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Function of U-class and its applications.
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(Received July 23, 1954)

1. Function of U-class.

Let w=f(2) be regular and |f(2)|<1 in|z]< 1, then by Fatou’s
theorem, lim f(z)=f(e®) exists almost everywhere on [z|=1, when z—e¢?
0

from the inside of any Stolz domain, whose vertex is at €. If |[f(e®)|=1
almost everywhere, we say with Seidel” that f(z) belongs to U-class
and denote f(2) e U. If (f(z)—a)/pe U, we write f(z) e U, (a). Functions
of U-class play an important role in several problems. In this paper,
we shall show some applications of them. In this paper, * capacity”
means ‘‘ logarithmic capacity ”’ and y(E) denotes the capacity of E.

LeEMMA 12 (Extension of Lowner's theorem). Let w= f(z) be
regular and 1 f(2) | <1 in |21 < 1,f(0)=0. Let E be the set of ¢° on
|z|==1, such that |f(&°)|=1 and E* be the set f(&°)(e’e E) on|w|=1.
Then E and E* are measurable and mE* = mE.

LemMMA 2. If f(z)e U, then f(z) takes any value of |\w|<1 at least
once, except a set of capacity zero.

PrOOF. Let E be the set of a (Ja|<1), such that f(z)F=a in |z|<1
and suppose that v(£)>0, then by taking a suitable closed sub-set, we
may assume that E is a closed set, contained entirely in |w|<{1. Let
D be the domain, which is bounded by E and |w|=1. We solve the
Dirichlet problem for D, with the boundary value 1 on £ and 0 on
2w]=1, and let u(w) be its solution, then since «(E) >0, E contains
a regular point of Dirichlet problem, so that #(w)==0. If we put
u(f(2))=v(2), then v(z) is a bounded harmonic function in |z|<1.

1) W. Seidel: On the distribution of values of bounded analytic functions. Trans.
Amer. Math. Soc. 36 (1934).

2) M. Tsuji: On an extension of Lowner’s theorm. Proc. Imp. Acad. 18 (1942). The
special case, where f(2) is schlicht in |z| <1, is proved by Y. Kawakami: On an extension
of Lowner’s lemma. Jap. Journ. Math. 17 (1941).
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Since f(z)e U, v(¢?)=0 almost everywhere, so that v(z)=0, or #u(w)=0,
which is absurd. Hence v(E)=0.

THEOREM 1. Let f(2)e U and F be the Riemann surface, generated
by w=f(z) on the w-plane. ,

(i) Let F, be a connected piece of F, which lies above a disc
K :\w—a,|<p, which lies in |w|<1. If we map F, conformally on
181<1 by w=p(£), then p(¢)e Ulap)®.

(ii) Let a be any point of K and be covered n(a)-times by F, and
my=sup n(a). Then F, covers any point of K mno-times, except a set
of capacity zero. If ny< oo, then F, covers any point of K nytimes.

(iii) If f(2) is of the form: fo(2)=e‘f:{_ ———f:;"z (Iz,]<1,]e|=1), then
F covers any point of |w|<1 n-times. If f(z) is not of the form fi(z),
then F covers any point of |w| <1 infinitely often, except a set of
capacity zero®

PrOOF of (i). Let 4, be the image of F, in [z|<1, then 4, is simply
connected, so that F, is simply connected.

We may assume that 4, has boundary points on |z|=1 and let ¢,
be the set of such boundary points. We map F}, on |¢|<1 conformally
by w=g¢(&), then liﬁ? p(re’’) = p(e’?) exists almost everywhere. Let ¢, be

the set of ¢, such that |p(e?)—ay|<p. If E=re?— e, then w— @(e'?)
along a curve L. Let L correspond to a curve A in 4, which ends at
a point e¢®c e, Then if z—¢® on A, w= f(2)— @e*). Since f(z) is
bounded, li£rll f(re®)=p(e?) by Hardy’s theorem. Since f(z)e U, the set

of such ¢* is of measure zero. Hence by Lemma 1, ¢, is a null set,
so that ¢(&¢) e U,(ay).

To prove (ii), we shall prove a lemma.

LEMMA 3. Let K, be a disc contained in K. If every point of K,
is covered n-times by F, (1<n< ), then every point of K is covered
n-times by F,. i

PrRoOOF. Let D be the domain, which contains K, and every point
of which is covered zn-times by F,. Suppose that D does not coincide

3) K. Noshiro: Contributions to the theory of the singularities of analytic functions.
Jap. Journ. Math. 19 (1944-48). .
4) O. Frostman: Potentiel d’équilibre et capacité des ensembles. Lund. (1935).
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with K and let 7" be the part of the boundary of D, which lies in K
and wye I'.

Then w, is covered at most zn-times by F,. We shall prove that
w, is covered at most (n—1)-times by F,. Suppose that w, is covered
n-times by F,, then the part of F,, which lies above a small disc K,
about w, contains # discs: Fy, ---, F, consisting of inner points, where

the part of the Riemann surface of (w—wo)}e is considered as % discs.
If there is no other connected piece of F, above Kj, then Kj is covered
n-times by F,, so that w, belongs to D, which is absurd. Hence there
is another connected piece F, of F, above K, other than Fy, ---, F,.

By and part (i), F, covers any points of K, at least
once, except a set of capacity zero, but F, does not cover D,=D.K;,
which is of positive capacity, which is absurd. Hence every point of
I" is covered at most (z—1)-times by F,. Next we shall prove that
v(I')=0. Suppose that v(I’)>0. Let 7', be the sub-set of I°, which
is covered k-times by F,, then for some k, v(1’;) >0. Since by [Lemmal
2 and the part (i), F, covers any point of K at least once, except a
set of capacity zero, y(/’)=0, so that 1<k<#»n—1. By taking a
suitable closed sub-set, we may assume that /7, is a closed set, con-
tained entirely in K. Then there exists a point wye I, such that
v(I'y - K3) >0, for any small disc K; about w,.

Since wye Iy, w, is covered k-times by F,, there exists & discs
F,, ---, F, above K, consisting of inner points.

Since 1<<k<#n—1, there is another connected piece F, above K,
other than F,, ---, F}, then similarly as before, F; covers any point of
K, at least once, except a set of capacity zero, but since I’ - K, is
covered k-times in Fy, --- F;, F, does not cover I; - K;, which is of posi-
tive capacity, which is absurd. Hence (17)=0.

Let wye I’ and z=z2; (w) (=1, 2, ---, n) be n branches of the inverse
function z=2z(w) of w=f(z) and consider

[ (z2—zi(w))=2"+a(w)z2* "1+ - + ax(w)=0,

=1

then a;(w) is one-valued, regular and bounded in a neighbourhood of w,
and since v(1)=0, a;(w) is regular at w,, so that w, is covered #-times
by F,, which is absurd. Hence D coincides with K, so that every
point of K is covered n-times by F,.
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PrOOF of (ii) and (iii).
(ii) Let n<my and E, be the set of @, such that n(ae)=#n. We shall
prove that (E,)=0. Suppose that y(E,) >0, then we may assume
that E, is a closed set, contained entirely in K. Then there exists a
point w,e E,, such that y(E, - K;)>0, for any small disc K; about w,.
Since wye E,, w, is covered n-times by F,, so that there exists » discs
F,, ---, F, above K, consisting of inner points. Since n< #n, thereis a
point @, such that n(q) >#n, hence by Lemma 3, there is another con-
nected piece F, above Kj, other than F3, ---,F,. Then as before, F,
covers any point of K, at least once, except a set of capacity zero, but
since E, - K, is covered #n-times in Fy, ---, F, F}, does not cover E, - K,
which is of positive capacity, which is absurd. Hence y(E,)=0, #<n,.
Hence F, covers any point of K #n,times, except a set of capacity zero.
Suppose that 7, < « and let E be the set of @, such that n(a) < n,
then E is a closed set of capacity zero, so that from the proof of
Lemma 3, F, covers any point of K #,times.
(iii) We take K: |w| < p <1 and we choose F,, such that F, F,,
if p<p' and let ny=mny(p), lin} no(p)=mn, If #y< oo, then since lim F,=F,
P>

p->1
F consists of 7, sheets and by (ii) F covers any point of |w|<1
#-times. By (ii), F, consists of # sheets F° (i=1,---,n) (n < 7). Let
v, be the sum of orders of branch points in F, and p® be the Euler’s
characteristic of F'¢’, then p” = —1. If we consider the image of F,
in |z] <1, then we see that F, is simply connected, hence by Hurwitz’s
relation, we have

»n . _ —
—1=3pP4v, = —n+v, = —ng+v,, v, = ny—1L.

= =

Hence there is only a finite number of branch points in F, so that f(z)
is regular on |z|=1. Since |f(z)|=1 on [z]=1, we see, by the principle
of inversion, that f(z) is a rational function of the form f,(z). Hence
if f(z) is not of the form fi(z), then 7,= <o, so that F covers any point
of |w|<1 infinitely often, except a set of capacity zero.

2. Open Riemann surface with null boundary.

Let F be an open Riemann surface with null boundary, spread
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over the z-plane. If F consists of a finite number of sheets, we shall
call it a quasi-closed surface.

THEOREM 2. Let F, be a connected piece of F, which lies above a
disc K: |z—a,|<p.

(i) If we map the universal covering surface of F, conformally
on [¢1<1 by z=9(¢), then ¢(¢)e U, (a).

(ii) Let a be any point of K and be covered n(a)-times by F, and
ny=sup n(a). Then F, covers any point of K nytimes, except a set of

capasity zero

(iii) If F is not quasi-closed, then F covers any point z infinitely
often, except a set of capacity zero®

Proor. (i) If F, is compact, (i) follows easily from Fatou’s
theorem, so that we assume that F, is non-compact. We map the
universal covering surface of F conformally on [x|<1 by z=4v(x),
then by a theorem,®” proved by the author, the ideal boundary of F is
mapped on a null set on |x|=1.

By this, we can prove as Theorem 1, that @(¢) € U,(a).

(ii) Suppose that a disc K, contained entirely in K be covered
exactly n-times by F, (1<n< ) and let D be the domain, which
contains K, and every point of which is covered #-times by F,, then
as before, we can prove that the part I' of the boundary of D in K
is of capacity zero, so that F, covers any point of K #n-times, except
a set of capacity zero. In this case n,=nn.

Next suppose that there exists no such a disc K, and let E, (=0,

2,---) be the set of @, such that n(a)=»n. Then we can prove as
before, that v(E,)=0, if #<n,. Hence F, covers any point of K, 7,-
times, except a set of capacity zero.

(iii) We put ny=mn¢(p) and lim #», (p)=7,, If 7,< o, then since

poen

lim F,=F, F consists of n, sheets, so that F is quasi-closed, hence if

p—)eo
F is not quasi-closed, then 7,= o, so that F covers any point z in-
finitely often, except a set of capacity zero.

5) Y. Nagai: On the behaviour of the boundary of Riemann surfaces. II. Proc. Jap.
Acad. 26 (1950). '

6) M. Tsuji: Some metrical theorems on Fuchsian groups. Kodai Math. Seminar
Reports. (1950).
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From [Theorem 2, we have easily

THEOREM 3. The projection of divect transcendental singularities
of F on the z-plane is of capacity zero.

3. Implicit function y(x) defined by an integral
relation G(x, y)=0.

Let G(x,y) be an integral function of two variables x and y and
y(x) be an analytic function defined by G(x,y)=0 and F be its Riemann
surface spread over the x-plane. If G(x,y) is of the form:

G(x, y)=Ay(x)y* + A(x)y* 1+ -+ An(x) ,

where A;(x) are integral functions of x, then 3(x) is an algebroid
function and F' consists of # sheets. We shall prove

THEOREM 4. Let F, be a connected piece of F, which lies above a
disc K: | x—a,|<p.

(G) If we map the universal covering surface of F, conformally
on [§1<1 by x=9(£), then ¢(&)e Ulay).

(ii) Let a be any point of K and be covered n(a)-times by F, and
ny=sup n(a). Then F, covers any point of K nytimes, except a set of

capacity zero. If ny< o, then F, covers any point of K ny-times.

(iii) If y(x) is not an algebroid function, F covers awny point x
infinitely often, except a set of capacity zero.”

Proor. (i) As Julia® proved, if x tends to an accessible boundary
point of F, then lim y(x)= . Let E be the set of ¢ on |¢|=1, such
that | p(e?®)—a,|<p, then if ¢ tends to ¢” from the inside of any Stolz
domain, whose vertex is at ¢”, then x=@(¢) tends to an accessible
boundary point of F, so that lim y(@(¢))= o, hence by Lusin-Priwaloff’s
theorem, E is a null set, hence @(¢)e U, (ay).

(ii) Let K, be a disc contained in K and suppose that every point
of K, is covered #z-times by F, (1 <n< ) and let D be the domain,
which contains K, and every point of which is covered z-times by F,,

7) M. Tsuji: Theory of meromorphic functions in a neighbourhood of a closed set
of capacity zero. Jap. Journ. Math. 19 (1944).

8) G. Julia: Sur le domaine d’existence d’une fonction implicite définie par une
relation entiére G(x, y)=0. Bull. Soc. Math. France (1926).
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then similarly as before, we can prove that if D does not coincide
with K, the part I’ of the boundary of L) in K is of capacity zero.
Let x,¢ I" and y;(x) (:=1, 2, ---, ) be n branches of y(x) in D and
suppose that y;(x) =1,2, ---, k) (¢ < n) are not meromorphic at x;, and
consider -
k
(13 )=+ 52 o
Then since 1/y(x) tends to zero, when x tends to an accessible boundary
point of F, a;(x) is one-valued, regular and bounded in a neighbourhood
of x, and since y(I’)=0, ai;(x) is regular at x, so that x, is covered
n-times by F,, which is absurd. Hence D coincides with K, so that
F, covers any pont of K n-times. From this we can prove the reman-
ing part of the theorem similarly as [Theorem 1.
From we have
THEOREM 5. The projection of direct transcendental singularities
of F on the x-plane is of capacity zero.”

4. Cluster set of a meromorphic function.

Let 4 be a domain on the z-plane and I" be its boundary and z,
be a non-isolated boundary point. We denote the part of 4, contained
in |z—z,|<7 by 4,,and that of I" in |z—z |7 by I',. Let w=f(2)
be one-valued and meromporphic in 4 and W, be the set of values

taken by w=f(2) in 4, and W, be its closure, then

lim W,=H /(z,) (1)

70

is called the cluster set of f(z) in 4 at z,.
Let ¢ be a set of capacity zero on I’, such that z,ee and e, be
the part of e lying in |z—z|< ». Let

V,(I’—e)———; %‘._HA(;‘), added for all ¢e I’,—e,, (2)

and V,(I'—e) be its closure, then

lirrol V,(I'—e)=H;_z) (3)

is called the cluster set of f(z2) on I'—e at z,
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Evidently, H,(z) and H.,(z,) are closed sets and Hy_.(2) < H ().

In the former paper® I have proved:

THEOREM 6. Ewvery boundary point of H(2) belongs to Hp_[2).

When e consists of only one point z, the theorem is proved by
Iversen.l®

First we shall prove a lemma.

LEMMA 4. Let 4 be a bounded domain and I' be ils boundary
and e be a- set of capacity zero on I’ and zyece be a non-isolated
boundary p int, which is a regular point of Dirichlet problem for 4.
Let w=7f(2) be one-valued, regular and bounded in 4.

If im lim |f(2)| < M, where z— ¢ e I'—e, from the inside of 4,

$+z0 298 e~

then lim |f2)|< M, where z— z, from the inside of 4.

220

PrOOF.: We may assume that |f(z)|<1in 4. For any small ¢>0,
we choose p, such that

lim |[f(2) | <M +e.

> >
z éel‘p e

We solve the Dirichlet problem for 4, with the boundary value M+«
on I, and 1 on /"—1’, and let u(z) be its solution. Since 2z, is a
regular point of Dirichlet problem, lim #(z)=M+e, when z—2z, from

z~2o
the inside of 4. wu(2) takes the given boundary value, except a set of
capacity zero and since |f(z)| is a continuous bounded subharmonic
function and |f(z)|<X«(z) on I’, except a set of capacity zero, we have

If(2)|<u(z) in 4, so that lim |f(z)|<M+e. Since ¢>0 is arbitrary,
we have lim |f(2)|< M.

22y

Proor of THEOREM 6.
Suppose that there exists a boundary point w, of H,(z,), which

: 9) M. Tsuji: On the cluster set of a meromorphic function. Proc. Imp. Acad. 18
(1943).
10) F. Iversen: Sur quelques propriétés des fonctions monogénes au voisinage d’un
point singulier. Ofv. af Finska Vet. Soc. Forh. 58 (1916). K. Kunugui: Sur un théoréme
de MM. Seidel-Beurling. Proc. Imp, Acad. 15 (1939).
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does not belong to H,_/(z)) and we assume that w,=0. Then we take
v and p small, such that

V.(I'—e) lies outside of [w]|=p>0. (1)

Since w,=0 is a boundary point of H(z,), there exists w, (Jw;|<p/2),

which does not belong to H,(z,). Since H,(z,) is a closed set, f(z)l o
— W
is bounded in a neighbourhood of z,.
(i) First suppose that z, is a regular point of Dirichlet problem.

Then by and (1), since w=0 belongs to H ,(z,),

1 1 1
<l 1i <lim I
Tor] =m0 )—1 =lim lim o0 Slm Lo o0
= p—|uwnl’

so that |w,|=p /2, which is absurd. Hence the theorem is proved in
this case.

(i) Next suppose that z, is an irregular point of Dirichlet problem.
Then in any small neighbourhood of z, there is a Jordan curve C in 4,
surrounding z,, We assume that C lies in |z—z,|<# and there is no
zero points of f(z) on it, then by taking » and p small, we may
assume that

V,(I'—e) lies outside of {w|=2p and |f(z)|>>2p on C. (2)

We consider the image of |w|<p on the z-plane, which lies in C. It
consists of at most a countable number of connected domains {4;}i-1,2-..
We shall prove that there is one 4, among {4;}, which contains z, on
its boundary. If otherwise, then since w=0 belongs to H,(z,) and w=0
is a boundary point of H,(z,), there are infinitely many {4,},.q, 2
among {4;}, such that the boundary 7’, of 4, has common points with
I’ and contains z,—2z,, such that f(z,)—0. Then we shall prove that
4, converges to z,. For, if otherwise, /', has a common point ¢, with
a certain Jordan curve C’ in 4, surrounding z, which is contained
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inside of C. Let ¢ be one of limit points of ¢, then f(z) is meromorphic
at ¢ and in any small neighbourhood of ¢, there are infinitely many
niveau curves |f(z)|=const.=p, which is absurd. Hence 4, converges
to z,. By (2), the common part e, of Iy, with I” belongs to e, so that
it is of capacity zero. If we map the universal covering surface of 4,
conformally on |¢|<1 by z=¢,(¢), then e, is mapped on a null set on

l£]=1, so that if we put w=f(gp,(£)=Fy¢), then Evgﬂ belongs to

U-class, hence F\,(¢) takes any value of |w|<p at least once, except a
set of capacity zero. Since there are infinitely many 4, converging to
20, f(z) takes any value of |w|< p infinitely often, in any small
neighbourhood of z, except a set of capacity zero, hence |w|<p belongs
to H,(z,), which is absurd. Hence there is one 4, among {4;}, which
contains z, on its boundary. Since w=0 is a boundary point of H (2,
we see from the above proof, that there is only a finite number of
such 4,, hence one fixed 4, contains infinitely many z,—2, such that

f(z,) = 0. If we consider the images of | w | <———24 (n=1, 2,---) in 4y, we

see that there exists a curve L in 4, which ends at z, such that
f(z) >0, when z—>z, on L. We take off L from 4, and put d,=4,—L,

then z, is a regular point of Dirichlet problem for 4,. Let w; (l wy | < g)

lie outside of H,(z,). If we apply to 7(2\)1-_70{ for 4, then

1@ “’7(25'1‘_—wﬂ— = W}’I)— , Or lirj% f(2)—w | = w|, hence [w—w;|[<
' w, | does not belong to H (z,). Similarly we see that 0<|w|=<|w]
does not belong to H,(z,), which is absurd, since H,(z,) contains a
continuum, which connects z, to H,..(z). Hence the theorem is proved
in this case.

From [Theorem 6, we see that the same result as holds,
if z, is an irregular point of Dirichlet problem. Hence

THEOREM 7. The same result holds as Lemma 4, for any non-
isolated boundary point z,.

By Theorem 6, H,(z,)—H,_.(z,) is an open set, if it is not empty,
so that it consists of at most a countable number of connected domains
(components).
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THEOREM 8.9 Let D be one of components of H,(z))—H )., z).
Then in any small neighbourhood of z, f(z) takes any value of D
infinitely often, except a set of capacity zero.

Proor. Let E,(n=0,1,2, ---) be the set of points of D, which are
taken #-times by w=f(z) in a neighbourhood U: |z—z|<# of z, and
suppose that (£,) >0, then by taking a suitable closed sub-set, we
may assume that £, is a closed set. Hence by taking » small, we may
assume that f(z) does not take the values € E, in U. There exists a
point w, e E,, such that y(E, - K)>0, for any small disc K about w,.
We assume that wy=0. We can choose 7, such that |z—z|=# does
not contain points of ¢ and zero points of f(z), then by taking » and
p small, we assume that

Vi(1'—e) lies outside of |w|=2p and | f(2)| >2p on |z—z)|=7. (1)

We consider the images of |w|<p on the z-plane, then there is one
domain 4, among the images, which lies in |z—z,;<#». By (1), if the
boundary 1°, of 4, has common points with I, then the common part
e i1s a sub-set of ¢, so that it is of capacity zero. By mapping the
universal covering surface of 4, conformally on |¢|<1, we see as
before, that f(2) takes in 4, any value of K:|w|<p at least once,
except a set of capacity zero, but f(z) does not take values e E,-K,
which is of positive capacity, which is absurd. Hence (E,)=0 (=0,
1,2, ---), so that in U, f(z) takes any value of D infinitely often, except
a set of capacity zero.

REMARK. If e consists of only one point 2z, then f(z) takes any
value of D infinitely often, with two possible exceptions in any neigh-
bourhood of z,P,

Mathematical Institute, Tokyo University.

11) K. Kunugui: Sur un probléme de M. A. Beurling. Proc. Imp. Acad. 19 (1940).
K. Noshiro: Note on the cluster sets of analytic functions., Journ. Math, Soc. Japan 1
(1949-50).
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