1}\left(\zeta_{0}\right)$ respectively and $\Gamma_{1}\left(\zeta_{0}\right)$ be the part of Γ, which belongs to the boundary of $U_{1}\left(\zeta_{0}\right)$. Then

$$
\begin{equation*}
v(z)=\frac{1}{2 \pi} \int_{r_{1}\left(\zeta_{0}\right)} \phi(\zeta) \frac{\partial g(\zeta, z)}{\partial \nu}|d \zeta|+O(1), \quad z \in U_{0}\left(\zeta_{0}\right) \tag{12}
\end{equation*}
$$

where $O(1)$ is bounded for any $z \in U_{0}\left(\zeta_{0}\right)$.
Let $z \in U_{0}\left(\zeta_{0}\right), z_{1} \in U\left(\zeta_{0}\right)$ correspond to $w=x+i y, w_{1}=x_{1}+i y_{1}$ respectively, then $|w| \leqq \frac{1}{4},\left|w_{1}\right|<1$ and put $g\left(z_{1}, z\right)=G\left(w_{1}, w\right)$ and let

$$
\begin{equation*}
G\left(w_{1}, w\right)=\log \left|\frac{w_{1}-\bar{w}}{w_{1}-w}\right|+\psi\left(w_{1}, w\right) \tag{13}
\end{equation*}
$$

Since $\psi=0$ on $-1 \leqq w_{1} \leqq 1, \psi\left(w_{1}, w\right)$ is harmonic in $\left|w_{1}\right|<1$ and we can prove easily that $\left|\psi\left(w_{1}, w\right)\right| \leqq$ const. $=K$ on $\left|w_{1}\right|=\frac{1}{2}$, so that $\left|\psi\left(w_{1}, w\right)\right| \leqq K$ in $\left|w_{1}\right| \leqq \frac{1}{2}$, where K is independent of $w,\left(|w| \leqq \frac{1}{4}\right)$. Hence if $\zeta \in \Gamma_{1}\left(\zeta_{0}\right)$, $\left(\zeta \neq \zeta_{0}\right)$ corresponds to $\xi\left(-\frac{1}{2} \leqq \xi \leqq \frac{1}{2}\right)$, then

$$
\begin{align*}
\frac{\partial g(\zeta, z)}{\partial \nu}|d \zeta| & =\left(\frac{\partial}{\partial y_{1}} \log \left|\frac{w_{1}-\bar{w}}{w_{1}-w}\right|_{w_{1}=\xi}+O(1)\right) d \xi \\
& =\left(\frac{2 y}{y^{2}+(x-\xi)^{2}}+O(1)\right) d \xi \tag{14}
\end{align*}
$$

Since by (6), (4), $\varphi(\zeta)=O\left(\left|\zeta-\zeta_{0}\right|\right)^{\frac{\alpha_{0}-1}{\alpha_{0}}}$ and $\left|z-\zeta_{0}\right|=O\left(|w|^{\alpha_{0}}\right)$, we have $\varphi(\zeta)=O\left(|\xi|^{\alpha_{0}-1}\right)$, so that

$$
\begin{gather*}
\frac{1}{2 \pi} \int_{\Gamma_{1}\left(\zeta_{0}\right)} \varphi(\zeta) \frac{\partial g(\zeta, z)}{\partial \nu}|d \zeta|=O\left(\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{y d \xi}{|\xi|^{\beta}\left(y^{2}+(x-\xi)^{2}\right)}\right)+O(1) . \tag{15}\\
0<\beta=\left|1-\alpha_{0}\right|<1
\end{gather*}
$$

If $|\xi| \leqq|x-\xi|$, then

$$
\frac{1}{|\xi|^{\beta}\left(y^{2}+(x-\xi)^{2}\right)} \leqq \frac{1}{|\xi|^{\beta}\left(y^{2}+\xi^{2}\right)}
$$

and if $|\xi| \geqq|x-\xi|$, then

$$
\frac{1}{|\xi|^{\beta}\left(y^{2}+(x-\xi)^{2}\right)} \leqq \frac{1}{|x-\xi|^{\beta}\left(y^{2}+(x-\xi)^{2}\right)}
$$

so that

$$
\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{y d \xi}{|\xi|^{\beta}\left(y^{2}+(x-\xi)^{2}\right)} \leqq 2 \int_{-\infty}^{\infty} \frac{y d \xi}{|\xi|^{\beta}\left(y^{2}+\xi^{2}\right)}=O\left(\frac{1}{y^{\beta}}\right)
$$

hence by (12)

$$
\begin{equation*}
v(z)=O\left(\frac{1}{y^{\beta}}\right), \quad z \in U_{0}\left(\zeta_{0}\right), \quad 0<\beta<1 \tag{16}
\end{equation*}
$$

Let $\zeta \in \Gamma$ lies in a small neighbourhood of ζ_{0} and z lie on the same niveau curve $h=\alpha$ as ζ and correspond to $w=x+i y$, then if we integrate on L_{α},

$$
\left|\int_{\zeta}^{z} v(t) d g(t, 0)\right|=O\left(\int_{0}^{y} \frac{d y}{y^{\beta}}\right)=O\left(y^{1-\beta}\right)<\varepsilon,
$$

if z lies in a small neighbourhood of ζ_{0}. From this, we see that $u(z)$ is continuous at ζ_{0}. Hence $u(z)$ is continuous in \bar{D}. From the proof, we see that $|u(z)| \leqq k_{1}(D)$ in \bar{D}.

Next we shall prove that $D[u]$ can be expressed by

$$
\begin{equation*}
D[u]=-\int_{\boldsymbol{T}} u \frac{\partial u}{\partial \nu}|d \zeta| \tag{17}
\end{equation*}
$$

Let Γ_{ρ} be the niveau curve $g(z, 0)=$ const. $=\rho>0$ and Δ_{ρ} be the domain, bounded by Γ_{ρ}, and $D_{\rho}[u]$ be the Dirichlet integral of u in Δ_{ρ}, then

$$
\begin{equation*}
D_{\rho}[u]=-\int_{\Gamma_{\rho}} u \frac{\partial u}{\partial \nu}|d z| . \tag{18}
\end{equation*}
$$

Suppose that as before there is only one ζ_{0} on Γ, where Γ_{0}, Γ_{1} meet at an inner angle $\alpha_{0} \pi\left(0<\alpha_{0}<2\right)$ and let ζ_{0} lie on the niveau curve $h(z, 0)=0$, and $\Gamma_{\rho}(\eta), \Gamma(\eta)$ be the part of $I_{\rho}^{\prime}, I^{\prime}$ respectively, on which $|h(z, 0)| \leqq \eta$, then

$$
\begin{equation*}
D_{\rho}[u]=-\int_{\Gamma_{\rho}-\Gamma_{\rho}(\eta)} u \frac{\partial u}{\partial \nu}|d z|-\int_{\Gamma_{\rho}(\eta)} u \frac{\partial u}{\partial \nu}|d z| \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
\lim _{\rho \rightarrow 0} \int_{\Gamma_{\rho}-\Gamma_{\rho}(\eta)} u \frac{\partial u}{\partial \nu}|d z|=\int_{\Gamma-\Gamma(\eta)} u \frac{\partial u}{\partial \nu}|d \zeta| . \tag{20}
\end{equation*}
$$

Now since $u(z)=O(1)$,

$$
\int_{\Gamma_{\rho}(\eta)} u \frac{\partial u}{\partial \nu}|d z|=O\left(\int_{\Gamma_{\rho}(\eta)}|v(z)| \frac{\partial g(z, 0)}{\partial \nu}|d z|\right)=O\left(\int_{\Gamma_{\rho}(\eta)}|v(z)| d h(z, 0)\right)
$$

$$
\begin{equation*}
=O\left(\int_{-\eta}^{\eta} d h \int_{\Gamma}|\varphi(\zeta)| \frac{\partial g(\zeta, z)}{\partial \nu}|d \zeta|\right) . \tag{21}
\end{equation*}
$$

Let $\eta<\delta<\frac{1}{2}$. If $z \in \Gamma_{\rho}(\eta), \quad \zeta \in \Gamma-\Gamma(\delta)$, and $z \rightarrow \zeta \in \Gamma(\eta)$, then $\frac{\partial g(\zeta, z)}{\partial \nu} \rightarrow 0$, hence

$$
\int_{\Gamma_{\rho}(\eta)} u \frac{\partial u}{\partial \nu}|d z|=O\left(\int_{-\eta}^{\eta} d h \int_{\Gamma^{(\delta)}}|\phi(\zeta)| \frac{\partial g(\zeta, z)}{\partial \nu}|d \zeta|\right)+O(\eta)
$$

As before, we map $U\left(\zeta_{0}\right)$ on $|w|<1, y>0$ and let $z \in \Gamma_{\rho}(\eta)$ correspond to $w=x+i y$, then $d h=O(d x)$, so that by (15),

$$
\begin{align*}
& \int_{\Gamma_{\rho}(\eta)} u \frac{\partial u}{\partial \nu}|d z|=O\left(\int_{-\eta}^{\eta} d x \int_{-\delta}^{\delta} \frac{y d \xi}{|\xi|^{\beta}\left(y^{2}+(x-\xi)^{2}\right)}\right)+O(\eta)= \\
& O\left(\int_{-\delta}^{\delta} \frac{d \xi}{|\xi|^{\beta}} \int_{-\eta}^{\eta} \frac{y d x}{y^{2}+(x-\xi)^{2}}\right)+O(\eta)=O\left(\delta^{1-\beta}\right)+O(\eta),(0<\beta<1) . \tag{22}
\end{align*}
$$

Since η, δ are arbitrary, we have from (19), (20), (22),

$$
\begin{equation*}
D[u]=\lim _{\rho \rightarrow 0} D_{\rho}[u]=-\int_{\Gamma} u \frac{\partial u}{\partial \nu}|d \zeta| . \tag{23}
\end{equation*}
$$

Since $|u| \leqq k_{1}(D),\left|\frac{\partial u}{\partial v}\right|=|f(\zeta)| \leqq 1$, we have $D[u] \leqq k_{2}(D)$, where $k_{2}(D)$ is a constant, which depends on D only. Hence our theorem is proved.

Mathematical Institute, Tokyo University,

[^0]: 1) L. Myrberg: Über die vermischte Randwertaufgabe der harmonischen Funktionen. Ann. Acad. Sci. Fenn. Series A, 103 (1951).
