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On the family of connected subsets and
the topology of spaces.
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Let $A$ be a set of points. If we introduce a topology into $A$ ,
then the family $\{C\}$ of all connected subsets of $A$ will be deter-
mined. But it is easily known by a simple example that the topology
introduced into $A$ can not be determined in general by $\{C\}$ . But
under some conditions it happens that the topology of the space can
be determined by $\{C\}$ , as will be shown in the following.

In this paper we shall use the notions and terminologies in
G. T. Whyburn’s “ Analytic topology “ [1]. We shall assume that all
spaces to be considered are separable metric spaces. We begin with
the definition of a biconnected transformation which plays an impor-
tant role in this paper.

DEFINITION. Let $A$ and $B$ be spaces. A transformation $f$ of $A$

onto $B$ will be called a biconnected transformation if the following
conditions are satisfied:

(1) $f$ is one-to-one.
(2) Connected subsets of $A$ are transformed to connected subsets

of $B$ under $f$, and conversely.
Then we consider the properties of $A$ and $B$ under which the

biconnected transformation $f$ becomes a continuous or topological
transformation.

THEOREM 1. Let $f$ be a biconnected transformation of $A$ onto $B$,
where $A$ is a space and $B$ is a semi-locally-connected space1). Then $f$

is a continuous transformation.
PROOF. Suppose, on the contrary, that $f$ is not continuous at a

point $p$ of $A$ . Let $\{p_{n}\}$ be a sequence of points of $A$ converging to
$p$ such that $\{f(p_{n})\}$ does not converge to $f(p)$ . Since $B$ is semi-
locally.connected, there exists a neighborhood $U$ of $f(p)$ such that
$B-U$ contains an infinite number of points of $\{f(p_{n})\}$ and consists of
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a finite number of components $C_{1},$ $\ldots C_{m}$ . Now without loss of
generality we may suppose that every point of $\{f(p_{n})\}$ is in $C_{1}$ .
Since $C_{1}$ is a component of $B-U,$ $C+f(p)$ is not connected. On the
other hand $f^{-1}(C_{1})+p$ is connected, for $f^{-1}(C_{1})$ is connected and $p$ is
a limit point of $\{p_{n}\}$ , where $p_{n}$ belongs to $f^{-1}(C_{1})$ . This contradicts
the hypothesis for $f$. Thus $f$ is a continuous transformation.

$CoROLLARY$ . Let $f$ be a biconnected transformation of $A$ onto $B$,
where $A$ is a space and $B$ is a locally connected generalized continuum.
Then $f$ is a cntinuous transformation.

PROOF. A locally connected generalized continuum is semi-locally-
connected2). Thus the Corollary is an immediate consequence of
Theorem 1.

If $A$ and $B$ are semi-locally-connected in Theorem 1, then $f$ is
topological. Accordingly it is known that the topology of a space
can be determined by the family of connected subsets under the con-
dition that the space is semi-locally-connected.

In order to consider the case where the space is not always
semi-locally-connected, we first state some properties of biconnected
transformations.

LEMMA 1. Let $f$ be a biconnected transformation of $A$ onto $B$,
where $A$ and $B$ are spaces, and let $C$ be a connected subset of A. Then
we have $f(\overline{C})\subset f(C)$ .

PROOF. Let $p$ be a point of $\overline{C.}$ Then $p$ belongs either to $C$ or
to $\overline{C}-C$. In the first case, it is obvious that $f(p)$ belongs to $f(C)$ .
In the second case, $p$ is a limit point of $C$. Therefore $C+p$ is con-
nected, and hence $f(C)+f(p)$ is also connected. Therefore $f(p)$ is a
limit point of $f(C)$ , and hence $f(p)$ belongs to $f(C)$ . Thus Lemma 1
is proved.

LEMMA 2. Let $f$ be a biconnected transformation of $A$ onto $B$,
where $A$ is a space and $B$ is a compact space. Then we have the $ fol\rightarrow$

lowing relation:
(2.1) A subcontinuum of $A$ is transformed to a subcontinuum of

$B$ under $f$.
(2.2) A locally connected subcontinuum of $A$ is transformed topo-

logically to a locally connected subcontinuum of $B$ under $f$.
Proof of (2.1). Let $C$ be a subcontinuum of $A$ . Since we have
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$C=\overline{C_{\backslash _{\prime}}^{\tau}}=\overline{f^{-1}(f(C)})\supset f^{-1}(\overline{f(C}))$ by Lemma 1, $f(C)=\overline{f(C})$ holds. Moreover,
since $B$ is compact and $f(C)$ is connected, $f(C)$ is a subcontinuum of $B$.

Proof of (2.2). Let $C$ be a locally connected subcontinuum of $A$ .
It is obvious from the definition of the biconnected transformation
that the inverse $f^{-1}$ of a biconnected transformation $f$ is also such
a transformation. Moreover, since a connected subset of a subspace
is also a connected subset of a space, any respection of a biconnected
transformation is also a biconnected transformation. Accordingly,
the transformation $f^{-1}$ of $f(C)$ onto $C$ is continuous by the corollary
of Theorem 1. Moreover, since $f(C)$ is compact by (2.1), the trans-
formation $f^{-1}$ of $f(C)$ onto $C$ is topological. Thus (2.2) is proved.

LEMMA 3. Let $f$ be a biconnected transformation of $A$ onto $B$,
where $A$ and $B$ are compact spaces, and let $\{M_{n}\}$ be a sequence of sub-
continua $M_{n}$ of $A$ containing a point $0$ . Then we have $f(\varlimsup M_{n})=i\overline{im}$

$f(M_{n})$ .
PROOF. Since every point of $\varlimsup M_{n}$ is a limit point of $\sum M_{n}$

and each $M_{n}$ is a continuum containing a point $0,$ $\varlimsup M_{n}+\sum M_{n}$ is
connected. Moreover, since $\varlimsup M_{n}$ and $M_{n}$ are closed, $l\overline{im}M_{u}+\sum M_{n}$

is closed. Therefore $\varlimsup\overline{M}_{n}+\sum M_{n}$ is a continuum. Hence $ f(\varlimsup$

$M_{n})+\sum f(M)$ is also a continuum by Lemma 2. Accordingly, to
complete the proof it is sufficient to prove the following two facts:

(3.1) $f(\lim M_{n})$ is contained in $\varlimsup f(M)$ .
(3.2) $f(M_{m})-f(\varlimsup M_{n})$ and $\varlimsup f(M_{n})$ are disjoint.

Proof of (3.1). Let $f(p)$ be any point of $f(\varlimsup M_{n})$ . Then there
exists either an infinite number of $M_{n_{i}}$ containing $p$ or a sequence of
points $\{p_{n_{i}}\}$ such that $p_{n_{i}}\in M_{n_{i}},$ $p\not\in M_{n_{i}}$ and $\lim p_{n_{i}}=p$ . In the

first case it is obvious that $f(p)\in 1-imf(M_{n})$ . In the second case
$p+\sum M_{n_{t}}$ is connected and hence $f(p)+\sum f(M_{n_{i}})$ is connected. More-

over, since $f(M_{n_{i}})$ is a continuum not containing $f(p)$ , we have

$f(p)\in\varlimsup f(M_{n_{i}})$ . Thus (3.1) is proved.

Proof of (3.2). Let $f(p)$ be any point of $f(M_{m})-f(\varlimsup\overline{M}_{n})$ .
Suppose, on the contrary, that $f(p)\in 1-imf(M_{n})$ . Then by the same
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way as in (3.1) it results that $p\in\lim M_{n}$ . This contradicts the
assumption that $f(p)\not\in f(\lim M_{n})$ .

Thus Lemma 3 is completely proved.

THEOREM 2. Let $f$ be a biconnected transformation of $A$ onto $B$,
where $A$ and $B$ are compact spaces satisfying the following condition:

$()$ For any point $p$ and any sequence of points $\{p_{n}\}$ converging
to $p$, there exist a poiut $o$ , a subsequence $\{p_{n_{i}}\}$ of $\{p_{n}\}$ and a sequence

of arcs $\{op_{n_{i}}\}$ such that $\{op_{n_{i}}\}$ converges to an arc $op$.
Then $f$ is a topological transformation.
PROOF. Suppose, on the contrary, that $f$ is not continuous at a

point $p$ of $A$ . Then there exist a sequence of points $\{p_{1n}\}$ and a
point $q$, different from $p$ , such that $\lim p_{1n}=p$ and $\lim f(p_{1n})=f(q)$ .
For $\lim p_{1n}=p$ we consider a sequence of arcs $\{op_{2n}\}^{3)}$ and an arc $op$

satisfying the condition $(^{\star})$ . Then by Lemma (2.2), $f(op_{2n})$ and $f(op)$

are arcs, and by Lemma 3 $f(q)$ belongs to $f(op)$ . Let $S$ be the sphere
1with center $f(q)$ and radius . $d[f(q), f(p)]$ , where $d[f(q), f(p)]$ is
2

the distance between $f(p)$ and $f(q)$ . We may suppose that every
point of $\{f(p_{2n})\}$ is in the interior of $S$. Let $f(a_{2n})$ be the first
common point of $S$ and $f(p_{2n}o)$ ordered from $f(p_{2n})$ to $f(o),$ $f(b)$ the
first common point of $S$ and $f(qo),$ $f(c)$ the first common point of $S$

and $f(qp)$ and $f(d)$ the last common point of $S$ and $f(qp)$ . Then
the sequence of arcs $\{f(p_{2n}a_{2n})\}$ , where $f(p_{2n}a_{2n})$ is a subarc of
$f(p_{2n}o)$ , contains a convergent subsequence $\{f(p_{3n}a_{3n})\}$ whose limit is
a subarc of $f(op)$ containing $f(qb)$ or $f(qc)$ , say $f(qc)$ , and also the
sequence of arcs $\{p_{3n}a_{3n}\}$ contains a convergent subsequence $\{p_{4n}a_{4n}\}$

whose limit is a subarc $L$ of $op$ having $p$ as an end point Accord-
ingly $\{f(p_{4n}a_{4n})\}$ converges to a subarc of $f(op)$ containing $f(qc)$ , and
$\{p_{4n}a_{4n}\}$ converges to a subarc $L$ of $op$ having $p$ as an end point. In
the following we consider two possible cases.

(1) The case where $L$ is a subset of the arc $dp$. Let $f(r)$ be an
inner point of $f(qc)$ and let $\{f(r_{4n})\}$ be a sequence of points converg-
ing to $f(r)$ , where $f(r_{4n})\in f(p_{4n}a_{4n})$ . And for $\lim f(r_{4n})=f(r)$ we
consider a sequence of arcs $\{f(o^{\prime}r_{5n})\}$ and an arc $f(o^{\prime}r)$ satisfying
the condition (’). Now let $f(s)$ be a point of $f(qc)$ such that $ f(s)\not\in$

$f(0^{\prime}r)$ Then as $f(o^{\prime}r)$ is the limit of $\{f(0^{\prime}r_{5n})\}$ , we may suppose that
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$f(s)$ does not belong to any $f(o^{\prime}r_{5n})$ . Hence $f(s)$ is separatad from
$\sum f(o^{\prime}r_{5n})$ . Therefore $s$ is separated from $\sum o^{\prime}r_{5n}$ . And also since
$s$ does not belong to $L$, similarly we may consider that $s$ is separated
from $\sum p_{5n}a_{6n}$ . Hence $s+\sum o^{\prime}r_{5n}+\sum p_{5n}a_{5n}$ is not connected, while
$f(s)+\sum f(o^{\prime}r_{5n})+\sum f(p_{6n}a_{5n})$ is connected. This contradicts the hypo-
thesis for $f$.

(2) The case where $L$ is not a subset of the arc $dp$. Then, of
course, $dp$ is a subset of $L$. Let $r$ be an inner point of $dp$ and let
$\{r_{4n}\}$ be a sequence of points converging to $r$, where $r_{4n}\in a_{4n}p_{4n}$ .
And for $\lim r_{4n}=r$ we consider a sequence of arcs $o^{\prime}r_{5n}$ and an arc
$o^{\prime}r$ satisfying the condition $(*)$ .

Now let $s$ be a point of $dp$ such that $s\oplus o^{\prime}r$ . In the same way
as in case 1, it results that $s+\sum o^{\prime}r_{5n}+\sum p_{5n}a_{5n}$ is connected, while
$f(s)+\sum f(o^{\prime}r_{6n})+\sum f(p_{5n}a_{vn}\ulcorner)$ is not. This contradicts the hypothesis
for $f$.

Accordingly $f$ is continuous. Similarly $f^{-1}$ is continuous. Thus
$f$ is a topological transformation.

From Theorem 2 it is known that the topology of a space can
be determined by the family of connected subsets under the condition
that the space is compact and satisfies the condition $(*)$ in Theorem 2.

I wish to express my hearty thanks to Professor Kakutaro
Morinaga for his kind guidance.
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Notes
1) A connected space $A$ is semi-locally-connected if for any positive number $\epsilon$

every point of $A$ has a neighborhood $U$ of diameter less than $\epsilon$ such that $A-U$ consists
of a finite number of components.

2) [1], pp. 19-20.
3) $\{p_{2n}\}$ is a subsequence of $\{p_{1n}\}$

4) [1], pp. 14-15.
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