Journal of the Mathematical Society of Japan

On the family of connected subsets and the topology of spaces.

By Tadashi TANAKA

(Received Oct. 26, 1953)

Let A be a set of points. If we introduce a topology into A, then the family $\{C\}$ of all connected subsets of A will be determined. But it is easily known by a simple example that the topology introduced into A can not be determined in general by $\{C\}$. But under some conditions it happens that the topology of the space can be determined by $\{C\}$, as will be shown in the following.

In this paper we shall use the notions and terminologies in G. T. Whyburn's "Analytic topology" [1]. We shall assume that all spaces to be considered are separable metric spaces. We begin with the definition of a biconnected transformation which plays an important role in this paper.

DEFINITION. Let A and B be spaces. A transformation f of A onto B will be called a biconnected transformation if the following conditions are satisfied:

(1) f is one-to-one.

(2) Connected subsets of A are transformed to connected subsets of B under f, and conversely.

Then we consider the properties of A and B under which the biconnected transformation f becomes a continuous or topological transformation.

THEOREM 1. Let f be a biconnected transformation of A onto B, where A is a space and B is a semi-locally-connected space¹). Then f is a continuous transformation.

PROOF. Suppose, on the contrary, that f is not continuous at a point p of A. Let $\{p_n\}$ be a sequence of points of A converging to p such that $\{f(p_n)\}$ does not converge to f(p). Since B is semilocally-connected, there exists a neighborhood U of f(p) such that B-U contains an infinite number of points of $\{f(p_n)\}$ and consists of

a finite number of components $C_1, \ldots C_m$. Now without loss of generality we may suppose that every point of $\{f(p_n)\}$ is in C_1 . Since C_1 is a component of B-U, C+f(p) is not connected. On the other hand $f^{-1}(C_1) + p$ is connected, for $f^{-1}(C_1)$ is connected and p is a limit point of $\{p_n\}$, where p_n belongs to $f^{-1}(C_1)$. This contradicts the hypothesis for f. Thus f is a continuous transformation.

COROLLARY. Let f be a biconnected transformation of A onto B, where A is a space and B is a locally connected generalized continuum. Then f is a critinuous transformation.

PROOF. A locally connected generalized continuum is semi-locallyconnected 2 . Thus the Corollary is an immediate consequence of Theorem 1.

If A and B are semi-locally-connected in Theorem 1, then f is topological. Accordingly it is known that the topology of a space can be determined by the family of connected subsets under the condition that the space is semi-locally-connected.

In order to consider the case where the space is not always semi-locally-connected, we first state some properties of biconnected transformations.

LEMMA 1. Let f be a biconnected transformation of A onto B, where A and B are spaces, and let C be a connected subset of A. Then we have $f(\overline{C}) \subset f(C)$.

PROOF. Let p be a point of \overline{C} . Then p belongs either to C or to $\overline{C}-C$. In the first case, it is obvious that f(p) belongs to f(C). In the second case, p is a limit point of C. Therefore C+p is connected, and hence f(C) + f(p) is also connected. Therefore f(p) is a limit point of f(C), and hence f(p) belongs to f(C). Thus Lemma 1 is proved.

LEMMA 2. Let f be a biconnected transformation of A onto B, where A is a space and B is a compact space. Then we have the following relation:

(2.1) A subcontinuum of A is transformed to a subcontinuum of B under f.

(2.2) A locally connected subcontinuum of A is transformed topologically to a locally connected subcontinuum of B under f.

Proof of (2.1). Let C be a subcontinuum of A. Since we have

 $C = \overline{C} = \overline{f^{-1}(f(C))} \supset f^{-1}(\overline{f(C)})$ by Lemma 1, $f(C) = \overline{f(C)}$ holds. Moreover, since B is compact and f(C) is connected, f(C) is a subcontinuum of B.

Proof of (2.2). Let C be a locally connected subcontinuum of A. It is obvious from the definition of the biconnected transformation that the inverse f^{-1} of a biconnected transformation f is also such a transformation. Moreover, since a connected subset of a subspace is also a connected subset of a space, any respection of a biconnected transformation is also a biconnected transformation. Accordingly, the transformation f^{-1} of f(C) onto C is continuous by the corollary of Theorem 1. Moreover, since f(C) is compact by (2.1), the transformation f^{-1} of f(C) onto C is topological. Thus (2.2) is proved.

LEMMA 3. Let f be a biconnected transformation of A onto B, where A and B are compact spaces, and let $\{M_n\}$ be a sequence of subcontinua M_n of A containing a point o. Then we have $f(\lim M_n) = \lim f(M_n)$.

PROOF. Since every point of $\lim M_n$ is a limit point of $\sum M_n$ and each M_n is a continuum containing a point o, $\lim M_n + \sum M_n$ is connected. Moreover, since $\lim M_n$ and M_n are closed, $\lim M_u + \sum M_n$ is closed. Therefore $\lim M_n + \sum M_n$ is a continuum. Hence $f(\lim M_n) + \sum f(M)$ is also a continuum by Lemma 2. Accordingly, to complete the proof it is sufficient to prove the following two facts:

- (3.1) $f(\lim M_n)$ is contained in $\lim f(M)$.
- (3.2) $f(M_m) f(\lim M_n)$ and $\lim f(M_n)$ are disjoint.

Proof of (3.1). Let f(p) be any point of $f(\lim M_n)$. Then there exists either an infinite number of M_{n_i} containing p or a sequence of points $\{p_{n_i}\}$ such that $p_{n_i} \in M_{n_i}$, $p \notin M_{n_i}$ and $\lim p_{n_i} = p$. In the first case it is obvious that $f(p) \in \lim f(M_n)$. In the second case $p + \sum M_{n_i}$ is connected and hence $f(p) + \sum f(M_{n_i})$ is connected. Moreover, since $f(M_{n_i})$ is a continuum not containing f(p), we have $f(p) \in \lim f(M_{n_i})$. Thus (3.1) is proved.

Proof of (3.2). Let f(p) be any point of $f(M_m) - f(\lim M_n)$. Suppose, on the contrary, that $f(p) \in \lim f(M_n)$. Then by the same way as in (3.1) it results that $p \in \lim M_n$. This contradicts the assumption that $f(p) \oplus f(\lim M_n)$.

Thus Lemma 3 is completely proved.

THEOREM 2. Let f be a biconnected transformation of A onto B, where A and B are compact spaces satisfying the following condition:

(a) For any point p and any sequence of points $\{p_n\}$ converging to p, there exist a point o, a subsequence $\{p_{n_i}\}$ of $\{p_n\}$ and a sequence of arcs $\{op_{n_i}\}$ such that $\{op_{n_i}\}$ converges to an arc op.

Then f is a topological transformation.

PROOF. Suppose, on the contrary, that f is not continuous at a Then there exist a sequence of points $\{p_{1n}\}$ and a point p of A. point q, different from p, such that $\lim p_{1n} = p$ and $\lim f(p_{1n}) = f(q)$. For $\lim p_{1n} = p$ we consider a sequence of arcs $\{op_{2n}\}^{(3)}$ and an arc opsatisfying the condition (*). Then by Lemma (2.2), $f(op_{2n})$ and f(op)are arcs, and by Lemma 3 f(q) belongs to f(op). Let S be the sphere with center f(q) and radius $\frac{1}{2} \cdot d[f(q), f(p)]$, where d[f(q), f(p)] is the distance between f(p) and f(q). We may suppose that every point of $\{f(p_{2n})\}$ is in the interior of S. Let $f(a_{2n})$ be the first common point of S and $f(p_{2n}o)$ ordered from $f(p_{2n})$ to f(o), f(b) the first common point of S and f(qo), f(c) the first common point of S and f(qp) and f(d) the last common point of S and f(qp). Then the sequence of arcs $\{f(p_{2n}a_{2n})\}$, where $f(p_{2n}a_{2n})$ is a subarc of $f(p_{2n}o)$, contains a convergent subsequence $\{f(p_{3n}a_{3n})\}$ whose limit is a subarc of f(op) containing f(qb) or f(qc), say f(qc), and also the sequence of arcs $\{p_{3n}a_{3n}\}$ contains a convergent subsequence $\{p_{4n}a_{4n}\}$ whose limit is a subarc L of op having p as an end point.⁴ Accordingly $\{f(p_{4n}a_{4n})\}$ converges to a subarc of f(op) containing f(qc), and $\{p_{4n}a_{4n}\}$ converges to a subarc L of op having p as an end point. In the following we consider two possible cases.

(1) The case where L is a subset of the arc dp. Let f(r) be an inner point of f(qc) and let $\{f(r_{4n})\}$ be a sequence of points converging to f(r), where $f(r_{4n}) \in f(p_{4n}a_{4n})$. And for $\lim f(r_{4n}) = f(r)$ we consider a sequence of arcs $\{f(o'r_{5n})\}$ and an arc f(o'r) satisfying the condition (*). Now let f(s) be a point of f(qc) such that $f(s) \in f(o'r)$ Then as f(o'r) is the limit of $\{f(o'r_{5n})\}$, we may suppose that

f(s) does not belong to any $f(o'r_{5n})$. Hence f(s) is separated from $\sum f(o'r_{5n})$. Therefore s is separated from $\sum o'r_{5n}$. And also since s does not belong to L, similarly we may consider that s is separated from $\sum p_{5n}a_{5n}$. Hence $s + \sum o'r_{5n} + \sum p_{5n}a_{5n}$ is not connected, while $f(s) + \sum f(o'r_{5n}) + \sum f(p_{5n}a_{5n})$ is connected. This contradicts the hypothesis for f.

(2) The case where L is not a subset of the arc dp. Then, of course, dp is a subset of L. Let r be an inner point of dp and let $\{r_{4n}\}$ be a sequence of points converging to r, where $r_{4n} \in a_{4n}p_{4n}$. And for $\lim r_{4n} = r$ we consider a sequence of arcs $o'r_{5n}$ and an arc o'r satisfying the condition (*).

Now let s be a point of dp such that $s \oplus o'r$. In the same way as in case 1, it results that $s + \sum o'r_{5n} + \sum p_{5n}a_{5n}$ is connected, while $f(s) + \sum f(o'r_{5n}) + \sum f(p_{5n}a_{5n})$ is not. This contradicts the hypothesis for f.

Accordingly f is continuous. Similarly f^{-1} is continuous. Thus f is a topological transformation.

From Theorem 2 it is known that the topology of a space can be determined by the family of connected subsets under the condition that the space is compact and satisfies the condition (*) in Theorem 2.

I wish to express my hearty thanks to Professor Kakutaro Morinaga for his kind guidance.

Hiroshima University.

Notes

1) A connected space A is semi-locally-connected if for any positive number ε every point of A has a neighborhood U of diameter less than ε such that A-U consists of a finite number of components.

- 2) [1], pp. 19-20.
- 3) $\{p_{2n}\}$ is a subsequence of $\{p_{1n}\}$

4) [1], pp. 14-15.

Reference

[1] G.T. Whyburn, Analytic topology, Amer. Math. Soc. Colloquium Publication, vol. 28, New York, 1942.