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Let $A$ be a central simple algebra of finite dimension over a
commutative field $F$ which contains an infinite number of elements.
Let $B$ be a subalgebra of $A$ different from both $A$ and $F$. A sub $\cdot$

algebra $B^{\prime}$ is called coniugate to $B$ if there exists a regular element $t$

of $A$ such that $B^{\prime}=tBt^{-1}$ . If we denote by $[B]$ the totality of sub.
algebras of $A$ conjugate to $B$ , the multiplicative group $A^{*}$ of regular
elements of $A$ may be regarded as a transitive group of substitutions
on $[B]$ in a natural manner, and every element of the subgroup $p*$ of
$A^{*}$ (the multiplicative group of regular elements of $F$) gives rise to
the identity substitution. Now, we have

THEOREM. $F^{*}$ is precisely the kernel of the representation of $A^{*}$

as a group of substitutions on $[B]$ .
This was proved previously by one of the writers in case where

$B$ is a simple subalgebra of $A$ , and was applied to the structure-prob-
lem of the three dimensional rotation groups [3]. Our aim in the
present paper is to show that the theorem is valid in the general form
as above, and can be proved in even simpler way than in [3].

\S 1. We need a simple lemma on Kronecker product.
LEMMA. Let $B$ and $C(\neq F)$ be algebras with identity over $F$,

and $A=B\times C$ their Kronecker product over F. If $t=b+c(b\in B,$ $c\in C$,
$c\not\in F)$ is a regular element of $A$ , we have $B\cap tBt^{-1}=V_{B}(b)$ , where
$V_{B}(b)$ denotes the set of all elements of $B$ commutable with $b$ .

PROOF. If $xetBt^{-1}$ , there exists $y\in B$ such that $(b+c)y=x(b+c)$ ,
or equivalently, $(by-xb)\cdot 1=(x-y)c$. If, further, $xeB$, we have $by=xb$

as well as $x=y$ in virtue of the linear disjointness of $B$ and $Co\dot{v}er$

$F$. Hence $x\in V_{B}(b)$ , i. e. $B\cap tBt^{-1}\underline{\subset}V_{B}(b)$ . Conversely, it is easily
verified that $V_{B}(b)\underline{\subset}B\cap tBt^{-1}$ .

Now we proceed to the proof of the theorem. Let $N(B)$ be the
totality of those regular elements of $A$ which give rise to the identity
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substitution on $[B]$ , then $N(B)$ is a normal subgroup of $A^{*}$ . We shall
show $N(B)=F^{*}$ , which is just the assertion of the theorem. Set
$B‘=V_{A}(B)$ , then we have $N(B)\subseteq N(B$‘

$)$ , and $B$‘ contains the identity
of $A$ . Hence we may, and shall, suppose that $B$ itself contains the
identity of $A$ .

First, we consider the case where $A$ is a division algebra. Then
$B$ is also a division algebra whose center $Z$ is a commutative field
over $F$, and we have obviously $N(Z)\underline{\supset}N(B)$ . Since the fact $N(Z)=F^{*}$

is easily proved for such a subfield $Z\subset A$ provided $Z\neq F$, as was shown
in [3] (p. 207), we shall only consider here the case where $B$ is also
a central division algebra over $F$. Let $V_{A}(B)=C$, then $C\neq F$ and
$A=B\times {}_{F}C$. Let $b$ be an $arbitr^{\prime}ary$ element of $B$ not contained in $F$,
then $t=b+c$ is obviously regular for any non $\cdot$ scaler $c\in C$. Hence we
have $B\cap tBt^{-1}=V_{B}(b)$ by the above lemma. Let $K$ be the center of
$V_{B}(b)$ , then we have $N(B)\underline{\subset}N(V_{B}(b))\underline{\subset}N(K)$ . Since $K$ is a commut-
ative field essentially containing $F(K\underline{\supset}F(b)\supset F)$ , we have $N(K)=F^{*}$

as is remarked above, and a fortiori $N(B)=F^{*}$ .
Next, let $A$ be not a division algebra. Let $S$ be the commutator

subgroup of $A$ , then the factor group $S/(S\cap F^{*})$ is a simple group [1].
Thus, if $N(B)\neq F^{*}$ , it follows $N(B)\underline{\supset}S$ by [2] Theorem 4. Hence
$S\cap B^{*}$ is a normal subgroup of $S$. If $\iota_{S\cap B^{*}=S}$ $i$ . $e$ . if $B^{*}\underline{\supset}S$, we
have $B=A$ (see [2] Corollary 1 to Theorem 1), which, however, con-
tradicts our first assumption $B\neq A$ . $S\cap B^{*\underline{c}}F^{*}$ . Let $b$ be an arbitrary
element of $B$ fixed for a moment; then for $t\in N(B)$ , we have $tbt^{-1}b^{-1}$

$=\tau\in F^{*}$ . The mapping $ t\rightarrow\tau$ is a homomorphism of $N(B)$ into an
abelian group. Since $S$ is the commutator group of $N(B)$ as well, we
have $\tau^{=1}$ for $t\in S$, which means that every $b\in B^{*}$ commutes with every
element of $S$. Since $B^{*}$ and $S$ generate $B$ and $A$ respectively, this, in
turn, means $B=F$, which is also excluded at the beginning. Hence
we have always $N(B)=F^{*}$ , and the theorem is proved.

\S 2. We shall add an immediate consequence of the lemma used
in.\S 1. Namely:

PROPOSITION. Let $F,$ $A,$ $B,$ $C$ be as in the lemma, and suppose
that the following condition $(C)$ holds:

$(C)$ For every $b\in B$ there exists a $non\cdot scalerc\in C$ such that $b+c$

is regular $inA$ .
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If, under this condition, a subalgebra $B^{\prime}$ of $B$ is a commuter algebra
$V(B$“

$)$ in $B$ of a certain subalgebra $B^{\prime\prime}$ of $B$, then $B^{\prime}$ is an intersection
of subalgebra of A coniugate to $B$ under the inner automorphisms of
$A$ .

PROOF. Suppose $B^{\prime}=V_{B}(B^{\prime\prime})$ . Take a generator system $\{b_{t}\}$ of
$B^{\prime\prime}$ , and select, for each $b_{\alpha}$ , a regular element $t_{\alpha}=b_{\alpha}+c_{a}$ , where $c_{a}\in C$,
$\not\in F$. Then, by the lemma, we have certainly:

$B\cap(\bigcap_{a}t_{\alpha}Bt_{\alpha}^{-1})=\bigcap_{\alpha}(B\cap t_{a}Bt_{a^{-1}})=\bigcap_{\alpha}V_{B}(b_{a})=V_{B}(B^{\prime\prime})=B^{\prime}$ .
If $B^{\prime\prime}$ is of finite dimension over $F$, we may take an F-basis of $B^{\prime\prime}$

as a generator system. Hence $B^{\prime}$ is represented, in this case, as an
intersection of a finite number of conjugate subalgebras.

The condition $(C)$ is satisfied in the following cases for instance:
i) $A$ satisfies the ascending chain condition for right dieals, and

every non.zero-divisor of $A$ is a regular element.
For, let $a$ be an element of $A$ . The left multiplication by $a$ is a

linear transformation of the underlying vector space of $A$ over $F$. Let
$\{\lambda_{v} ; \nu\in N\}$ be the set of all eigenvalues of this linear transformation,
and $E(\lambda_{\nu})$ the space of eigenvectors belonging to $\lambda_{\nu}$ . Then every
$E(\lambda_{\nu})$ is a right ideal of $A$ , and the sum $\bigcup_{\nu}E(\lambda_{v})$ is direct. Hence $N$

must be a finite set in view of the asccnding chain condition. It fol-
lows that there exists $\mu\in F$ such that $ a+\mu$ is a non.zero-divisor, since
the field $F$ is not a finite field. By assumption, $ a+\mu$ is then a regular
element of $A$ . Thus, if $b\in B$ is given, take a non.scaler $ceC$, then
$b+(c+\mu)$ is regular with some $\mu\in F$.

ii) $A$ is an algebraic algebra over $F$.
In this case, an element $a$ of $A$ satisfies an algebraic equation

$f(x)=0$ , say, over $F$. If $\lambda$ is an eigenvalue of the left multiplication
by $a,$ $\lambda\in F$ satisfies also $f(\lambda)=0$ . Obviously the number of such $\lambda S$ is
finite, and we can argue quite similarly as above, since a $non\cdot zero=$

divisor of $A$ is certainly a regular element in this case.
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