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On conformal Riemann spaces.

By Minoru KURITA
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In this paper we investigate the local conformal homeomorphism
of two Riemann spaces, which we call conformal correspondence. In
section 1 we define characteristic roots of the conformal correspondence
and consider the case in which the characteristic roots are all equal.
This case has already been investigated by A. Fialkow [5] and K.
Yano [4], and section 1 will give redemonstrations of their results to $\cdot$

gether with some new results. In section 2 we treat the conformally
flat Riemann space of imbedding class 1 which has been already in-
vestigated by J. A. Schouten [1], M. Matsumoto [2], and L. L. Verbickii
[3]. This Riemann space is characterized by the property that the
characteristic roots of the conformal correspondence of the space with
a euclidean space are equal except one. Moreover we give new proofs
of the results of [1], [2], [3] from our point of view.

Throughout the whole paper let the indices run as follows:

$i,j,$ $k,$ $h=1,$ $\cdots,$ $n;\alpha,$ $\beta,$
$\gamma,$ $e=2,$ $\cdots,$ $n$ ,

and we shall follow the convention that the repeated indices imply
summation unless otherwise mentioned.

I thank Prof. K. Yano and M. Matsumoto for their kind advices.

1. Conformally related Riemann spaces.

1.1 Let the line $\cdot$ elements of $n\cdot dimensional$ Riemann spaces $S,$ $S_{1}$

be given by
$ds^{2}=g_{ij}dx_{i}dx_{j}$ , $ds_{1}^{2}=a^{2}g_{ij}dx_{i}dx_{j}$

respectively, where $a$ and $g_{ij}$ are functions of class $C_{2}$ of $x_{1},$ $\cdots,$ $x_{n}$ .
We put $g_{ij}dx_{i}dx_{i}=\sum_{i}\omega_{i}^{2}$ with Pfaffian forms $\omega_{i}$ of class $C_{2}$ , and so

(1) $ds^{2}=\sum_{i}\omega_{i}^{2}$ , $ds_{1}^{2}=a^{2}\sum_{i}\omega_{i}^{2}$ .
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We can determine $\omega_{ij}$ such that

(2) $d\omega;=[\omega_{j}\omega_{ji}]$ , $\omega_{ij}=-\omega_{ji}$

uniquely. We put

(3) $da/a=b_{i^{\omega}i}$ ,

(4) $\pi_{i}=a\omega;$ , $\pi_{ij}=\omega_{ij}+b_{i}\omega_{j}-b_{j}\omega_{i}$ .

Then we have by (1), (2), (3), and (4)

(5) $ds_{1}^{2}=\sum_{i}\pi_{i}^{2}$ ,

and also
$d\pi;=d(a\omega_{i})=[da, \omega_{i}]+ad\omega_{i}=[da, \omega_{i}]+a[\omega_{j}, \omega_{jj}]$

$=[ab_{j^{\omega_{j},\omega_{i}}}]+[a\omega_{j}, \omega_{ji}]=[a\omega_{j}, \omega_{ji}+b_{j}\omega;-b_{i^{\omega}j}]$ .
Hence we get
(6) $d\pi_{i}=[\pi_{j}\pi_{ji}]$ , $\pi_{ij}=-\pi_{ji}$

and so $\pi_{i},$ $\pi_{ij}$ are the parameters of Riemannian connection attached
to $S_{1}$. Let the curvature forms of $S$ and $S_{1}$ be

$\Omega_{ij}=d\omega_{ij}-[\omega_{ik}\omega_{kj}]$ , $\Pi_{ij}=d\pi_{ij}-[\pi_{jk}\pi_{kj}]$ .
Then we get from (4)

(7) $\Pi_{ij}=\Omega_{lj}+[p_{ik^{\omega_{k},\omega_{j}}}]-[p_{jk}\omega_{k}, \omega_{i}]+b^{2}[\omega_{i}\omega_{j}]$ ,

where we have put

(8) $b^{2}=\sum_{i}b_{i}^{2}$ ,

(9) $db_{i}+b_{j^{\omega}ji}-b_{i}da/a=p_{ik^{\omega_{k}}}$ .
By taking an exterior differential of (3)

$[db_{j}+b_{t^{\omega_{ij},\omega_{j}}}]=0$ .
So if we put $db_{j}+b_{i}\omega_{ij}=l_{jk}\omega_{k}$ , we get $l_{jk}=l_{kj}$ . Since $b_{i}da/^{\prime}a=b_{i}b_{k}\omega_{k}$

we obtain $p_{ik}=p_{ki}$ , too. Now, $db_{i}+b_{k}\omega_{ki},$ $b;,$
$\omega_{i}$ are the components of

three vectors in the tangent spaces with respect to a rectangular frame
and by a suitable rotation of a frame we can transform the symmetric
matrix $(p_{ij})$ into a diagonal form. We take such frames at each point
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of the space $S$ and use the same notation as above, thus getting

(10) $db_{i}+b_{k^{\omega}ki}-b_{i}da/a=P_{t^{\omega}i}$ (not summed for $i$),

(11) $\Pi_{ij}=\Omega_{ij}+(b^{2}+p_{i}+p_{j})[\omega_{i}\omega_{j]}$ (not summed for $i,j$).

We call $p_{i}(i=1, \cdots, n)$ characteristic roots of the conformal correspond-
ence of $S_{1}$ with $S$ . It should be noted that these depend not only
on $S_{1}$ and $S$ but also on the correspondence between them. We seek
for the characteristic roots of the conformal correspondence of $S$ with
$S_{1}$ , where the correspondence is the same as above. Putting

(12) $c_{i}=b_{i}/a$ , $q_{i}=p_{i}/a$

we get from (10)

(13) $dc_{i}+C_{j}\omega_{j};=q;\omega_{i}$ (not summed for $i$).

We take $1/a,$ $\pi_{i}$ instead of $a,$ $\omega$ ; and we have

$d(1/a)/(1/a)^{2}=-da=-ab_{t^{\omega_{i}}}=-ac_{t^{\pi;}}$ .
Hence we get $-ac_{i}$ instead of ci. Putting $m_{i}=-ac_{i}$ and $c^{2}=\sum_{i}C_{i}^{?}$ we
get

$dm_{i}+m_{k^{\pi_{k;}}}=-d(ac_{i})-ac_{k}(\omega_{ki}+b_{k^{\omega}i}-b_{i^{\omega}k})$

$=-adc_{i}-c_{i}da-ac_{k^{\omega}ki}-ac^{2}\pi_{i}+b_{i}da/a$

$=-a(dc_{i}+C_{k}\omega_{k};)-ac_{\pi_{i}}^{2}=-aq_{i^{\omega}i}-ac^{z_{\pi_{i}}}$

$=-(q_{i}+ac^{2})_{\pi;}$ (not summed for $i$).

Hence the characteristic roots of $S$ with respect to $S_{1}$ are given by
$-(p_{i}+a^{2}c^{2})(i=1, \cdots, n)$ .

1.2 As an application we investigate the case in which the char-
acteristic roots of the conformal correspondence of $S_{1}$ with $S$ are all
equal. In this case the characteristic roots of $S$ relative to $S_{1}$ are all
equal by the above remark. The condition that all the characteristic
roots are equal is invariant under the rotation of the rectangular frame
and we can take frames at each point of $S$ such that the components
of the vector $(c_{1}, \cdots, c_{n})$ reduce to $(c, 0, \cdots, 0)$ and yet $p_{1}=p_{2}=\ldots=p_{n}$ .
By virtue of (12) all $q_{i}’ s$ are equal which we put $q$ and assume that
$q\neq 0$ . Then (13) reduces to the following:
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(14) $dc=q\omega_{1}$ , $C\omega_{1\alpha^{=}}q\omega_{\alpha}(\alpha=2, \cdots, n)$ .

We have $da/a^{2}=c_{i}\omega;=c\omega_{1}$ and so $\omega_{1}=da/(ca^{2})$ . Hence

(15) $dc=qda/(ca^{2})$ , $d(c^{2}/2)=qda/a^{2}$

$q$ ought to be a function of $a$ and $c^{2}=2\int qda/a^{2}$. Hence $\omega_{1}$ contains
only one variable $a$ . Let $\alpha$ and $\beta$ run from 2 to $n$ . Then we have

(16) $d\omega_{\alpha}=[\omega_{i}\omega_{i\alpha}]=[\omega_{1}\omega_{1\alpha}]+[\omega_{\beta}\omega_{\beta\alpha}]$

$=[dc/q, q\omega_{\alpha}/c]+[\omega_{\beta}\omega_{\beta\alpha}]=[dc/C, \omega_{\alpha}]+[\omega_{\beta}\omega_{\beta\alpha}]$ ,

$d(\omega_{\alpha}/c)=[\omega_{\beta}/C, \omega_{\beta\alpha}]$ , $\omega_{\alpha\beta}=-\omega_{\beta\alpha}$ ,

and so by E. Cartan’s lemma we can take coordinates $x_{1},$ $\cdots,$ $x_{n}$ such
that

$\sum_{\alpha}\omega_{\alpha}^{2}/\sigma=g_{\alpha\beta}(x_{2}, \cdots, x_{n})dx_{\alpha}dx_{\beta}$ .

As $\omega_{1}$ contains only one variable $a$ we can take $x_{1}$ in such a way
that

(17) $\omega_{1}=dx_{1}$

holds. Hence we get

(18) $ds_{i^{\urcorner}}^{2}=x_{\omega_{i}^{2}}=dx_{1}^{2}+c(x_{1})^{2}g_{\alpha\beta}(x_{2}, \cdots, x_{n})dx_{\alpha}dx_{\beta}$ .

On account of the relation $\omega_{1}=dx_{1}=dc/q=da/(ca^{2})$ we have

(19) $-1/a=\int cdx_{1}$ ,

(20) $ds_{1}^{2}=a^{2}ds^{2}=a(x_{1})^{2}(dx_{I}^{2}+c(x_{1})^{2}g_{\alpha\beta}(x_{2}, \cdots, x_{n})dx_{\alpha}dx_{\beta})$ .
In the case $q=0,$ $c$ is constant by (15). We assume $c\neq 0$ . Then we
get $\omega_{1\alpha}=0$ and $d_{0_{1}}=0,$ $d\omega_{\alpha}=[\omega_{\beta}\omega_{\beta\alpha}]$ , and in this case we also have
(18). In the case $c=0$ we obtain $da/a=c\omega_{1}=0$ and $a$ is constant and
our correspondence reduces to a similar mapping. We mean by a
similar mapping the one which induces the multiplication of the Rieman-
nian metric by a constant.

Conversely for a Riemann space with $ds^{2}$ represented by (18) we
can take $\omega_{I},\rho_{\alpha},$

$\omega_{\alpha\beta}$ in such a way that
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$\omega_{1}=dx$ , $\sum_{\alpha}\rho_{\alpha}^{2}=g_{\alpha\beta}(x_{2}, \cdots, x_{n})dx_{\alpha}dx_{\beta}$ ,

$d\rho_{\alpha}=[\rho_{\beta}\omega_{\beta\alpha}]$ , $\omega_{\alpha\beta^{=}}-\omega_{\beta\alpha}$ .
We put $\omega_{\alpha}=c\rho_{\alpha},$

$\omega_{1\alpha}=c^{\prime}/C\omega_{\alpha}=-\omega_{\alpha 1},$ $q=c^{t}$ , where $c’=dc/dx_{1}$ . Then we
get

$d\omega_{1}=[\omega_{\alpha}\omega_{\alpha 1}]$ ,

$d\omega_{\alpha}=d(c\rho_{\alpha})=[dc, \rho_{\alpha}]+cd\rho_{\alpha}$

$=[qd_{X_{1},\omega_{\alpha}}/c]+c[\rho_{\beta}\omega_{\beta\alpha}]=[\omega_{1}\omega_{1\alpha}]+[\omega_{\beta}\omega_{\beta\alpha}]$ ,

and $\omega_{i},$ $\omega_{ij}=-\omega_{ji}$ are the parameters of the Riemannian connection of
S. (3) and (10) hold for $a$ determined by (19) and $(c_{1}, \cdots, c_{n})=(c, 0, \cdots, 0)$ .
In summary we get

THEOREM 1. Let $S_{1}$ and $S$ be Riemann spaces which are conformal
to each other but not similar. In order that the characteristic roots of the
conformal correspondence of $S_{1}$ with $S$ are all equal it is necessary
and sufficient that by a suitable choice of coordinates the line.elements
of $S_{1}$ and $S$ are represented respectively by

$ds_{1}^{2}=a(x_{1})^{2}ds^{2}$ , $a(x_{1})=-1/(\int cdx_{1})$ ,

$ds^{2}=dx_{1}^{2}+c(x_{1})^{2}g_{\alpha\beta}(x_{2}, \cdots, x_{n})dx_{\alpha}dx_{\beta}$ .
This is the result of A. Fialkow [5], and the geometric characteriza-

tion of the space was given by K. Yano [4]. It is the space that admits
a concircular transformation. We characterize this space from another
point of view in the following.

In the spaces whose line elements are given by (18) and (20) the
curves determined by $x_{\alpha}=const.(\alpha=2, \cdots, n)$ are geodesics corresponding
to each other by our conformal correspondence. Conversely we consider
two Riemann spaces $S_{1}$ and $S$ whose line-elements are given by

$ds_{1}^{2}=\sum\pi_{i}^{2}$ , $ds^{2}=\sum\omega_{i}^{2}$ , $\pi_{i^{=}}a\omega_{i}$ .
A geodesic on $S_{1}$ is given by solving

$\frac{d}{ds_{1}}(\frac{\pi_{i}}{ds_{1}})+\frac{\pi_{j}}{ds_{1}}\frac{\pi_{ji}}{ds_{1}}=0$ .

By our conformal correspondence from $S_{1}$ to $S$ this geodesic gives rise
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to the curve on $S$ which satisfies the equations

$\frac{d}{ds_{1}}(a_{ds_{1}^{i}}^{\omega}--)+$ $a_{d^{\omega_{\frac{j}{s_{1}}}}}(\frac{\omega_{ji}}{ds_{1}}+b_{j}\frac{\omega_{i}}{ds_{1}}-b_{i}\frac{\omega_{j}}{ds_{1}})=0$ ,

(21) $\frac{d}{ds_{1}}(\frac{\omega_{i}}{ds_{1}})+\frac{\omega_{j}}{ds_{1}}\frac{\omega_{ji}}{ds_{1}}+-a^{--}ds2da_{1^{-\frac{\omega_{i}}{ds_{1}}}}-b_{i}\frac{\sum\omega_{j}^{2}}{ds_{1}^{2}}=0$ .

Now we assume that a geodesic on $S_{1}$ corresponds to the one on $S$ by
our correspondence. The equations of the geodesic on $S$ is given by

(22) $\frac{d}{ds}(\frac{\omega_{i}}{ds})+\frac{\omega}{d}\frac{j}{s}\frac{\omega_{ji}}{ds}=0$ .

For a parameter $s_{1}$ these reduce to

(23) $\frac{d}{ds_{1}}(\frac{\omega_{i}}{ds_{1}})+$ $dsd^{j_{\frac{i}{s_{1}}}}\omega_{j_{1^{--}}}\omega--\frac{i}{s}-\frac{d^{z_{S}}}{ds_{1}^{2}}d_{1}\omega/\frac{ds}{ds_{1}}=0$ .

Now we assume $b_{i}\neq 0$ for some $i$. Then in order that (21) and (23)
coincide it is necessary that
(24) $\omega;=b_{i}/bds$

hold along the solution, where we have referred to $\sum\omega_{i}^{2}=ds^{2},$ $\sum b_{i}^{2}=b^{2}$.
So if a geodesic on $S_{1}$ corresponds to that of $S$ by our conformal cor-
respondence, it ought to be a solution of (24). As the relation (24)
are invariant under the rotation of the frame we have the same equa-
tions for any frame. We take the frames such that (10) hold. By (3)

and (24) we have

(25) $da/a=b_{i^{\omega_{i}}}=\sum b_{i}^{2}ds/b=bds$ ,

and by virtue of (22) and (24)

(26) $\frac{db_{i}}{ds}+b_{j}\frac{\omega_{ji}}{ds}=\frac{b_{i}}{b}-\frac{db}{ds}$ ,

and also by (10)

(27) $\frac{db_{i}}{ds}+b_{j_{S}^{\frac{\omega}{d}}}^{j_{i_{-}}}-\frac{b}{a}-\frac{da}{ds}i=p_{{}^{t}ds^{\underline{i}}}^{\omega}-$ (not summed for $i$).

Putting (24), (25), (26) into these equations we get
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$b_{i}p_{i}=b_{i}(\frac{db}{ds}-b^{2})$ (not sumined for $i$).

In the case $b;\neq 0(i=1, \cdots, n)$ we get

$p_{j}=\frac{db}{ds}-b^{2}$

and all $p_{i}(i=1, \cdots, n)$ are equal. Thus we get the following result.
THEOREM 2. Let $S_{1}$ and $S$ be conformal Riemann spaces. If the

characteristic roots of the conformal correspondence of $S_{1}$ with $S$ are
all equal, $S_{1}$ and $S$ are each genemted by $(n-1)$ -parametric geodesics
which are mapped by our correspondence. Conversely if $S_{1}$ and $S$ are
each generated by ( $n$ -l).parametric geodesics and none of $b_{1},$

$\cdots,$
$b_{n}$

corresponding to certain frames satisfying (10) vanishes, then the
characteristic roots of the conformal correspondence of $S_{1}$ with $S$ are
all equal.

1.3 Now we consider the case in which $S_{1}$ and $S$ are Einstein
spaces. Returning to 1.1 and putting

$\Pi_{ij}=\frac{1}{2}\overline{R}_{ijkh}[\pi_{k}\pi_{h}]$ , $\Omega_{ij}=\frac{1}{2}R_{ijkh}[\omega_{k}\omega_{h}]$ ,

where $\overline{R}_{ijkh}=-\overline{R}_{ijhk},$ $R_{ijkh}=-R_{ijhk}$, we get by (11)

$\overline{R}_{ijkh}a^{2}=R_{ijkh}+(b^{2}+p_{i}+p_{j})(\delta_{ik}\delta_{jh}-\delta_{ih}\delta_{jk})$

(not summed for $i,j$).

Contracting with respect to $j,$ $h$ we have

(28) $\overline{R}_{ik}a^{2}=R_{i\hslash}+((n-1)b^{2}+(n-2)p_{i}+\sum_{j}p_{j})\delta_{ik}$

(not summed for $i$).

Here $\overline{R}_{ik}$ and $R_{ik}$ are Ricci’s tensors of two spaces $S_{1}$ and $S$. If the
two spaces $S_{1}$ and $S$ are Einstein spaces we have

(29) $\overline{R}_{ik}=\overline{R}/n\delta_{ik}$ , $R_{ik}=R/n\delta_{i\hslash}$ ,

and we get by (28)

(30) $\overline{R}/na^{2}=R/n+(n-1)b^{2}+(n-2)p_{i}+\sum_{j}p_{j}$ $(i=1, \cdots, n)$ .
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Hence all $p_{i}’ s$ are equal if $n>2$ . Then we take coordinates such that
the line elements of the two spaces are given by (18) and (20), and by
a calculation of the curvature tensor we get the following result of
H. W. Brinkmann

THEOREM 3. If $S_{1}$ and $S$ are ndimensional conformal Einstein
spaces $(n_{--}\underline{>}3)$ , then the characteristic roots of the conformal correspon $\cdot$

dence of $S_{1}$ with $S$ are all equal, and in suitably chosen coordinates
$x_{1},$ $\cdots,$ $x_{n}$ the line-elements of $S$ are given by

(31) $ds^{2}=dx_{1}^{2}+c(x_{1})^{2}ds_{1}^{2}$ ,

where $ds_{1}^{2}$ is a line-element of an $(n-1)$ -dimensional Einstein space
and $c(x_{1})$ is given by the followings:

const, $\exp Ax_{1}$ ,
(32) $\cosh Ax_{1}$ , ($A$ : const.)

$x$ , $\sinh Ax_{1}$ , $\sin Ax_{1}$ .
1.4 Next we treat the simplest case of theorem 3 in which $S_{1}$ is a

space of constant curvature and $S$ is a euclidean space. Let the cur-
vature of $S_{1}$ be $K$. Then we have $\Pi_{ij}=-K[\pi_{i}\pi_{j}],$ $\Omega_{ij}=0$ and by (10)

(33) $b^{2}+p_{i}+p_{j}=-a^{2}K$ $(i\neq i)$ .

Hence we have $p_{1}=p_{2}=\cdots=p_{n}$ , which we put equal to $p$. Then for
any rectangular frame characteristic roots of the conformal correspond-
ence of $S_{1}$ with $S$ are equal. We take a frame and coordinates $x_{1}$ ,

$x_{n}$ such that $\omega_{i}=dx_{i}$ . Then we have $\omega_{ij}=0$ and by (10) $db_{i}-b_{i}da/a$

$=pdx_{i}$ , and so
(34) $d(b_{i}/a)=p/adx_{i}$ .
Hence $p/a$ contains only one variable $x_{i}$ , but as $i$ is arbitrary $p/a$ is
constant and we put $p/a=C$. In the case $C\neq 0$ we get from (34) the
relation $b_{i}/a=C_{X_{1}}$. by a suitable choice of coordinates $x_{1},$ $\cdots,$ $x_{n}$ and so
(35) $b^{2}/a^{2}=\sum_{i}(b_{i}/a)^{2}=C^{2}\sum x_{i}^{2}$ .

As $b^{2}+2p=-a^{2}K$ by (33) we get $C^{2}\sum x_{i}^{2}+2C/a=-K$, namely $a=$

$-2C/(K+C^{2}\sum x_{j}^{2})$ and finally



On conformal Riemann spaces 21

(36) $ds_{1}^{2}=\frac{4C^{2}}{(K+C^{2}\sum x_{i}^{2})^{2}}\sum dx_{i}^{2}$ , $ds^{2}=\sum dx_{i}^{2}$ .

In the case $K>0$ we take a similar mapping from $ds_{1}^{2}$ to $d\sigma_{1}^{2}=Kds^{2}$

and from $ds^{2}$ to $d\sigma^{2}=C^{2}/Kds^{2}$ and put $y;=C/\sqrt{K}x_{i}$ . Then we get

(37) $d\sigma_{1}^{2}=\frac{4}{(1+\sum y_{i}^{2})}\sum dy_{i}^{2}$ , $d\sigma^{9}\cdot=\sum dy_{i}^{2}$

and in the case $K<0$ we put $d\sigma_{1}^{2}=-Kds_{1}^{2},$ $d\sigma^{2}=-C/Kds^{2},$ $y;=C/\sqrt{-K}x_{i}$

and we get

(38) $d\sigma_{1}^{2}=\frac{4}{(1-\sum y_{i}^{2})^{2}}\sum dy_{i}^{2}$ , $d_{\sigma^{2}}=\sum dy_{i}^{2}$ .
(37) and (38) are related to a stereographic projection in the $(n+1)-$

dimensional space. In the case $K=0$ we get from (36)

(39) $ds_{1}^{2}=\frac{4}{C^{2}(\sum x_{i}^{2})^{2}}\sum dx_{i}^{2}$ , $ds^{2}=\sum dx_{i}^{2}$ .

Hence a conformal correspondence in the n-dimensional euclidean space
is realized by an inversion and a similar transformation. Thus we get
a new proof of Liouville‘s theorem.

Next we take up the case $C=0$ . Then we have $p=0$ and by (34),
$b_{i}/a$ is constant, which we put equal to $B_{i}$ , and so

$da/a=b_{i}dx_{i}=aB_{i}dx_{i}$ .
By a suitable choice of rectangular coordinates $y_{1},$ $\cdots,y_{n}$ we get $1/a$

$=Cy_{1}$ with constant $C$ and by a similar mapping from $ds_{1}^{2}$ to $d\sigma_{1}^{2}=C^{2}ds_{1}^{2}$

we obtain
(40) $d\sigma_{1}^{2}=\sum dy_{i}^{2}/y_{1}^{2}$ , $ds^{2}=\sum dy_{i}^{2}$ .

The former is a space of constant negative curvature and corresponds
to the Poincare’s conformal representation of the non.euclidean hyper-
bolic space.

It is to be noted that in these cases the characteristic roots are
all equal and the restriction on the dimension $n\geqq 3$ is necessary to
derive the fact that all the characteristic roots are equal, and if they
are all equal the above discussion holds good in the case $n=2$, too.
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2. Conformally flat Riemann space of imbedding class 1.

2.1 We prove first the following theorem including the results of
J. A. Schouten [1].

THEOREM 1. Let $S$ be an ndimensional $(n\geqq 4)$ conformally flat
Riemann space of imbedding class 1. Then the characteristic roots of
the conformal correspondence of $S$ with an $n\cdot dimensional$ euclidean
space are all equal except one, and when it is imbedded into an $(n+1)$ .
dimensional euclidean space as a hypersurface the princrpal curvatures
are all equal except one.

PROOF. Let $\Sigma$ be a hypersurface in the $(n+1)$ -dimensional eucli-
dean space whose induced metric is given by that of $S$. We take a
rectangular frame with origin $A$ on $\Sigma$ and one of the fundamental
vectors $e_{1},$ $\cdots,$ $e_{n+1}$ on the normal of $\Sigma$ , which we assume to be $e_{n+1}$ ,
and $e_{1},$ $\cdots,$ $e_{n}$ on the principal direction of $\Sigma$. Then the relative dis-
placement of the frame $A,$ $e_{1},$ $\cdots,$ $e_{n+1}$ is given by

(1) $dA=\pi_{i}e_{i}$ , $d\pi_{ij}$ (not summed for i)

since $\pi_{n+1}=0$ and $\pi_{in+1}=-\pi_{n+1};=k_{i}\pi_{i}$ (not summed for $i$), where $k\cdot s$

are principal curvatures of $\Sigma$. The induced metric of $\Sigma$, which is that
of $S$, is given by $ds^{2}=\sum_{i}\pi_{i}^{2}$ and we have

$d\pi_{i}=[\pi_{j}\pi_{ji}]$ , $\pi_{ij^{=}}-\pi_{ji}$ .
The curvature forms of $S$ are given by

(2) $\Pi_{zj}=d\pi_{ij}-[\pi_{ik}\pi_{kj}1=[\pi_{in+1}\pi_{n+1j}]=-k_{i}k_{j}[\pi;\pi_{j}]$

(not summed for $i,i$).

As $ds^{2}$ is a conformally flat Riemannian metric we can put $\pi_{i}=a\omega_{i}$ where
$\sum\omega_{i}^{2}$ is a metric of a euclidean space. By the relation (7) in 1.1 we
get
(3) $\Pi_{ij}=[\omega\omega_{j}$ .
By the comparison of (2) with (3) for $h,$ $i,j$ which are all different we
get $p_{jh}=0(j\neq h)$ . Hence a matrix $(p_{jh})$ is diagonal and we can put
$p_{jj}=p_{j}$ (not summed for $j$), and we have, by virtue of (3),

(4) $\Pi_{ij}=(b^{2}+p_{i}+p_{j})[\omega;\omega_{j}]$ (not summed for $i,i$),
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and the frame $A,$ $e_{1},$ $\cdots,$ $e_{n}$ corresponds to the one selected on $S$ in
such a way that (10) in 1.1 holds. As we have $\pi_{i^{=}}a\omega_{i}$ we get, by
the comparison of (2) and (4),

$b^{2}+p_{i}+p_{j}=-a^{2}k_{i}k_{j}$ $(i\neq j)$ ,

and subtracting $b^{2}+p_{i}+p_{h}=-a^{2}k_{i}k_{h}(i\neq h)$ from this we get

(5) $p_{j}-p_{h}=-a^{2}k_{i}(k_{j}-k_{h})$ .
Putting $i=1,$ $h=2$ we obtain

$p_{1}-p_{2}=-a^{2}k_{i}(k_{1}-k_{2})$ $(i=3,4, \cdots, n)$ ,

and so if $k_{1}\neq k_{2}$, then we have $k_{3}=k_{4}=\ldots=k_{n}$ and if $k_{2}\neq k_{3}$ we have
$k_{1}=k_{4}=\ldots=k_{n}$ . Thus $n-1$ of $k_{1},$

$\cdots,$
$k_{n}$ are equal and by (5), $p_{1},\cdots,$ $p_{n}$

are all equal except one.
Thus we have proved theorem 1. Following the discussion above

we derive some formulas which we use afterwards. By the equation
$d\pi;_{n+1}=[\pi_{ij}\pi_{jn+1}]$ and $\pi;_{n+1}=k_{i}\pi_{i}$ (not summed for i) we have

$[dk_{i^{\pi}i}]+k_{i}d\pi_{i}=[\pi_{ij}, k_{j^{\pi}j}]$ (not summed for $i$),

and for $i=1$ we get, by virtue of $d_{\pi_{i}}=[\pi_{j}\pi_{ji}]$ and $k_{2}=\ldots=k_{n}=k$ ,

(6) $[dk_{1}, \pi_{1}]=-(k_{1}-k)d\pi_{1}$

and for $\alpha\neq 1$ we get

(7) $[dk_{\pi_{\alpha}}]=(k_{1}-k)[\pi_{\alpha 1}\pi_{1}1$ .

As $\pi_{i}S$ are linearly independent we get

(8) $(k_{1}-k)\pi_{\alpha 1}=-h\pi_{\alpha}+m_{\alpha}\pi_{1}$ ,

and $dk=h\pi_{1}+n_{\alpha}\pi_{\alpha}$ (not summed for $\alpha$ ).

$n_{\alpha}$ ought to be zero because of the linearly independence of $\pi_{\alpha}$ and
the assumption $n\geqq 3$ and so

(9) $dk=h\pi_{1}$ .
We can characterize the hypersurface in the euclidean space whose

principal curvatures are equal except one as follows.
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THEOREM 2. If the principal curvatures of a hypersurface in the
$(n+1)$-dimensional euclidean space $(n\geqq 3)$ are equal except one and not
equal to zero, it is an envelope of $a$ one-parametric family of hyper-
spheres. Conversely the principal curvature of an envelope of $a$ one-
parametric family of hyperspheres in the $(n+1)$ -dimensional euclidean
space are all equal except one.

PROOF. We use the same notation as in the proof of theorem 1
and assume that $k_{2}=\ldots=k_{n}\neq 0$ , which we put equal to $k$ . Hence we
have $\pi_{1n+1}=k_{1}\pi_{1},$ $\pi_{\alpha n+1}=k\pi_{\alpha}(\alpha\neq 1)$ and it follows from (1) that

(10) $d(A+1/ke_{n+1})=\pi;e_{i}+1/k_{\pi_{n+1i}}e_{i}+d(1/k)e_{n+1}$

$=(1-k\sqrt k)_{\pi_{1}}e_{1}+d(1/k)e_{n+1}$ .
Now by virtue of the relation (6) the equation $\pi_{1}=0$ is completely in-
tegrable and along the solution of the equation, which we denote by
$\gamma$ we have $k=const$ . by (9), and (10) vanishes. Hence $A+1/ke_{n+1}$ is
a fixed point and the $(n-1)\cdot dimensionaI$ subspace $\gamma$ of $\Sigma$ lies on the
hypersphere and $\Sigma$ is an envelope of these spheres.

Conversely let a hypersurface $\Sigma$ be an envelope of one.parametric
family of hyperspheres in an $(n+1)$ -dimensional euclidean space. We
take a frame $A,$ $e_{1},$ $e_{n+1}$ such that $A$ lies on $\Sigma,$ $e_{n+1}$ lies on the
normal of $\Sigma$ at $A$ and moreover $e_{2},$ $\cdots,$ $e_{n}$ touch the ( $n$ -l).dimensional
subspace $\gamma$ of $\Sigma$ which lies on the hypersphere of radius $1/k$. Along
$\gamma$ we have $\pi_{1}=0$ and so

$d(A+1/ke_{n+1})=\pi_{j}e_{i}+1/k_{\pi_{n+1j}}e_{i}+d(1/k)e_{n+1}$

$=(\pi_{a}+1/k_{\pi_{n+1a}})e_{a}+1/k_{\pi_{n+11}}e_{1}$

should vanish. It follows in general that

$\pi_{1n+1}=k_{1}\pi_{1}$ , $\pi_{\alpha n+1}=k\pi_{\alpha}+h_{\alpha}\pi_{1}(\alpha\neq 1)$ .
As $\pi_{n+1}=0$ we get

$0=d\pi_{n+1}=[\pi_{\alpha}\pi_{\alpha n+1}]+[\pi_{1}\pi_{1n+1}]=h_{\alpha}[\pi_{\alpha}\pi_{1}]$

and as $\pi_{1},$ $\cdots,$ $\pi_{n}$ are linearly independent, we havs $h_{\alpha}=0$ and we get
$\pi_{\alpha n+1}=k_{\pi_{\alpha}}$ . Thus $e_{1},$ $\cdots,$ $e_{n}$ touch the principal direction on $\Sigma$ and
$n-1$ of principal curvatures are equal.
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2.2 Next we shall prove a converse of the theorem 1.
THEOREM 3. If the principal curvatures of a hypersurfaces $\Sigma$ in

an $(n+1)\cdot dimensional$ euclidean space $(n\geqq 3)$ are equal except one, the
induced Riemannian metric of the hypersuface $\Sigma$ is conformally flat.

PROOF. Let $A,$ $e_{1},$ $\cdots,$ $e_{n},$ $e_{n+1}$ be a frame attached to $\Sigma$ in such a
way that $e_{1},$ $\cdots,$ $e_{\hslash}$ are in the principal direction of $\Sigma$ . Then we have
$dA=\pi_{i}e_{i},$ $de_{i}=\pi_{ij}e_{j}+k_{i}\pi_{i}e_{n+1}$ (not summed for $i$).

We put, by the assumption of our theorem, $k_{2}=\cdots=k_{n}=k$ . $Fo\acute{r}$

the curvature forms we have

$\Pi_{ij}=d\pi_{ij}-[\pi_{jk}\pi_{kj}]=-k_{i}k_{j}[\pi_{i}\pi_{j}]$ (not summed for $i,j$),

(11) $\Pi_{\alpha\beta}=-k^{2}[\pi_{\alpha}\pi_{\beta}]$ $(\alpha, \beta=2, \cdots, n)$ .
The purpose of our proof is to show the possibility of choosing $a,$ $\omega_{i}$ ,
$\omega_{ij}$ such that

$\pi;=a\omega;$ , $d_{\omega_{i}}=[\omega_{j}\omega_{ji}]$ , $\omega_{ij}=-\omega_{ji}$ , $d\omega_{ij}=[\omega_{ik}\omega_{kj}]$ .
For that purpose we consider in the first the equation in $l_{i}$ ,

(12) $\rho;=dl_{i}+l_{k}\pi_{ki}-l_{i}l_{k}\pi_{k}-m_{i}\pi_{i}=0$ (not summed for $i$),

where $m,$ $m_{i}$ are such that

(13) $m_{2}=\ldots=m_{n}=m=(k^{2}-l^{2})/2$ , $l^{2}=\sum_{i}l_{i^{2}}$ ,

(14) $-m_{1}+m=k^{2}-kk_{1}$ .
We show that (12) are completely integrable. Under the assumption
$\rho;=0$ we have

(15) $d(l_{i\pi_{i}})=[dl_{i^{\pi}i}]+l_{i}d\pi_{i}$

$=[-l_{k}\pi_{k};+l_{i}l_{k}\pi_{k}+m_{i\pi_{i},\pi_{i}}]+l_{i}[\pi_{k}, \pi_{ki}]=0$ ,

$ dl^{2}/2=l_{i}dl_{i}=-l_{i}l_{k}\pi_{ki}+l^{2}l_{k}\pi_{k}+l_{i}m_{i}\pi$;

$=(l^{2}+m)l_{h}\pi_{h}+(m_{1}-m)l_{1}\pi_{1}$ ,

$dm=dk^{2}/2-dl^{2}/2=kdk-(l^{2}+m)l_{h}\pi_{h}-(m_{1}-m)l_{1}\pi_{1}$ .
By virtue of the relation (7) and (9), which hold good in our case,

and (14) we get
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(16) $[m,]=--(l^{2}+m)[l_{h}\pi_{h}, \pi_{1}]$ ,

(17) $[dm, \pi_{\alpha}]=-(l^{2}+m)[l_{h}\pi_{h}, \pi_{\alpha}]-(m_{1}-m)l_{1}[\pi_{1}\pi_{\alpha}]+(m_{1}-m)[\pi_{\alpha 1}\pi_{1}]$ .
So we get under the assumption $\rho_{i}=0$ , which implies (15),

$d\rho_{i}=l_{k}d\pi_{k};+[dl_{k}, \pi_{k};]-[dl_{i}, l_{k^{\pi}k}]-[dm_{i}, \pi_{i}]-m_{i}d\pi_{1}$.
$=l_{k}d\pi_{ki}+[-l_{k}\pi_{kh}+l_{h}l_{k}\pi_{k}+m_{h}\pi_{k},$ $\pi_{h;]}$

$-[-l_{k}\pi_{ki}+l_{i}l_{k}\pi_{k}+m_{t^{\pi_{j}}}, l_{h^{\pi}h}]-[dm_{i}, \pi_{i}]-m_{i}d\pi_{i}$

$=l_{k}\Pi_{ki}+m_{h}[\pi_{h}\pi_{hi}]-m_{i}[\pi_{i}, l_{h^{\pi}h}]-[dm_{i}, \pi;]-m_{j}d_{\pi;}$

(not summed for $i$ in each row).

In the case $i=1$ this reduces to

$d=l_{h}\Pi_{h1}+m[]-m_{1}[\pi_{1}, l_{h^{\pi}h}]-[dm_{1}, \pi_{1}]-m_{1}d\pi_{1}$

$=-l_{h}kk_{1}[\pi_{h}\pi_{1}]-m_{1}[\pi_{1}, l_{h}\pi_{h}]-[dm_{1}, \pi_{1}]-(m_{1}-m)d\pi_{1}$

$=(m_{1}-kk_{1})[l_{h}\pi_{h}, \pi_{1}]-(m_{1}-m)d\pi\iota^{-[dm_{1},\pi_{1}]}$ .
We get from (14), (16), (9), and (6),

$[dm_{1}, \pi_{1}]=[-2hdk+k_{1}dk+kdk_{1}, \pi_{1}]+[dm, \pi_{1}]$

$=[kdk_{1}, \pi_{1}]+[d\pi_{1}$

As $-(m_{1}-kk_{1})=l^{2}+m$ by (13) and (14), we have $d\rho_{1}=0$. For $\alpha\neq 1$ we
have, by (17) and (13),

$d\rho_{a}=l_{h}\Pi_{ha}+m[\pi_{h}\pi_{ha}]+(m_{1}-m)[\pi_{1}\pi_{1}.]-m[\pi_{C}, l_{h}\pi_{h}]$

$-[dm, \pi_{a}]-md\pi_{\iota}$

$=-k^{2}[l_{h^{\pi_{h},\pi_{a}}}]-(k_{1}k-k^{2})[l_{1}\pi_{1}, \pi_{a}]+(m_{1}-m)[\pi_{1}\pi_{1a}]$

$-m[\pi_{a}, l_{h}\pi_{h}]-[dm, \pi_{a}]$

$=(m-k^{2})[l_{h^{\pi}h}, \pi_{\alpha}]-(m_{1}-m)l_{1}[\pi_{1}\pi_{\alpha}]+(m_{1}-m)[\pi_{\alpha 1}\pi_{1}]-[dm\pi_{\alpha}]$

$=0$ .
Thus (12) are completely integrable. As is seen from (15), $l_{i}\pi_{1}$ is

a total differential and we take $a$ such that $-da/a=l_{i}\pi;$ , namely

$d(\frac{1}{a})/(\frac{1}{a})=l_{i}\pi_{i}$ .
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Putting $\omega_{ij}=\pi_{ij}+l_{i}\pi_{j}-l_{j}\pi_{i}$ , $\omega_{i}=\pi_{i}/a$ ,

we get by the discussion of 1.1
$d\omega;=[\omega_{j}\omega_{ji}]$ , $\omega_{ij}=-\omega_{ji}$ ,

and as (12) corresponds to (10) in 1.1 we have by (11) in 1.1,

$d\omega_{ij}-[\omega_{ik}\omega_{kj}]=\Pi_{ij}+(l^{2}+m;+m_{j})[\pi_{i}\pi_{j}]$

$=(-k_{j}k_{j}+l^{2}+m_{i}+m_{j})[\pi_{i}\pi_{j}]$ (not summed for $i,j$),

which vanishes by the relation
$-k^{2}+l^{2}+2m=0$ , $-kk_{1}+l^{2}+m+m_{1}=0$

owing to (13) and (14). Hence $\sum\omega_{i}^{2}$ is flat.
In the case $n\geqq 4$ our theorem can also be proved by the vanishing

of conformal curvature tensor.
2.3 Lastly we prove another converse of theorem 1.
THEOREM 4. We assume that a Riemann space $S$ is conformally

flat and its characteristic roots relative to $a$ euclidean space are equal
to $p$ except one and moreover that $p<-b^{2}/2$ , where $b$ is defined by (8)

in 1.1. Then $S$ has an imbedding class 1.
PROOF. We use the notations as in 1.1. Let the metric of $S$ be

given by

(18) $ds_{1}^{2}=\sum\pi_{i}^{2}$ , $\pi;=a\omega_{i}$ ,

where $ds^{2}=\sum\omega_{i}^{2}$ is flat. Then we have

(19) $d\omega_{i}=[\omega_{j}\omega_{ji}]$ , $\omega_{ij}=-\omega_{ji\prime}$
$d\omega_{ij}=[\omega_{jk}\omega_{kj}]$ .

Putting $p_{2}=\ldots=p_{n}=p,$ $p_{i}/a=q_{i},$ $q_{2}=\ldots=q_{n}=q,$ $b_{i}/a=c_{i}$ we get
by (13) in 1.1
(20) $ dc_{i}+C_{k}\omega_{kt}=q_{i}\omega$ ; (not summed for $i$).

By taking an exterior differential we obtain

[ $dc_{k}\omega_{k};1+c_{k}d\omega_{ki}=[dq;\omega;]+q_{i}d\omega_{i}$ (not summed for $i$).

Eliminating $dc_{k}$ by (20) we obtain
$-c_{h}[\omega_{hk}\omega_{ki}]+q_{k}[\omega_{k}\omega_{k};1+c_{k}d_{\omega_{ki}}=[dq_{i^{\omega}i}]+q;d\omega_{i}$

(not summed for $i$).



28 M. KURITA

By virtue of the relation (19) we get

$q_{h}[\omega_{h}\omega_{h};1=[dq_{i^{\omega}i}1+q_{i}d\omega_{i}$ (not summed for $i$).

For $i=1$ we have
(21) $[dq_{1}, \omega_{1}]=(q_{1}-q)d\omega_{1}$ ,

and for $\alpha\neq 1$ we have
(22) $[dq, \omega_{\alpha}]=(q_{1}-q)[\omega_{1}\omega_{1\alpha}]$ ,

and so we get

(23) $(q_{1}-q)_{\omega_{1\alpha}}=s\omega_{a}+\gamma_{\alpha}\omega_{1}$ , $dq=s\omega_{1}+l_{\alpha}\omega_{\alpha}$ (not summed for $\alpha$ ).

As $n\geqq 3$ and $\omega_{\alpha}(\alpha=2, \cdots, n)$ are linearly independent we get

(24) $dq=s\omega_{1}$ .
Now take $k,$ $k_{1}$ such that
(25) $c^{2}+2q/a=-k^{2}$ , $c^{2}+(q+q_{1})/a=-kk_{1}$ ,

where $c^{2}=\sum c_{i}^{z}$ . This is possible because by our assumption we have
$d+2q/a=(b^{2}+2p)/a^{2}<0$ . Then we have

(26) $-(q_{1}-q)/a=k(k_{1}-k)$ .
From (20) we get

$d\sigma^{9}/2=d(\sum c_{i}^{2})/2=c;dc_{i}=c_{i}(-c_{k}\omega_{ki}+q_{i^{\omega}i})=c\dot{q}_{t^{\omega_{j}}}$

$=qc;\omega_{i}+(q_{1}-q)_{C_{1}\omega_{1}}=qda/a^{2}+(q_{1}-q)_{C_{1}\omega_{1}}$ .
By taking a differential of (25) we obtain

$dd-2qda/a^{2}+2dq/a=-2kdk$ .
Hence we have

(27) $(q_{1}-q)_{C_{1}\omega_{1}}+dq/a=-kdk$ .
Now we put $k_{2}=k_{3}=\ldots=k_{n}=k,$ $\pi_{n+1}=0$ and

(28) $\pi_{ij^{=}}\omega_{ij}+ac_{i}\omega_{j}-ac_{J^{\omega_{i}}}$ ,

$\pi_{n+1n+1^{=0}}$ , $\pi_{jn+1}=-\pi_{n+1i}=k_{i}\pi_{i}$ (not summed for $i$).

Then we have
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$d\pi_{i}=[\pi_{i}\pi_{ji}]+[\pi_{n+1}\pi_{n+1i}]$ , $d\pi_{n+1}=[\pi_{i}\pi_{in+1}]$ ,

and by (11) in 1.1 and (25)

$d_{\pi_{ij}}-[\pi_{ik}\pi_{kj}]=(b^{2}+p_{i}+p_{j})[\omega_{i}\omega_{j]}$

$=(\sigma^{?}+(q_{i}+q_{j})/a)[\pi_{i}\pi_{j}]=-k_{i}k_{j}[\pi_{i}\pi_{j}]=[\pi_{in+1}\pi_{n+1j}]$

(not summed for $i,j$ in each row),

$d_{\pi_{n+1n+1}}=0=[\pi_{n+1i}, \pi_{in+1}]$ ,
and so if we verify

$d\pi_{in+1}=[\pi_{ij}\pi_{jn+1}]$

all the structure equations in the $(n+1)$ -dimensional euclidean space are
satisfied and moreover $\pi_{n+1}=0$ , and $S$ can be imbedded into an $(n+1)-$

dimensional euclidean space. By virture of the relations (22), (24), (27)
we get

(29) $[dq, \pi_{1}]=[dq,$ $a\omega_{1]=0}$ ,

(30) $[dk, \pi_{1}]=-1/k[(q_{1}-q)_{C_{1}\omega_{1}}+dq/a, a_{\omega_{1}}]=0$ ,

$[dk, \pi_{\alpha}]=-1/k[(q_{1}-q)_{C_{1}\omega_{1}}+dq/a, a\omega_{\alpha}]$

$=-(q_{1}-q)/k(ac_{1}[\omega_{1}\omega_{\alpha}]+[\omega_{1}\omega_{1\alpha}])$ .
Hence we get by virtue of (28) and (26)

(31) $[dk, \pi_{\alpha}]=(k_{1}-k)[\pi_{1}\pi_{1\alpha}]$ .
Differentiating (26) we obtain

$(q_{1}-q)da/a^{2}-dq_{1}/a+dq/a=kdk_{1}+k_{1}dk-2kdk$ .
Multiplying this by $\pi_{1}$ and considering (21), (29), (30) we get

$(q_{1}-q)/a^{2}[da, \pi_{1}]+(q_{1}-q)d\omega_{1}=k[dk_{1}, \pi_{1}]$ ,

and by virtue of (26)

$[dk_{1}, \pi_{1}]=-(k_{1}-h)(\omega_{1}\omega_{1}=-(k_{1}-k)d(a)$ .
Hence we have
(32) $[dk_{1}, \pi_{1}]=-(k_{1}-k)d\pi_{1}$ .
By virtue of (32) we get
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$d_{\pi_{1n+1}}-[\pi_{1j}\pi_{jn+1}]=d(k_{1^{\pi}1})-[\pi_{1a},k_{\pi_{\alpha}}]$

$=[dk_{1}, \pi_{1}]+(k_{1}-k)d\pi_{1}=0$ ,
and by (30) we get

$d\pi_{\alpha n+1}-[\pi_{ai}\pi;_{n+1}]=d(k_{\pi_{a}})-k[\pi_{\alpha};\pi_{i}]-(k_{1}-k)[\pi_{a1}\pi_{1}]$

$=[dk, \pi_{\alpha}]-(k_{1}-k)[\pi_{\alpha 1}\pi_{1}]=0$ .
Thus we have proved theorem 4.

If the Riemannian metric of $S$ is given by

$ds^{2}=a^{2}\sum_{i}dx_{t}^{2}$ ,

we can take frames such that $\omega_{i^{=}}dx_{i}$ and hence $\omega_{ij^{=0}}$ . Then putting
$\alpha=\log a$ we get, by virtue of (3) and (9) in 1.1,

$b_{i}=\frac{\partial\alpha}{\partial x_{i}}$ , $p_{ik}=\frac{\partial^{2}\alpha}{\partial x_{i}\partial x_{k}}-\frac{\partial\alpha}{\partial x_{i}}\frac{\partial\alpha}{\partial x_{k}}$ .

Hence we obtain the following theorem.
THEOREM 5. In order that a Riemann space with a metric $ds^{2}=$

$a^{2}\Sigma dx_{i}^{2}$ be of imbedding class 1 it is necessary and sufficient that the

charactelistic roots of a symmetric matrix $(\frac{\partial^{2}\alpha}{\partial x_{i}\partial x_{k}}-\frac{\partial\alpha}{\partial x_{i}}-\partial\partial x\alpha_{k}-)$

$(\alpha=\log a)$ are equal except one and the common value of these roots
is smaller then $-1/2\sum_{i}(\frac{\partial\alpha}{\partial x_{i}})^{2}$.
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Nagoya University.
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