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On exact sequences of Hochschild and Serre.

By Akira HATTORI

(Received June 8, 1955)

The cohomology theory of groups was enriched recently by the
introduction by Hochschild and Serre of the theory of spectral se-
quences, a powerful tool in algebraic topology, into this domain.
Hochschild and Serre introduced this method to study the cohomology
of group extensions, and, as applications of the general theory, obtained
two exact sequences, the one extending the fundamental propositions
of Galois cohomology, and the other giving the cup product reduction
theorem.1) However, those who are interested in these concrete results
mainly, may feel desirable to have a direct proof of these results, in-
dependent of the spectral sequence mechanism. We shall give such a
proof in the present paper.

\S 1. We shall make use of the following notations. $\mathfrak{g}$ is a group,
and $\mathfrak{h}$ its normal subgroup. $Z(\mathfrak{g})$ denotes the groupring of $\mathfrak{g}$ over the
ring $Z$ of rational integers; then every $\mathfrak{g}\cdot module(\mathfrak{g}\cdot group)$ is canonically
considered as a $Z(\mathfrak{g})$ -module. If $A$ and $B$ are $\mathfrak{g}$ -modules, the group
$Hom(B, A)$ of all additive homomorphisms of $B$ into $A$ is considered
as a $\mathfrak{g}$ -module, by

$(\sigma\varphi)(b)=\sigma\varphi(\sigma^{-1}b)$ ,

where $\sigma\in \mathfrak{g},$ $b\in B$ and $\varphi\in Hom$ (B. $A$ ). We define the cohomology groups
$H^{p}(\mathfrak{g}, A)$ of $\mathfrak{g}$ with respect to a $\mathfrak{g}$ -module $A$ as usual.2) The notions
such as cochains, cocycles and the coboundary operator will be used
only with respect to the so.called non.homogeneous complex. The
cohomology class of a cocycle $f$ will be denoted by $<f>$ . $\beta A$ denotes
the set of $\mathfrak{h}$ -invariants of A. considered canonically as $\mathfrak{g}/\mathfrak{h}$ -module.
We denote by $\lambda$ the lift:

1) G. Hochschild and J.-P. Serre, Cohomology of group extensions, Trans. Amer.
Math. Soc. 74 (1953), pp. 110-134.

2) See, S. Eilenberg and S. MacLane, Cohomology theory in abstract groups. I, Ann.
of Math. 48, (1947), pp. 51-78, and G. Hochschild and J.-P. Serre, loc. cit. in 1).
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$\lambda$ ; $H^{p}(\mathfrak{g}/\mathfrak{h},{}^{t}A)\rightarrow H^{p}(\mathfrak{g}, A)$ ,

and by $\rho$ the restriction:

$\rho$ : $H^{p}(\mathfrak{g}, A)\rightarrow H^{p}(\mathfrak{h}, A)$ .
We use $\lambda$ and $\rho$ equally to denote the underlying transformations of
non.homogeneous cochains, thus

$\lambda f(\sigma_{1}, \cdots, \sigma_{p})=f(\overline{\sigma}_{1}, \cdots,\overline{\sigma}p)$ for $f\in C^{p}(\mathfrak{g}/\mathfrak{h}, r)A)$ ,

$\rho g(\eta_{1}, \cdots, \eta_{p})=g(\eta_{1}, \cdots, \eta_{p})$ for $g\in C^{p}(\mathfrak{g}, A)$ ,

where $\sigma_{i}\in \mathfrak{g},$
$\eta;\in \mathfrak{h},$

$\overline{\sigma}$ is the coset of $\sigma$ by $\mathfrak{h}$ , and $C^{p}$ denotes the group
of p-cochains. We have $\rho\cdot\lambda=0$ .

Our principal tool is the following simultaneous reductions of
cohomology groups of $\mathfrak{g},$

$\mathfrak{h}$ and $\mathfrak{g}/\mathfrak{h}$ . $B$ being any (additive) abelian
group, let us denote by $B^{\mathfrak{g}}$ the group of all additive homomorphisms of
$Z(\mathfrak{g})$ into $B$, and convert it into a $\mathfrak{g}\cdot moduIe$ by setting

$(\sigma\varphi)(r)=\varphi(r\sigma)$ ,

where $\sigma e\mathfrak{g},$
$\varphi\in B^{\mathfrak{g}},$ $r\in Z(\mathfrak{g})$ . A $\mathfrak{g}\cdot module$ is said to be $\mathfrak{g}$ -regular if it is

$\mathfrak{g}$ -isomorphic with some $B^{\mathfrak{g}}$ ; any $\mathfrak{g}$ -regular module is cohomologically
trivial, $i$ . $e$ .

$H^{p}(\mathfrak{g}, B^{\mathfrak{g}})=0$ , $p=1,2,$ $\cdots$ .

A $\mathfrak{g}\cdot module$ $A$ may be considered as a submodule of $\mathfrak{g}$ -regular module
$A^{\mathfrak{g}}$ , by identifying every element $a\in A$ with the homomorphism $r\rightarrow ra$ ,
$(r\in Z(\mathfrak{g}))$ . Put $A^{*}=A^{\mathfrak{g}}/A$ . Then, from the exact sequence of cohomology
groups associated to the module extension

(1) $0\rightarrow A\rightarrow A^{\mathfrak{g}}\rightarrow A^{*}\rightarrow 0$ ,

we have, in virtue of the regularity of $A^{\mathfrak{g}}$ , the isomorphisms

(2) $H^{p-1}(\mathfrak{g}, A^{*})\cong H^{p}(\mathfrak{g}, A)$ , . $p=2,3,$ $\cdots$ .
The extension (1) is an enlargement; namely, $A^{\mathfrak{g}}$ , as an abelian group,
is a direct sum of $A$ and a representative subgroup, say $R$ . We denote
by $b^{\prime}$ the representative in $R$ of $b\in A^{*}$ . Putting
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$s(\sigma)(b)=\sigma(\sigma^{-1}b)^{\prime}-b^{\prime}$

for $\sigma e\mathfrak{g}$ , be $A^{*}$ , we have a cocycle $s\in Z^{1}(\mathfrak{g}, Hom(A^{*}, A))$ , and the coho.
mology class $<s>$ is determined uniquely, independent of the choice
of $R$ . It is natural and convenient to take as $R$ the subgroup com-
posed of all homomorphisms $\varphi$ such that $\varphi(1)=0$ . With these notations,
the isomorphisms (2) are realized by taking the cup product with
$<s>$ :

$<g>\rightarrow<s>\cup<g>$ for $<g>\in H^{p-1}(\mathfrak{g}, A^{*})$ ,

relative to the natural pairing $Hom(A^{*}, A)\cup A^{*}\rightarrow A$ .
If we restrict our operator group to $\mathfrak{h}$ , then $A^{\mathfrak{g}}$ remains regular

as $\mathfrak{h}$ -module, and we have, from (1) and with the same $R$ as above,
the exact sequence

(3) $0\rightarrow \mathfrak{y}A\rightarrow(’(A^{\mathfrak{g}})\rightarrow()(A^{*})\rightarrow H(\mathfrak{h}, A)\rightarrow 0$ ,

and the isomorphisms

$H^{p-1}(\mathfrak{h}, A^{*})\cong H^{p}(\mathfrak{h}, A)$ , $p=2,3,$ $\cdots$ ,
(4)

$<h>\rightarrow\rho<s>\cup<h>$ .
Since $\rho$ preserves the cup product, the following diagram is $com$ .
mutative:

$H^{f-1}(\mathfrak{g}, A^{*})\rightarrow^{\rho}H^{p-1}(\mathfrak{h}, A^{*})$

(5)
$H^{p}(\mathfrak{g},A)_{\rightarrow}\downarrow<s>u_{p}$ $H^{p}(\mathfrak{h}^{\rho}A)^{s>\cup}\downarrow,$

$<$

.

Now assume that $H^{1}(\mathfrak{h}, A)=0$ ; then (3) reduces to

$0\rightarrow r_{A}’\rightarrow()(A^{\mathfrak{n}})\rightarrow \mathfrak{h}(A^{*})\rightarrow 0$ ,

which may be considered as an enlargement of $\mathfrak{g}/\mathfrak{h}$ -modules. Moreover
$\mathfrak{h}(A^{q})$ is $\mathfrak{g}/\mathfrak{h}$ -regular. Hence we have third reduction

$H^{p-1}(\mathfrak{g}/\iota),$ $\Gamma yA^{*}$ ) $\cong H^{p}(\mathfrak{g}/\mathfrak{h}, \mathfrak{y}A)$ , $p=2,3,$ $\cdot,$ . ,
(6)

$<f>\rightarrow<\overline{s}>\cup<f>$ .
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$\overline{s}\in Z^{1}(\mathfrak{g}/\mathfrak{h}, Hom(^{r)}A^{*},{}^{t}A))$ satisfies

(7) $\lambda(\overline{s}uf)=s\cup\lambda f$ ,

and we see that the following diagram is commutative

$H^{p-1}(\mathfrak{g}/\mathfrak{h}, r)A^{*})\rightarrow^{\lambda}H^{p- 1}(\mathfrak{g}, A^{*})$

(8) $\downarrow<\overline{s}>\cup$ $\downarrow<s>\cup$

$H^{p}(\mathfrak{g}/\mathfrak{h}, \mathfrak{y}A)$ $\rightarrow^{\lambda}$ $H^{p}(\mathfrak{g}, A)$ .

\S 2. The notations being as above, a cocycle $h\in Z^{p}(\mathfrak{h}, A)$ is called
transgressive if there exist $g\in C^{p}(\mathfrak{g}, A)$ and $f\in Z^{p+1}(\mathfrak{g}/\mathfrak{h}, (JA)$ such that

$h=\rho g$ , $\delta g=\lambda f$ .

We may call the cohomology class $<h>$ transgressive, as a cocycle
cohomologous to a transgressive cocycle is also transgressive. The
class $<f>$ is not uniquely determined by $<h>$ , but depends on the
choice of $g$. The zero class of $H^{p}(\mathfrak{h}, A)$ is obviously transgressive, and
it determines a subgroup $T$ of $H^{p+1}(\mathfrak{a}/\mathfrak{h}, r)A)$ by the above process, and
every transgressive class $<h>$ determines a coset of $H^{p+I}(\mathfrak{g}/\mathfrak{h}, r)A)$ by
$T$. Hence, denoting by $H_{l}^{p}(\mathfrak{h}, A)$ the subgroup of transgressive cIasses
of $H^{p}(\mathfrak{h}, A)$ and by $\overline{H}^{p+1}(\mathfrak{g}/\mathfrak{h}, \mathfrak{c}_{J}A)$ the factor group of $H^{p+1}(\mathfrak{g}/\mathfrak{h}, \mathfrak{h}A)$ by
$T$, we can naturally define a homomorphism, called the transgression,

$\tau$ : $H_{l}^{p}(\mathfrak{h}, A)\rightarrow\overline{H}^{p+1}(\mathfrak{g}/\mathfrak{h}, \mathfrak{y}A)$ .

It follows from the definition that $\rho(H^{p}(\mathfrak{g}, A))\subset H_{\iota^{p}}(\mathfrak{h}, A)$ and that the
sequence

$H^{p}(\mathfrak{g}, A)\rightarrow\rho H_{\iota^{p}}(\mathfrak{h}, A)\rightarrow\tau\overline{H}^{p+1}(\mathfrak{g}/\mathfrak{h},{}^{t}A)\rightarrow\lambda H^{p+1}(\mathfrak{g}, A)$

is exact.
As is well known, $\mathfrak{g}$ operates on $H^{p}(\mathfrak{h}, A)$ : for a (non-homogeneous)

$p$ cochain he $C^{p}(\mathfrak{h}, A)$ , we define a new cochain $\sigma h,$
$\sigma\in \mathfrak{g}$ , by

$(\sigma h)(\eta_{1}, \cdots, \eta_{p})=\sigma h(\eta_{1}^{\sigma}, \cdots, \eta_{p}^{\sigma})$ ,

where $\eta_{i}\in \mathfrak{h},=$ then the cochain transformation $h\rightarrow\sigma h$ induces
in an obvious way an automorphism of $H^{p}(\mathfrak{h}, A)$ denoted also by $\sigma$ .
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We shall denote the subgroup of $\mathfrak{g}\cdot invariant$ classes of $H^{p}(\mathfrak{h}, A)$ by
$\mathfrak{g}H^{p}(\mathfrak{h}, A)$ , in accordance with our convention in \S 1. If $\mathfrak{h}$ coincides
with $\mathfrak{g}$ , this automorphism reduces to the identity, a fact verified
usually by some chain homotopy. A slight modification of it will show
that any transgressive class is $\mathfrak{g}\cdot invariant^{3)}$ Namely, if $h=\rho g,$ $\delta g=\lambda f$,
we have $\sigma h-h=\delta k_{\sigma}$ with

$k_{\sigma}(\eta_{1}, \cdots, \eta_{p-1})=\geq_{\approx 1}^{-1}\lrcorner(-1)^{i}g(\eta_{1}, \cdots, \eta_{i}, \sigma, \eta_{i+1}^{\sigma}, \cdots, \eta_{p-1}^{(\prime})p_{i^{\neg}}$ .

Hence $H_{\ell^{p}}(\mathfrak{h}, A)$ is a subgroup of $\mathfrak{g}H^{p}(\mathfrak{h}, A)$ .
We notice also that by the reduction (4) we have in particular

(4) $\mathfrak{g}H^{p- 1}(\mathfrak{h}, A^{*})\cong \mathfrak{g}H^{p}(\mathfrak{h}, A)$ , $p=2,3,$ $\cdots$ ,

as is seen from $\sigma(h_{1}uh_{2})=\sigma h_{1}\cup\sigma h_{2}$ and $\sigma s\sim s$ .
Now, we are ready to prove
THEOREM.4) Let $p\geq 1$ . If $H^{i}(\mathfrak{h}, A)=0,$ $i=1,$ $\cdots,$ $p-1$ , then $H_{t}^{p}(\mathfrak{h}, A)$

coincides with $\mathfrak{g}H^{p}(\mathfrak{h}, A),$ $T$ reduces to $0$ , and the sequence

$0\rightarrow H^{p}(\mathfrak{g}/\mathfrak{h}, \mathfrak{y}A)\rightarrow\lambda H^{p}(\mathfrak{g}, A)\rightarrow\rho \mathfrak{g}H^{p}(\mathfrak{h}. A)$

$\rightarrow\tau H^{p+1}(\mathfrak{g}/\mathfrak{h}, r)A)\rightarrow\lambda H^{p+1}(\mathfrak{g}, A)$

is exact.
PROOF. The case $p=1$ is easily proved. So we assume $p>1$ , and

the theorem to be valid for $p-1$ . We can utilize the simultaneous
reductions mentioned in the preceding section, as the hypothesis of the
theorem includes now $H^{1}(\mathfrak{h}, A)=0$ . Every class of ’ $H^{p}(\mathfrak{h}, A)$ has the
form $\rho<s>\cup<h>,$ $<h>\in \mathfrak{g}H^{p+1}(\mathfrak{h}, A^{*})$ , by (4) and $(4^{\prime})$ . As we have
$H^{i}(\mathfrak{h}, A^{*})=0,$ $i=1,$ $\cdots,$ $p-2,$ $h$ is transgressive by the induction as-
sumption:

$h=\rho g$ , $\delta g=\lambda f$ ,

and we have by (7)

$\rho s\cup h=\rho(s\cup g)$ ,

$\delta(s\cup g)=-su\lambda f=-(\overline{s}\cup f)$ ;

3) See Appendix.
4) G. Hochschild and J.-P. Serre, loc. cit., Chap. III, \S 4, Theorem 2.
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hence every class of $\mathfrak{g}H^{p}(\mathfrak{h}, A)$ is transgressive. Moreover, if we denote
the mapping

$\rho<s>u<h>\rightarrow-<\overline{s}>u_{\tau}<h>$

by $\tau p$ for a moment, the diagram

$ H^{p-1}(\mathfrak{h},A)_{\rightarrow^{)}}H^{p}(\mathfrak{g}/\mathfrak{h}^{\mathfrak{y}}\downarrow\rho<^{*}s>^{(-1}\cup^{p- 1_{\tau}}\downarrow<^{A_{\overline{S}}^{*}}>^{)}\cup$

$H^{p}(\mathfrak{h}, A)$ $\rightarrow p(-1)p\tau H^{p+1}(\mathfrak{g}/\mathfrak{h}, \theta A)$

is commutative. Since the sequence

$0\rightarrow H^{p-1}(\mathfrak{g}/\mathfrak{h}, \mathfrak{y}A^{*})\rightarrow\lambda H^{p- 1}(\mathfrak{g}, A^{*})\rightarrow\rho \mathfrak{g}H^{p-1}(\mathfrak{h}, A^{*})$

$\rightarrow\tau H^{p}(\mathfrak{g}/\mathfrak{h}, \mathfrak{y}A^{*})\rightarrow\lambda H^{p}(\mathfrak{g}, A^{*})$

is exact by our induction assumption, it follows immediately from the
commutativity of (5), (8), (9) that the sequence of the theorem is exact,
$\tau$ replaced by $\tau_{p}$ . So it remains only to show that $T$ reduces to $0$.
Thus, assume for $g\in C^{p}(\mathfrak{g}, A)$ that

$\rho g=0$ , $\delta g=\lambda f$ , $f\in Z^{p+1}(\mathfrak{g}/\mathfrak{h}, iA)$ .
As $\lambda<f>=0$ , there exists $<h>\in \mathfrak{y}H^{p-1}(\mathfrak{h}, A)$ such that $<f>=\tau p<h>$ ,
by the exactness just proved. Hence, with a suitable $h\in<h>$ , we
have

$h=\rho g^{\prime}$ , $\delta g^{\prime}=\lambda f^{\prime}$ , $f^{\prime}\sim f$ .
Put $f^{\prime}-f=\delta k$ , and let $h_{1}=g^{\prime}-g-\lambda k$ , then we have

$\delta h_{1}=0$ , $\rho h_{1}=h$ ,

which implies $<h>\in\rho H^{p-1}(\mathfrak{g}, A)$ . Hence we have $<f>=\tau p<h>=0$ ,
which completes our proof.

THEOREM.5) Let $p\geq 1$ . If $H^{i}(\mathfrak{h}, A)=0,$ $i=2,$ $\cdots,p$, then the follow-
ing sequence, with suitably defined homomorphisms $\mu,$ $\kappa$ , is exact:

5) G. Hochschild and J.-P. Serre, loc. cit., Chap. III, 6, Theorem 3.
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$H^{p}(\mathfrak{g}/\mathfrak{h},{}^{t}A)\rightarrow\lambda H^{p}(\mathfrak{g}, A)\rightarrow\mu H^{p-1}(\mathfrak{g}/\mathfrak{h}, H^{1}(\mathfrak{h}, A))$

$\rightarrow\kappa H^{p+1}(\mathfrak{g}/\mathfrak{h}, \mathfrak{h}A)\rightarrow\lambda H^{p+1}(\mathfrak{g}, A)$ .
PROOF. If $p=1$ , it suffices to take the exact sequence of the

preceding theorem with $\mu=\rho,$ $\kappa=\tau$ . Let $p>1$ , then, the reduction
made to $A$ as above, the hypothesis of the theorem takes the form

$H^{i}(\mathfrak{h}, A^{*})=0$ , $i=1,$ $\cdots,p-1$ .
Hence, by (an elementary part of) the preceding theorem,

$\lambda$ : $H^{p-1}(\mathfrak{g}/\mathfrak{h}, r)A^{*})\rightarrow H^{p-1}(\mathfrak{g}, A^{*})$

is an isomorphism onto, and we can define $\mu$ by the commutativity of
the diagram

$H^{p-1}(\mathfrak{g}/\mathfrak{h}, qA^{*})\rightarrow^{\beta*}H^{p- 1}(\mathfrak{g}/\mathfrak{h}, H^{1}(\mathfrak{h}, A))$

(10)
$ H^{p-1}(\mathfrak{g},A^{\{<})\downarrow\lambda$

$|_{1}$

$ H^{p}(\mathfrak{g}, A)^{\underline{\mu}}>H^{p-1}(\mathfrak{g}/\mathfrak{h}, H^{1}(\mathfrak{h}, A))\downarrow<s>\cup\downarrow$

where the upper horizontal line is a section of the exact sequence of
cohomology groups

$\rightarrow H^{p-1}(\mathfrak{g}/\mathfrak{h}, \zeta)A^{\mathfrak{g}}/\mathfrak{h}A)\rightarrow^{*}\alpha H^{p-1}(\mathfrak{g}/\mathfrak{h},{}^{t}A^{i<})\rightarrow^{*}\beta H^{p-1}(\mathfrak{g}/\mathfrak{h}, H^{1}(\mathfrak{h}, A))$

(11)
$\rightarrow^{*}\delta H^{p}(\mathfrak{g}/\mathfrak{h}, \mathfrak{h}A^{q}/{}^{t}A)\rightarrow^{*}\alpha H^{p}(\mathfrak{g}/\mathfrak{h},$ $r_{A^{*})}’$

associated to the $\mathfrak{g}/\mathfrak{h}\cdot module$ extension

(3) $0\rightarrow(^{\mathfrak{y}}A^{\mathfrak{g}})/\mathfrak{h}A\rightarrow\alpha {}^{t}A^{*}\rightarrow\beta H^{1}(\mathfrak{h}, A)\rightarrow 0$ .

On the other hand, l.cohomology class $<s^{*}>$ determined by the
enlargement

$0\rightarrow {}^{t}A\rightarrow fy(A^{q})\rightarrow(^{J}(A^{\mathfrak{g}})/(JA\rightarrow 0$

gives us the following reduction
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$H^{p}(\mathfrak{g}/\mathfrak{h}, (JA^{\mathfrak{g}}/{}^{t}A)\cong H^{p+1}(\mathfrak{g}/\mathfrak{h},{}^{t}A)$ ,

$<k>\rightarrow<s^{*}>u<k>$ ,

and the diagram

$H^{p}(\mathfrak{g}/\mathfrak{h}, (JA^{q}/r_{A)})\rightarrow^{\alpha^{*}}H^{p}(\mathfrak{g}/\mathfrak{h}, \mathfrak{y}A^{*})$

(12) $|<s^{*}>u$ $H^{p}(\mathfrak{g},A_{s^{*}})\downarrow^{\lambda}\downarrow_{<>\cup}$

$H^{p+1}(\mathfrak{g}/\mathfrak{h}, \mathfrak{y}A)$ $\rightarrow^{\lambda}H^{p+1}(\mathfrak{g}, A)$

is commutative. If we put $\kappa(x)=<s^{*}>\cup\delta^{\{<}x$ for $x\in H^{p-1}(\mathfrak{g}/\mathfrak{h}, H^{1}(\mathfrak{h}, A))$ ,

we can map the exact sequence (11) isomorphically to the sequence of
the theorem, in virtue of the commutativity of (10) and (12)

Appendix.

To see that every transgressive class is g.invariant, we utilized in
$S2$ some chain homotopy. This mechanism is generalized by Hoch-
schild and Serre to “ a general identity $f7$ ) which is necessary for
interpretation of the spectral sequence. Here we shall briefly indicate
how this identity is treated from the axiomatic point of view.

Thus, the cohomology theory of $\mathfrak{g}$ with respect to a $\mathfrak{g}\cdot moduIeA$

is defined to be that of a $\mathfrak{g}$ free $\mathfrak{g}\cdot complex$ acyclic with respect to the
augmentation by $Z$, the ring of integers; any two such complexes give
rise to canonically equivalent theories. The usual non.homogeneous
theory makes use of the non-homogeneous complex $\mathfrak{C}(\mathfrak{g})$ , whose group
of $P\cdot chainsC^{p}(\mathfrak{g})$ has a $\mathfrak{g}\cdot basis$ denoted by $[\sigma_{1}, \cdots, \sigma p],$ $\sigma S$ running over
$\mathfrak{g}$ . We consider $\mathfrak{C}(\mathfrak{g})$ as a double $\mathfrak{g}\cdot complex$ , by defining the right
operation by

$[\sigma_{1}, \cdots, \sigma_{p}]=[\sigma i, \cdots’\sigma_{p}^{\tau}]$ ,

where $\tau\in \mathfrak{g}$ and $\sigma^{\tau}=\tau^{-1}\sigma\tau$ . This right operation turns out to be a chain

6) The case $p=1$ can be deduced from (3) in a similar way as this proof.
7) Chap. II, \S 3.
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equivalence of $\mathfrak{C}(\mathfrak{g})$ with itself, which implies the triviality of $\mathfrak{g}\cdot opera$ .
tions on $H(\mathfrak{g}, A)$ .

We have a canonical8) isomorphism

$H(\mathfrak{C}(\mathfrak{h}), A)\cong H(Z(\mathfrak{g})\otimes_{\mathfrak{y}}\mathfrak{C}(\mathfrak{h}), A)$ ,

where $Z(\mathfrak{g})\otimes_{r_{1}}\mathfrak{C}(\mathfrak{h})^{9)}$ is a q-free complex acyclic with respect to the
augmentation by $Z(q)\otimes_{r)}Z$ ; it is also a subcomplex of $\mathfrak{C}(\mathfrak{g})$ , invariant
by the right operations by $\mathfrak{g}$ , so that we may regard $Z(\mathfrak{g})\otimes_{\mathfrak{h}}\mathfrak{C}(\mathfrak{h})$ as a
double $\mathfrak{g}\cdot complex$ . Now, consider the tensor product complex

$\mathfrak{P}=(Z(\mathfrak{g})\otimes_{r_{1}}\mathfrak{C}(\mathfrak{h}))\otimes_{\mathfrak{g}}\mathfrak{C}(\mathfrak{g})$ .
We see that $\mathfrak{P}$ is a g-free complex (having as $fI\cdot basis$ the product of
$\mathfrak{h}$ -basis of $\mathfrak{C}(\mathfrak{h})$ and g.basis of $\mathfrak{C}(q))$ with the augmentation $ Z\cong$

$(Z(\{i)\otimes_{\mathfrak{h}}Z)\otimes_{\mathfrak{g}}Z$. Hence there exists a chain transformation

$\gamma$ : $\mathfrak{P}\rightarrow \mathfrak{C}(\mathfrak{g})$

by Cartan’s Lemma, which in turn induces a homomorphism

$\gamma^{*};$ $H^{p}(q, A)\rightarrow H^{p}(\mathfrak{P}, A)$ .
On the other hand, if we denote the canonical isomorphism

$Hom^{\mathfrak{g}}((Z(\mathfrak{g})\otimes_{r_{J}}\mathfrak{C}(\mathfrak{h}))\otimes_{\mathfrak{g}}\mathfrak{C}(\mathfrak{g}), A)\cong Hom^{q}(\mathfrak{C}(q)$ , $Hom^{\mathfrak{g}}(Z(\mathfrak{g})\otimes_{\mathfrak{h}}\mathfrak{C}(\mathfrak{h}), A))$

by $g\rightarrow g^{t}$ , we have by definitions

$(\delta g)^{\prime}(\zeta_{p})=\delta(g^{\prime}(\zeta_{p}))+(-1)^{p}(\delta g^{\prime})(\zeta_{p})$

for $\zeta_{p}\in C^{p}(\mathfrak{g})$ . We define the homomorphism

$\gamma^{p}$ ; $C^{p+q}(\mathfrak{g}, A)\rightarrow C^{p}(\mathfrak{g}, C^{q}(\mathfrak{h}, A))$

by
$f\rightarrow(\gamma^{p}f)(\zeta_{p})(\eta_{q})=f(\gamma(\eta_{q}\otimes\zeta_{p}))$ ,

8) The homology and the cohomology theory can be built up based on a few
fundamental properties of tensor product and the group of homomorphisms, as is shown
e.g. in S. Eilenberg and N. Steenrod, Foundations of algebraic lopology. Princeton Uni-
versity Press, 1952. $Hom^{\mathfrak{g}}(B\otimes r_{1}A, C)\cong Hom^{(J}(A, Hom^{\mathfrak{g}}(B, C))$ is one of them, where
$A$ is an $\mathfrak{h}$-module, $C$ a g-module and $B$ a $(\mathfrak{g}, \mathfrak{h})$ -double module.

9) $Z(\mathfrak{g})$ is considered as a right $\mathfrak{g}$-module by the right multiplication.
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where $\zeta_{p}\in C^{p}(\mathfrak{g}),$ $\eta_{q}\in C^{q}(\mathfrak{h})$ . Then we have

$(^{*})$ $\gamma^{P}(\delta f)(\zeta_{p})=\delta(\gamma^{P}f(\zeta_{p}))+(-1)^{q+1}\delta(\gamma^{p-1}f)(\zeta_{p})$ .

A concrete form of $\gamma^{p}$ is supplied by $f\rightarrow f_{j}$ of Hochschild and
Serre,7) and then $(^{*})$ is essentially equivalent to their Proposition 2.
The chain homotopy used in \S 2 is the case $p=1$ of $(^{*})$ . The chain
transformation $\gamma$ that leads to this $\gamma^{p}$ may be called the shuffling
product of $\mathfrak{C}(\mathfrak{h})$ and $\mathfrak{C}(\mathfrak{g})$ into $\mathfrak{C}(\mathfrak{g})$ ; though we do not give here its
explicit form in view of its somewhat complicated nature, this will be
clear from the form of $\gamma^{p}$ , or will be easily found in generalizing the
above mentioned chain homotopy. $1\ovalbox{\tt\small REJECT}$ )

10) Cf. S. Eilenberg and S. MacLane, On the groups $H(\Pi, n)$ , I. Ann. of Math. 58
(1953), pp. 55-106, where the case of abelian groups is treated.
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