On the multiplicative group of simple algebras.

By Goro TOYODA and Akira HATTORI

(Received Nov. 12, 1953)

Let A be a central simple algebra of finite dimension over a commutative field F which contains an infinite number of elements. Let B be a subalgebra of A different from both A and F. A subalgebra B' is called *conjugate* to B if there exists a regular element t of A such that $B'=tBt^{-1}$. If we denote by [B] the totality of subalgebras of A conjugate to B, the multiplicative group A^* of regular elements of A may be regarded as a transitive group of substitutions on [B] in a natural manner, and every element of the subgroup F^* of A^* (the multiplicative group of regular elements of F) gives rise to the identity substitution. Now, we have

THEOREM. F^* is precisely the kernel of the representation of A^* as a group of substitutions on [B].

This was proved previously by one of the writers in case where B is a simple subalgebra of A, and was applied to the structure-problem of the three dimensional rotation groups [3]. Our aim in the present paper is to show that the theorem is valid in the general form as above, and can be proved in even simpler way than in [3].

§ 1. We need a simple lemma on Kronecker product.

LEMMA. Let B and C ($\neq F$) be algebras with identity over F, and $A=B\times C$ their Kronecker product over F. If $t=b+c(b\in B, c\in C, c\notin F)$ is a regular element of A, we have $B\cap tBt^{-1}=V_B(b)$, where $V_B(b)$ denotes the set of all elements of B commutable with b.

PROOF. If $x \in tBt^{-1}$, there exists $y \in B$ such that (b+c)y=x(b+c), or equivalently, $(by-xb) \cdot 1=(x-y)c$. If, further, $x \in B$, we have by=xb as well as x=y in virtue of the linear disjointness of B and C over F. Hence $x \in V_B(b)$, i. e. $B \cap tBt^{-1} \subseteq V_B(b)$. Conversely, it is easily verified that $V_B(b) \subseteq B \cap tBt^{-1}$.

Now we proceed to the proof of the theorem. Let N(B) be the totality of those regular elements of A which give rise to the identity

substitution on [B], then N(B) is a normal subgroup of A^* . We shall show $N(B)=F^*$, which is just the assertion of the theorem. Set $B'=V_A(B)$, then we have $N(B)\subseteq N(B')$, and B' contains the identity of A. Hence we may, and shall, suppose that B itself contains the identity of A.

First, we consider the case where A is a division algebra. Then B is also a division algebra whose center Z is a commutative field over F, and we have obviously $N(Z) \ge N(B)$. Since the fact $N(Z) = F^*$ is easily proved for such a subfield $Z \le A$ provided $Z \ne F$, as was shown in [3] (p. 207), we shall only consider here the case where B is also a central division algebra over F. Let $V_A(B) = C$, then $C \ne F$ and $A = B \times_F C$. Let b be an arbitrary element of B not contained in F, then t = b + c is obviously regular for any non-scaler $c \in C$. Hence we have $B \cap tBt^{-1} = V_B(b)$ by the above lemma. Let K be the center of $V_B(b)$, then we have $N(B) \le N(V_B(b)) \le N(K)$. Since K is a commutative field essentially containing $F(K \ge F(b) > F)$, we have $N(K) = F^*$ as is remarked above, and a fortiori $N(B) = F^*$.

Next, let A be not a division algebra. Let S be the commutator subgroup of A, then the factor group $S/(S \cap F^*)$ is a simple group [1]. Thus, if $N(B) \neq F^*$, it follows $N(B) \geq S$ by [2] Theorem 4. Hence $S \cap B^*$ is a normal subgroup of S. If ${}^{\bullet}S \cap B^* = S$, i.e. if $B^* \geq S$, we have B = A (see [2] Corollary 1 to Theorem 1), which, however, contradicts our first assumption $B \neq A$. $S \cap B^* \leq F^*$. Let b be an arbitrary element of B fixed for a moment; then for $t \in N(B)$, we have $tbt^{-1}b^{-1} = \tau \in F^*$. The mapping $t \to \tau$ is a homomorphism of N(B) into an abelian group. Since S is the commutator group of N(B) as well, we have $\tau = 1$ for $t \in S$, which means that every $b \in B^*$ commutes with every element of S. Since B^* and S generate B and A respectively, this, in turn, means B = F, which is also excluded at the beginning. Hence we have always $N(B) = F^*$, and the theorem is proved.

 \S 2. We shall add an immediate consequence of the lemma used in \S 1. Namely:

PROPOSITION. Let F, A, B, C be as in the lemma, and suppose that the following condition (C) holds:

(C) For every $b \in B$ there exists a non-scaler $c \in C$ such that b+c is regular in A.

If, under this condition, a subalgebra B' of B is a commuter algebra V(B'') in B of a certain subalgebra B'' of B, then B' is an intersection of subalgebra of A conjugate to B under the inner automorphisms of A.

PROOF. Suppose $B'=V_B(B'')$. Take a generator system $\{b_{\sigma}\}$ of B'', and select, for each b_{σ} , a regular element $t_{\sigma}=b_{\sigma}+c_{\sigma}$, where $c_{\sigma}\in C$, $\notin F$. Then, by the lemma, we have certainly:

$$B\cap (\bigcap_{\alpha}t_{\alpha}Bt_{\alpha}^{-1})=\bigcap_{\alpha}(B\cap t_{\alpha}Bt_{\alpha}^{-1})=\bigcap_{\alpha}V_{B}(b_{\alpha})=V_{B}(B'')=B'$$
 .

If B'' is of finite dimension over F, we may take an F-basis of B'' as a generator system. Hence B' is represented, in this case, as an intersection of a finite number of conjugate subalgebras.

The condition (C) is satisfied in the following cases for instance:

i) A satisfies the ascending chain condition for right dieals, and every non-zero-divisor of A is a regular element.

For, let a be an element of A. The left multiplication by a is a linear transformation of the underlying vector space of A over F. Let $\{\lambda_{\nu}; \nu \in N\}$ be the set of all eigenvalues of this linear transformation, and $E(\lambda_{\nu})$ the space of eigenvectors belonging to λ_{ν} . Then every $E(\lambda_{\nu})$ is a right ideal of A, and the sum $\bigvee_{\nu} E(\lambda_{\nu})$ is direct. Hence N must be a finite set in view of the ascending chain condition. It follows that there exists $\mu \in F$ such that $a + \mu$ is a non-zero-divisor, since the field F is not a finite field. By assumption, $a + \mu$ is then a regular element of A. Thus, if $b \in B$ is given, take a non-scaler $c \in C$, then $b + (c + \mu)$ is regular with some $\mu \in F$.

ii) A is an algebraic algebra over F.

In this case, an element a of A satisfies an algebraic equation f(x)=0, say, over F. If λ is an eigenvalue of the left multiplication by a, $\lambda \in F$ satisfies also $f(\lambda)=0$. Obviously the number of such λ 's is finite, and we can argue quite similarly as above, since a non-zero-divisor of A is certainly a regular element in this case.

Tateno High School and University of Tokyo.

References

- [1] J. DIEUDONNÉ, Les déterminants sur un corps non-commutatif, Bull. Soc. Math. France, vol. 71 (1943).
- [2] A. HATTORI, On invariant subrings, Japanese Journ. of Math. vol. 21 (1951), pp. 121-129.
- [3] A. HATTORI, On the multiplicative group of simple algebras and orthogonal groups of three dimensions, Journ. of Math. Soc. Japan, vol. 4 (1952), pp. 205-217.