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The predicate calculus with $\epsilon$-symbol.
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The purpose of this paper is to prove the following theorem:
“If a formal axiom system represented by formulae in the

ordinary predicate calculus is consistent in the ordinary predicate
calculus, it is consistent also in the predicate calculus with \mbox{\boldmath $\epsilon$}-symbol.’’1)

By the ordinary predicate calculus we mean here Gentzen’s
‘ Kalk\"ul $LK^{2)}$ ’, and what we call here ‘ e-symbol ‘ means the logical
symbol $e$ used in representing the quantifier $ex$ which was
originally proposed by Hilbert and named ‘ transfinite logische Aus-
wahlfunktion’. When $F(x)$ represents a proposition containing the
variable $x$ for an individual, as long as there exists at least such an
$x$ as makes $F(x)$ true, $exF(x)$ indicates such an $x$ as makes $F(x)$ true.
And if there exists no $x$ such as makes $F(x)$ true, $exF(x)$ means an
arbitrary individual.3)

For obtaining the predicate calculus with e-symbol (of first order),
it is sufficient, as is well-known, to adjoin the logical axiom schema

$F(a)\rightarrow F(exF(x))$

and appropriate rules of inference to the propositional calculus. But,
for the sake of convenience, we now use as the predicate calculus
with e-symbol the logical system obtained from the ordinary predicate’
calculus4) by adjoining the above logical axiom schema to it.

In an Appendix, we shall consider the e-symbol on propositions.
The auther wishes to express his thanks to Mr. G. Takeuti who

gave valuable advice in the course of this work.

\S 1. Terminologies and symbols.

1.1. ’ Term ’ and ’ formula ’.
1.11. DEFINITION:
1.111. A free variable is a term.
1.112. If $f_{1},\ldots,t_{n}$ are terms, and $\mathfrak{f}(*,\ldots,*)$ is a function of $n$ argu-
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ment places5), then $\mathfrak{f}(t_{1},\ldots,t_{n})$ is a term $(n=0,1,2_{f}\ldots)$ .
1.113. If $t_{1},\ldots,t_{n}$ are terms, and $\mathfrak{P}(\star,\ldots,*)$ is a predicate of $n$ argu-

ment places6), then $\mathfrak{P}(t_{1},\ldots, t_{n})$ is a formula $(n=0,1,2,\ldots)$ .
1.114. If $\mathfrak{A}$ is a formula, then $7\mathfrak{A}$ is a formula. If $\mathfrak{A}$ and $\mathfrak{B}$

are formulae, then A&B, $\mathfrak{A}\ovalbox{\tt\small REJECT} \mathfrak{B}$ and $\mathfrak{A}\supset \mathfrak{B}$ are formulae.
1.115. If $\mathfrak{F}(\mathfrak{a})$ is a formula, $\mathfrak{a}$ is a free variable, ee is a bound

variable, and $\mathfrak{F}(\$)$ is the result of substituting ee for $\mathfrak{a}$ throughout
$\mathfrak{F}(\mathfrak{a})$ , then $\nu ae\mathfrak{F}(ae)$ and $Hx\mathfrak{F}(x)$ are formulae, and $eae\mathfrak{F}(ae)$ is a term.

1.116. The only terms and formulae are those given by 1.111-
1.115.

The grade of a term or formula is the number $(\geqq 0)$ of occur-
rences of logical symbols $(7, \&, \vee, \supset, b^{r}, H, e)$ in the term or formula.

1.12. Abbreviations.
1.121. When $Fx\mathfrak{F}(ae)$ or $Eae\mathfrak{F}(x)$ is a formula, or $\epsilon ae\mathfrak{F}(ae)$ is a term

of such form, $\mathfrak{F}(t)$ means the result of substituting an arbitrary term
$t$ for all occurrences7) of the bound variable ee in $\mathfrak{F}(ae)$ which are con-
tained in none of the scopes of the quantifiers Vee, Hae and $\epsilon ae$ .

1.122. We shall use Greek small letters to stand for finite
sequences of zero or more terms or bound variables, when we wish
to indicate sets of terms or bound variables without naming them
individually, as in the following

EXAMPLE 1. If
$\tau$ stands for a sequence of terms: $t_{1},\ldots,$ $t_{n}$ ,

and
$\xi$ stands for a sequence of bound variables: $ae_{t},\ldots,$ $ae_{n}$ ,

then
$\mathfrak{F}(\tau)$ means $\mathfrak{F}(t_{1},\ldots, t_{n})$ ,

and
$\forall\xi \mathfrak{F}(\xi)$ means $\nu ae_{1}\ldots\nu ae_{n}\mathfrak{F}(ae_{1},\ldots, ae_{n})$

$(n=0,1,2,\ldots)$ .
EXAMPLE 2. If $\sigma$ and $\tau$ stand for sequences of terms $@_{1},\ldots,$ $@_{n}$ or

$t_{1},\ldots,$ $t_{n}$ , respectively, then $\sigma=\tau$ means the formula
$((8_{1}=t_{1}\& 6_{\underline{)}}=t_{2})\&\ldots)\& 8_{n}=f_{n}$

$(n=1,2,\ldots)$ .
1.13. We define ‘subterm’ of a given term or formula thus:
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1.131. If $t$ is a term, $t$ is a subterm of $t$.
1.132. If $t_{1},\ldots,$ $t_{n}$ are terms, and $\uparrow(*,\ldots, *)$ is a function of $n$ argu-

ment places, the subterms of $t_{i}(i=1,2,\ldots, n)$ are subterms of $\uparrow(f_{1},\ldots, t_{n})$ .
1.133. If $t_{1},\ldots,$ $t_{n}$ are terms, and $\mathfrak{P}(*,\ldots, *)$ is a predicate of $n$

argument places, the subterms of $t_{i}(i=1,2,\ldots, n)$ are subterms of
$\mathfrak{P}(t_{1},\ldots, t_{n})$ .

1.134. If $\mathfrak{A}$ is a formula, the subterms of $\mathfrak{A}$ are subterms of $7\mathfrak{A}$.
If $\mathfrak{A}$ and $\mathfrak{B}$ are formulae, the subterms of $\mathfrak{A}$ and the subterms of $\mathfrak{B}$

are subterms of A&B, $\mathfrak{A}\ovalbox{\tt\small REJECT} \mathfrak{B}$ and $\mathfrak{A}\supset \mathfrak{B}$ .
1.135. If $\mathfrak{F}(\mathfrak{a})$ is a formula, $\mathfrak{a}$ is a free variable, ee is a bound

variable, and $\mathfrak{F}(ae)$ is the result of substituting ee for $\mathfrak{a}$ throughout
$\mathfrak{F}(\mathfrak{a})$ , the subterms of $\mathfrak{F}(\mathfrak{a})$ which do not contain $\mathfrak{a}$ are subterms of
$Fx\mathfrak{F}(x),$ $Hae\mathfrak{F}(\alpha)$ and $eae\mathfrak{F}(x)^{8)}$

1.136. A term or formula has only the subterms required by
1.131-1.135.

A subterm of a term $t$ which is not identical with $t$ itself is
called a proper subterm of $f$.

1.14. A term of the form $\epsilon x\mathfrak{F}(ae)$ is called an e-term. When and
only when all of the proper subterms of an e-term are free variables
each of which occurs only once in the e-term, the e-term is called an
e-type, and the free variables contained in it are called the arguments
of the e-type. When and only when $\epsilon ae\mathfrak{F}(x, \alpha)$ is an e-type, and $\alpha$

indicates the arguments, the e-type is called a type of any e-term of
the form $ex\mathfrak{F}(ae, \tau)$ , where $\tau$ stands for a sequence of arbitrary terms.
Two e-types are said to be congruent with each other, when and only
when the each of them is a type of the other.

1.141. For an arbitrary e-term, there exists a type of it.
1.142. Types of an $e$-term are all congruent with each other.
1.143. A type of a type of an e-term is also a type of the e-term.
1.2. ‘Sequent‘.
A sequent is a formal expression of the form

$\mathfrak{A}_{1},$

$\ldots,$
$\mathfrak{A}_{m}\rightarrow \mathfrak{B}_{1},$

$\ldots,$
$\mathfrak{B}_{n}$

where $m,$ $n\geqq 0$ and $\mathfrak{A}_{1},\ldots,$ $\mathfrak{A}_{m},$ $\mathfrak{B}_{1},\ldots,$ $\mathfrak{B}_{n}$ are arbitrary formulae. The
part $\mathfrak{A}_{1},\ldots,$ $\mathfrak{A}_{m}$ is called the antecedent, and $\mathfrak{B}_{1},\ldots,$ $\mathfrak{B}_{n}$ the succedent of
the sequent.

We shall use Greek capitals, such as $\Gamma,$ $\Delta,$ $\Theta,$
$\Lambda$ , and so on, to
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stand for finite sequences of zero or more formulae with separating
formal commas included, when we wish to indicate sequences of
formulae in antecedent or succedent without naming the formulae
individually.

1.3. ‘Logical axiom’.
As logical axioms we use only the sequents of the form

$\mathfrak{F}(t)\rightarrow \mathfrak{F}(eae\mathfrak{F}(x))$

where $eae\mathfrak{F}(x)$ is an arbitrary $e$-term, $t$ is an arbitrary term, and
$\mathfrak{F}(t)$ and $\mathfrak{F}(e\$\mathfrak{F}(x))$ are the results of substituting $t$ or $\epsilon x\mathfrak{F}(ae)$ for all
free occurrences of the bound variable ee in $\mathfrak{F}(x)$ , respectively. Es-
pecially, when $\mathfrak{F}(ae)$ has no free occurrence of ae, that logical axiom
has the form

$\mathfrak{D}\rightarrow \mathfrak{D}$

like that of the ‘ logische Grundsequenz’ in Gentzen’s Kalk\"ulL $K^{9)}$

1.4. ‘ Rules of inference ’.
As rules of inference we use ones for $LK$ which are represented

as the ‘ Schlussfiguren-Schemata ‘ in Gentzen [1], thus:
1.41. Structural rules of inference:

in antecedent. in succedent.

$\Gamma\rightarrow\Theta$ $\Gamma\rightarrow\Theta$

Thinning:
$\mathfrak{D},$ $\Gamma\rightarrow\Theta$ $\Gamma\rightarrow\Theta,\overline{\mathfrak{D}}-$

Contraction: $\underline{\mathfrak{D}},\mathfrak{D}-\frac{\Gamma\rightarrow\Theta}{\Gamma\rightarrow\Theta},,,,\overline{\mathfrak{D}}$ $-\frac{\Gamma\rightarrow}{\Gamma\rightarrow}\frac{\mathfrak{D},\mathfrak{D}}{\mathfrak{D}}\Theta\Theta$

,

$\Delta,$ $\mathfrak{D},$ $\mathfrak{E}_{-}\Gamma\rightarrow\theta$ $\Gamma\rightarrow\Theta,$ $\mathfrak{E},$ $\mathfrak{D},$ $\Lambda$

Interchange:
$\Delta,$ $\mathfrak{E},$ $\mathfrak{D},$

$\Gamma\rightarrow\Theta-$ $-\Gamma\overline{\rightarrow\Theta,\mathfrak{D},\mathfrak{E}}^{-}\Lambda$

Cut: $\underline{\Gamma\rightarrow}\Theta,\underline{\mathfrak{D}}\underline{\mathfrak{D}}’\Delta\rightarrow\Lambda_{-}\Gamma,\Delta\rightarrow\Theta^{-}\Lambda^{-}$
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1.42. Logical rules of inference:

Introduction of in antecedent. in succedent.

7: $\frac{\Gamma\rightarrow\Theta,\mathfrak{A}}{7\mathfrak{A},\Gamma\rightarrow\Theta}$ $\frac{\mathfrak{A},\Gamma\rightarrow\Theta}{\Gamma\rightarrow\Theta,7\mathfrak{A}}$

&: $\frac{\mathfrak{A},\Gamma\rightarrow\Theta}{\mathfrak{A}\&\mathfrak{B},\Gamma\rightarrow\Theta}$ $\frac{\mathfrak{B},\Gamma\rightarrow\Theta}{\mathfrak{A}\&\mathfrak{B},\Gamma\rightarrow\Theta}$ $\frac{\Gamma\rightarrow\Theta,\mathfrak{A}\Gamma\rightarrow\Theta,\mathfrak{B}}{\Gamma\rightarrow\Theta,\mathfrak{A}\&\mathfrak{B}}$

V: $\frac{\mathfrak{A},\Gamma\rightarrow\Theta \mathfrak{B},\Gamma\rightarrow\Theta}{\mathfrak{A}\ovalbox{\tt\small REJECT} \mathfrak{B},\Gamma\rightarrow\Theta}$ $\frac{\Gamma\rightarrow\Theta,\mathfrak{A}}{\Gamma\rightarrow\Theta,\mathfrak{A}\ovalbox{\tt\small REJECT} \mathfrak{B}}$ $\frac{\Gamma\rightarrow\Theta,\mathfrak{B}}{\Gamma\rightarrow\Theta,\mathfrak{A}\ovalbox{\tt\small REJECT} \mathfrak{B}}$

$\supset$ : $\frac{\Gamma\rightarrow\Theta,\mathfrak{A}\mathfrak{B},\Gamma\rightarrow\Theta}{\mathfrak{A}\supset \mathfrak{B},\Gamma\rightarrow\Theta}$ $\frac{\mathfrak{A},\Gamma\rightarrow\Theta,\mathfrak{B}}{\Gamma\rightarrow\Theta,\mathfrak{A}\supset \mathfrak{B}}$

V: $\frac{\mathfrak{F}(t),\Gamma\rightarrow\Theta}{\forall\$\mathfrak{F}(ae),\Gamma\rightarrow\Theta}$ $\frac{I^{7}\rightarrow\Theta,\mathfrak{F}(\mathfrak{a})}{\Gamma\rightarrow\Theta,\forall ae\mathfrak{F}(ae)}$

$E$ : $\frac{\mathfrak{F}(\mathfrak{a}),\Gamma\rightarrow\Theta}{Hae\mathfrak{F}(ae),\Gamma\rightarrow\Theta}$ $\frac{\Gamma\rightarrow\Theta}{\Gamma\rightarrow\Theta}\overline{g}^{(\underline{t})}\mathfrak{F}ae\overline{\mathfrak{F}(ae)}$

where $\mathfrak{A},$ $\mathfrak{B},$ $\mathfrak{D},$
$\mathfrak{E}$ are arbitrary formulae ; \nu $F(ae) or $Hae\mathfrak{F}(x)$ is an

arbitrary formula of such form, and at this time $\mathfrak{F}(\mathfrak{a})$ or $\mathfrak{F}(t)$ is the
result of substituting a free variable $\mathfrak{a}$ or a term $t$ for all free
occurrences of the bound variable ae in $\mathfrak{F}(x)$ , respectively; and $\Gamma,$ $\Delta$ ,
$\Theta,$

$\Lambda$ are arbitrary finite sequences of zero or more formulae.
Restriction on variable: The free variable $\mathfrak{a}$ of the $\nu- succedent^{1\ovalbox{\tt\small REJECT})}$

or the $\Xi- antecedent^{1\ovalbox{\tt\small REJECT})}$ shall not occur in its conclusion.
In each of the logical rules, the formula in which the logical

symbol is introduced is called the principal formula, and the one or
two formulae shown explicitly in the premises the side formulae.

1.5. ‘ Proof ’.
As the (formal) proof, we use one in tree form: it is a finite oc-

currences of one or more sequents in a partial ordering, which has
one lowermost sequent–the $endsequent-and$ logical axioms as the
uppermost sequents, and in which the premises for each inference
are written immediately over the conclusion, as in the statement of
the rules of inference, and no occurrence of a sequent serves as
premise for more than one inference.
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A proof of a sequent is a proof which has the sequent as the
endsequent. A sequent is said to be provable (without cut), when and
only when there exists a proof of the sequent (which contains no
cut).

1.6. ‘Axiom system’.
A formula containing no free variable is said to be closed. A

finite or infinite set of closed formulae is called an axiom system.
When an axiom system is fixed to be considered, each closed formula
of the system may be called an axiom. A finite sequence of formulae
containing only axioms of an axiom system $A$ is called an axiom
sequence of $A$ .

1.61. Let $A$ be an axiom system, and $\mathfrak{A}$ be a formula. When
and only when there exists an axiom sequence $I_{0}^{7}$–it may be empty–
of $A$, and the sequent

$\Gamma_{0}\rightarrow \mathfrak{A}$

is provable, $\mathfrak{A}$ is said to be provable from $A$ .
1.62. An axiom system $A$ is said to be contradictory, when and

only when there exists a formula $\mathfrak{A}$ and when $\mathfrak{A}$ and 7 $\mathfrak{A}$ are both
provable from $A$ .

If an axiom system $A$ is contradictory, there exist a formula
$\mathfrak{A}$ and axiom sequences $\Gamma_{1}$ and $I_{2}^{7}$ of $A$ and the sequents

$\Gamma_{1}\rightarrow \mathfrak{A}$ and $\Gamma_{2}\rightarrow 7\mathfrak{A}$

are both provable, accordingly

$\Gamma_{2}\rightarrow 7\mathfrak{A}$ and 7 $\mathfrak{A},$
$\Gamma_{1}\rightarrow$

are both provable (by a 7-antecedent), hence

$\Gamma_{2},$ $\Gamma_{1}\rightarrow$

is provable (by a cut), and the sequence $I_{2}^{7},$ $\Gamma_{1}$ is an axiom sequence
of $A$ . Conversely, if there exists an axiom sequence $\Gamma_{0}$ of an axiom
system $A$ and if

$\Gamma_{0}\rightarrow$

is provable, for any formula $\mathfrak{A}$ ,
$\Gamma_{0}\rightarrow \mathfrak{A}$ and $\Gamma_{0}\rightarrow 7\mathfrak{A}$
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are both provable (by thinnings), then $\mathfrak{A}$ and 7 $\mathfrak{A}$ are both provable
from $A$ , hence $A$ is contradictory.

An axiom system which is not contradictory is said to be con-
sistent.

1.63. Let $A$ be an axiom system, and $\mathfrak{A}$ be a fomula. When
and only when each of the functions and the predicates which occur
in $\mathfrak{A}$ occurs at least in one axiom of $A,$ $\mathfrak{A}$ is said to be dependent on $A$ .

1.64. Let $A$ be an axiom system which has at least one axiom
containing the 2-place predicate ‘ $*=*$ ’. When and only when each
formula which is dependent on $A$ and has the form

Vee(ee $=ae$)

or
$Fxb^{r}\mathfrak{y}$ [ee $=\mathfrak{h}\supset(\mathfrak{F}(x)\supset \mathfrak{F}(\mathfrak{y}))$ ]

is provable from $A,$ $A$ is called an axiom system with equality.
1.7. THE PREDICATE CALCULUS $LK’$ .
Gentzen’s predicate calculus $LK$ is obtained from the present

logical system by omitting the logical symbol $\epsilon$ . When we wish to
express that a conception is in $LK$, we shall use the corresponding
terminology to it with the phrase ‘ in $LK$ ’ or the prefix ‘LK- ‘, as
in the following

EXAMPLE 3. An LK-formula is a formula which does not contain
the logical symbol $e$ .

EXAMPLE 4. A logical axiom in $LK$ has the form $\mathfrak{D}\rightarrow \mathfrak{D}$ , where
$\mathfrak{D}$ is an arbitrary LK-formula.

EXAMPLE 5. A sequent is LK-provable, if and only if there
exists an LK-proof of the sequent.

EXAMPLE 6. An axiom system in $LK$ with equality is an axiom
system with equality in $LK$.

Gentzen [1] proved the following important theorem:
HAUPTSATZ ON $LK$. If a sequent is LK-provable, then it is LK-

provable without cut.

\S 2. Preparative considerations on $LK$.
This paragraph is devoted to the proof of two following theorems:
THEOREM 1. Let $A$ be an axiom system in $LK$,
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$P\xi$ a $\mathfrak{y}\mathfrak{A}(\mathfrak{h}, \xi)$

be a closed LK-formula which is LK-provable from $A,$ $\mathfrak{f}$ be a function
symbol contained in none of the axioms of $A$ nor $\mathfrak{A}(t),$ $\xi$ ), and $A^{\prime}$ be the
axiom system obtained from $A$ by adjoining the axiom

V $\xi \mathfrak{A}(\mathfrak{f}(\xi), \xi)$ .
If $A$ is LK-consistent, then $A^{\prime}$ is also LK-consistent.

THEOREM 2. Let $A$ be an axiom system with equality in $LK$,

$W\xi H\mathfrak{h}\mathfrak{A}(\mathfrak{h}, \xi)$

be a closed LK-formula which is LK-provable from $A$ and is dependent
on $A,$ $\mathfrak{f}$ be a function symbol contained in none of the axioms of $A$ , and
$A^{\prime}$ be the axiom system obtained from $A$ by adjoining the axioms

V $\xi \mathfrak{A}(\mathfrak{f}(\xi), \xi)$

and

V $\xi W\eta(\xi=\eta\supset \mathfrak{f}(\xi)=\mathfrak{f}(\eta))$ .
Then:

1) $A^{\prime}$ is an axiom system with equality in $LK$.
2) If $A$ is LK-consistent, then $A$ ‘ is LK-consistent.

In the following, we shall show the proof of Theorem 1 and 2)
of Theorem 2, because 1) of Theorem 2 is almost clear.

Let $A^{\prime}$ be LK-cotradictory. Then there exists an axiom sequence
$\Gamma_{0}$ of $A$ and the sequent

V $\xi \mathfrak{A}(\mathfrak{f}(\xi), \xi),$ $\Gamma_{0}\rightarrow$ (case of Theorem 1)

or
$P\xi \mathfrak{A}(\tilde{|}(\xi), \xi)$ , $P\xi P\eta(\xi=\eta\supset\uparrow(\xi)=\mathfrak{f}(\eta)),$ $\Gamma_{0}\rightarrow$

(case of Theorem 2)

is LK-provable, hence there exists an LK-proof $P$ of that sequent
which contains no cut (Hauptsatz on $LK$ ). For our purpose, it is
sufficient to prove under the hypothesis of the existence of $P$ that
the sequent

$\Gamma_{0}\rightarrow$

is LK-provable, because if so $A$ is LK-contradictory. Then, in the
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following, we shall consider the fixed formal proof $P$.
2.1. A formula containing occurrences of the function symbol $\mathfrak{f}$

which have bound variables as some arguments is called an f-formula.
2.11. An $\mathfrak{f}$-formula in $P$ has the form which is the result of

substituting terms for all free occurrences of bound variables in
$\mathfrak{A}(\mathfrak{f}(\xi), \xi)$

or
$\xi=\eta\supset \mathfrak{f}(\xi)=\mathfrak{f}(\eta)$ (case of Theorem 2)

with some universal quantifiers standing at the front.
2.12. Each occurrence of the $f$-formulae in $P$ occurs only in the

antecedent of an occurrence of a sequent in $P$.
2.2. A term of the form

$\mathfrak{f}(\tau)$

is called an f-term, where $\tau$ is a sequence of arbitrary terms.
2.21. Let

$\uparrow(\tau_{1}),$ $\mathfrak{f}(\tau_{2}),\ldots,$ $\mathfrak{f}(\tau_{n})$

be all of the distinct $\mathfrak{f}$-terms contained in $P$, and $\mathfrak{f}(\tau_{i})$ be contained
in none of $\uparrow(\tau_{i+1}),\ldots,$ $\uparrow(\tau_{n})$ as subterm $(i=1,2,\ldots, n-1)^{11)}$

2.22. Let
$\mathfrak{a}_{1},$ $\mathfrak{a}_{2},\ldots,$ $\mathfrak{a}_{n}$

be $n$ distinct free variables not contained in $P$.
2.23. The formula or term obtained from a formula or term $\mathfrak{V}$

by the following substitution is described as $\mathfrak{V}^{\star}$ : firstly, we sub-
stitute $\mathfrak{a}_{1}$ for $\uparrow(\tau_{1})$ throughout $\mathfrak{V}$ ; secondly, $\mathfrak{a}_{2}$ for $\mathfrak{f}(\tau_{2})$ throughout the
above result; thirdly, $\mathfrak{a}_{3}$ for $\mathfrak{f}(\tau_{3})$ throughout the second result; and
SO on.

When $\Gamma$ stands for a finite sequence of formulae:
$\mathfrak{A}_{1},$ $\mathfrak{A}_{2},\ldots,$ $\mathfrak{A}_{m}$ ,

$\Gamma^{\star}$ means the sequence
$\mathfrak{A}_{1^{-}}^{\prime},$ $\mathfrak{A}_{2^{L}},\ldots,$ $\mathfrak{A}_{m}^{+}$ .

When $\tau$ stands for a finite sequence of terms:
$t_{1},$ $t_{2},\ldots,$ $t_{m}$ ,
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$\tau^{\star}$ means the sequence
$t_{1}^{\star},$ $t_{2}^{s}$${}^{t}t_{m}^{\#}$ .

2.231. If $\mathfrak{V}$ is $\mathfrak{f}(\tau_{i}),$
$\mathfrak{V}^{\star}$ is $\mathfrak{a}_{i}(i=1,2,\ldots, n)$ .

2.232. If and only if $\mathfrak{A}$ is an $\mathfrak{f}$-formula, $\mathfrak{A}^{\star}$ contains the function
symbol $\mathfrak{f}$, where $\mathfrak{A}$ is a formula contained in $P$.

2.233. If $\mathfrak{a}$ is a free variable other than $\mathfrak{a}_{1},\ldots,$ $\mathfrak{a}_{n}$ , and is contained
in $\tau_{i^{\div}}^{J}$ , it is contained in $\tau_{i}$ .

2.234. If $\mathfrak{a}_{j}$ is contained in $\tau_{i}^{\star},$ $\mathfrak{f}(\tau_{j})$ is contained in $\tau_{i}$, accordingly
$i<j$ (cf. 2.21).

2.235. $(\mathfrak{A}(\mathfrak{f}(\tau_{i}), \tau_{i}))^{\star}$ is $\mathfrak{A}(\mathfrak{a}_{i}, \tau_{i^{*}})$ .
2.3. For any sequence $i_{1},\ldots,$ $i_{h}$ of arbitrary suffixes of $\tau_{1},\ldots,$ $\tau_{n}$ , we

define the sequence $\Phi(i_{1},\ldots, i_{k})^{12)}$ of the formulae as follows:
2.31. Case of Theorem 1: $\Phi(i_{1},\ldots, i_{k})$ is the finite sequence con-

stituted by all of the formulae
$\mathfrak{A}(\mathfrak{a}_{i_{r}}, \tau_{i^{\star_{\gamma}}})$ $(r=1,2,\ldots, k)$ .

2.32. Case of Theorem 2: $\Phi(i_{1},\ldots, i_{k})$ is the finite sequence con-
stituted by all of the formulae

$\mathfrak{A}(\mathfrak{a}_{i_{r}}, \tau_{i^{*_{f}}})$ $(r=1,2,\ldots, k)$

and
$\tau_{i_{r}}^{*}=\tau_{i_{s}^{*}}\supset \mathfrak{a}_{i_{r}}=\mathfrak{a}_{i_{s}}$ $(r, s=1,2,\ldots, k)$ .

2.4. In the following, we assume, without loss of generality,
that the sequent

$\Gamma_{0}\rightarrow\forall\xi$ a t) $\mathfrak{A}(t),$ $\xi$ )

is LK-provable, and, but in the case of Theorem 2, $\Gamma_{0}$ is an axiom
system with equality in $LK$ itself, and V $\xi E\mathfrak{y}\mathfrak{A}(\mathfrak{y}, \xi)$ is dependent
on $\Gamma_{0}$ .

2.5. LEMMA 1. Let $\tau$ be a sequence of arbitrary terms, and $a$ be
a free variable not contained in the sequences $\Gamma,$ $\Theta,$ $\Phi(i_{1},\ldots, i_{k})$ and $\tau$ .
If the sequent

$\tau=\tau_{i}^{\star_{1}}\supset \mathfrak{a}=\mathfrak{a}_{i_{1}},$
$\ldots,$ $\tau=\tau_{i_{k}^{*}}\supset \mathfrak{a}=\mathfrak{a}_{i_{k}}$ ,

$\mathfrak{A}(\mathfrak{a}, \tau),$ $\Gamma,$ $\Phi(i_{1},\ldots, i_{k}),$ $\Gamma_{0}\rightarrow\Theta$

is LK-provable, then the sequent
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$\mathfrak{A}(\mathfrak{a}, \tau),$ $\Gamma,$ $\Phi(i_{1},\ldots, i_{k}),$ $\Gamma_{0}\rightarrow\Theta$

is LK-provable (case of Theorem 2).
PROOF. From that $\Gamma_{0}$ is the axiom system with equality in $LK$,

$\tau=\tau_{i}^{\star_{\gamma}},$ $\tau_{i_{r}}^{*}=\tau_{i_{1}}^{*}\supset \mathfrak{a}=a_{i_{1}},$
$\ldots,$ $\tau_{i_{r}^{\#}}=\tau_{i_{k}}^{*}\supset \mathfrak{a}=a_{i_{k}}$ ,

$\mathfrak{A}(\mathfrak{a}, \tau_{i}^{\star_{\gamma}}),$
$\Gamma,$ $\Phi(i_{1},\ldots, i_{k}),$ $\Gamma_{0}\rightarrow\Theta$

is LK-provable, and from that $\mathfrak{a}$ is not contained in $\Gamma,$ $\Theta,$ $\Phi(i_{1},\ldots, i_{k})$

and $\tau$ ,
$\tau=\tau_{i_{r}}^{*},$ $\tau_{i_{r}^{\$\$}}=\tau_{i_{1}}^{*}\supset \mathfrak{a}_{i_{r}}=\mathfrak{a}_{i_{1}},$

$\ldots,$ $\tau_{\dot{x}_{\gamma}}^{i\{}=\tau_{i_{k}^{*}}\supset \mathfrak{a}_{i_{r}}=\mathfrak{a}_{i_{k}}$ ,

$\mathfrak{A}(\mathfrak{a}_{i_{r}}, \tau_{i_{\gamma}}^{*}),$
$\Gamma,$ $\Phi(i_{1},\ldots, i_{k}),$ $\Gamma_{0}\rightarrow\Theta$

consequently
$\tau=\tau_{i_{\gamma}}^{*},$

$\Gamma,$ $\Phi(i_{1},\ldots, i_{k}),$ $\Gamma_{0}\rightarrow\Theta$

are LK-provable, hence
$\Gamma,$ $\Phi(i_{1},\ldots, i_{k}),$ $\Gamma_{0}\rightarrow\Theta,$

$\tau=\tau_{i_{r}}^{\star}\supset \mathfrak{a}=\mathfrak{a}_{i_{r}}$

is LK-provable $(r=1,2,\ldots, k)$ .
Accordingly, from those $k$ sequents and the first sequent, the

sequent
$\mathfrak{A}(\mathfrak{a}, \tau),$ $\Gamma,$ $\Phi(i_{1},\ldots, i_{k}),$ $\Gamma_{0}\rightarrow\Theta$

is LK-provable by $k$ cuts with the helps of some interchanges and
contractions, $q$ . $e$ . $d$ .

2.6. LEMMA 2. If a sequent of the form
$\Gamma,$ $\Phi(i_{1},\ldots, i_{k},j_{1},\ldots,j_{l}),$ $\Gamma_{0}\rightarrow\Theta$

is LK-provable, and the free variables $\mathfrak{a}_{j_{1}},\ldots,$ $\mathfrak{a}_{j_{l}}$ are not contained in
$\Gamma,$ $\Theta,$ $\Phi(i_{1},\ldots, i_{k})$ , then

$\tau,$ $\Phi(i_{1},\ldots, i_{k}),$ $\Gamma_{0}\rightarrow\Theta$

is LK-provable.
PROOF. The mathematical induction on $l$.
2.61. When $l=0$ : The lemma evidently holds.
2.62. When $l>0$ : We can assume without loss of generality

that $j_{1}>j_{2}>\ldots>j_{l}$. Then the sequent
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$\mathfrak{A}(\mathfrak{a}_{j_{l}}, \tau_{j_{l}^{*}}),$
$\Gamma,$ $\Phi(i_{1},\ldots, i_{k},j_{1},\ldots,j_{l-1}),$ $\Gamma_{0}\rightarrow\Theta$

is LK-provable, where, in the case of Theorem 2, Lemma 1 has
been used. From that the free variable $\mathfrak{a}_{j_{l}}$ is not contained in $\Gamma$ ,
$\Theta,$ $\Phi(i_{1},\ldots, i_{k},j_{1},\ldots,j_{l-1})$ and $\tau_{j_{l}^{\div}}^{J}$ (cf. 2.234 and 2.3), the sequent

$H\mathfrak{y}\mathfrak{A}(\mathfrak{h}, \tau_{j_{l}^{\#}}),$
$\Gamma,$ $\Phi(i_{1},\ldots, i_{k},j_{1},\ldots,j_{l-1}),$ $\Gamma_{0}\rightarrow\Theta$

is LK-provable, hence
$\Gamma,$ $\Phi(i_{1},\ldots, i_{k},j_{1},\ldots,j_{l-1}),$ $\Gamma_{0}\rightarrow\Theta$

is so (cf. 2.4). Accordingly, by the hypothesis of the induction,

$\Gamma,$ $\Phi(i_{1},\ldots, i_{k}),$ $\Gamma_{0}\rightarrow\theta$

is LK-provable, $q$ . $e$ . $d$ .
2.7. When $\mathfrak{S}$ is a sequent

$\Gamma\rightarrow\Theta$

in $P,$ $\mathfrak{S}^{\star}$ means the sequent13)
$\tau^{\mathfrak{z}\star},$ $\Phi(i_{1},\ldots, i_{k}),$ $\Gamma_{0}\rightarrow\Theta^{\star}$

where $\Gamma^{t}$ is the result of suppressing all occurrences of the $\mathfrak{f}$-formula
in $\Gamma$ , and the $\uparrow$-terms

$\mathfrak{f}(\tau_{i_{1}}),$ $\mathfrak{f}(\tau_{i_{2}}),\ldots,$ $\mathfrak{f}(\tau_{i_{k}})$

are all of the distinct $\mathfrak{f}$-terms contained in $ I^{7}\#$ or $\Theta$ (cf. 2.12 and 2.232).

For the sake of our proof of Theorem 1 and 2) of Theorem 2,
it is sufficient to prove the following

LEMMA 3. If $\mathfrak{S}$ is a sequent in $P$, then $\mathfrak{S}^{\star}$ is LK-provable.
Because, let $\mathfrak{S}$ be the endsequent of $P$, then $\mathfrak{S}^{\star}$ is the sequent

$\Gamma_{0},$ $\Gamma_{0}\rightarrow$ ,
accordingly the sequent

$\Gamma_{0}\rightarrow$

is LK-provable.
PROOF OF LEMMA 3.
2.71. When $\mathfrak{S}$ is a logical axiom $\mathfrak{D}\rightarrow \mathfrak{D},$

$\mathfrak{D}$ is not an $\mathfrak{f}$-formula
(cf. 2.12), then $\mathfrak{S}^{\star}$ has the form

$\mathfrak{D}^{\star},$ $\Phi(i_{1},\ldots, i_{k}),$ $\Gamma_{0}\rightarrow \mathfrak{D}^{\star}$
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and it is LK-provable.
2.72. When $\mathfrak{S}$ is the conclusion of an inference $\mathfrak{J}$ in $P$, we shall

show that the concerned property of $\mathfrak{S}$ holds under the hypothesis
that each of one or two premises of $\mathfrak{J}$ has such property.

2.721. When the principal formula of $\mathfrak{J}$ is an $\mathfrak{f}- formula^{14)}$ :
2.721.1. When the side formula of $\mathfrak{J}$ is an $\mathfrak{f}$-formula:
Let $\mathfrak{S}^{t}$ be the premise of $\mathfrak{J}$ , then $\mathfrak{S}^{\star}$ is identical with $\mathfrak{S}^{\prime\star}$ and

is LK-provable.
2.721.2 When the side formula of $\mathfrak{J}$ is not an $\mathfrak{f}$-formula:
The side formula of $\mathfrak{J}$ is one of the formulae

$\mathfrak{A}(\mathfrak{f}(\tau_{i}), \tau_{i})$ $(i=1,2,\ldots, n)$

and
$\tau_{i}=\tau_{j}\supset \mathfrak{f}(\tau_{j})=\mathfrak{f}(\tau_{j})$ $(i,j=1,2,\ldots, n)$

(cf. 2.11).
2.721.21. If the premise $\mathfrak{S}^{\prime}$ of $\mathfrak{J}$ is

$\mathfrak{A}(f(\tau_{i}), \tau_{i}),$ $\Gamma\rightarrow\Theta$ ,
$\mathfrak{S}^{\prime\star}$ is

$\mathfrak{A}(\mathfrak{a}_{i}, \tau_{i}^{*}),$ $\Gamma\#\star,$ $\Phi(i_{1},\ldots, i_{k},j_{1},\ldots,j_{l}),$ $\Gamma_{0}\rightarrow\Theta^{\star}$

where
$\uparrow(\tau_{i_{1}}),\ldots,$ $\uparrow(\tau_{i_{k}})$

are all distinct $\mathfrak{f}$-terms in $\Gamma\#$ and $\Theta$ , and

$\mathfrak{f}(\tau_{j_{1}}),\ldots,$ $\mathfrak{f}(\tau_{j_{l}})$

are all distinct $\mathfrak{f}$-terms which are contained in $\mathfrak{A}(\uparrow(\tau_{i}), \tau_{i})$ and are not
in $\Gamma^{\#}$ and $\Theta$ . By the hypothesis of the induction, that sequent is
LK-provable, accordingly the sequent

$\Gamma\#\star,$ $\Phi(i_{1},\ldots, i_{k},j_{1},\ldots,j_{l}),$ $\Gamma_{0}\rightarrow\Theta^{\star}$

is so, hence
$\Gamma^{\#\star},$ $\Phi(i_{1},\ldots, i_{k}),$ $\Gamma_{0}\rightarrow\Theta^{\star}$

is LK-provable (cf. Lemma 2 and 2.234), and it is $\mathfrak{S}$ “.
2.721.22. If the premise $\mathfrak{S}^{\prime}$ of $\mathfrak{J}$ is

$\tau_{i}=\tau_{j}\supset \mathfrak{f}(\tau_{i})=\mathfrak{f}(\tau_{j}),$
$\Gamma\rightarrow\Theta$ ,
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$\mathfrak{S}^{\star}$ has the form
$\tau\#\star,$ $\Phi(i_{1},\ldots, i_{k}),$ $\Gamma_{0}\rightarrow\Theta^{\star}$ ,

and $\mathfrak{S}^{r\star}$

$\tau_{i^{*}}=\tau_{j^{*}}\supset \mathfrak{a}_{i}=\mathfrak{a}_{j},$ $\Gamma\#\star,$ $\Phi(i_{1},\ldots, i_{k},j_{1},\ldots,j_{l}),$ $\Gamma_{0}\rightarrow\Theta^{\star}$ .
By the hypothesis of the induction, $\mathfrak{S}^{\prime\star}$ is LK-provable, then

$I^{7}\#\star,$ $\Phi(i_{1},\ldots, i_{k},j_{1’\cdots\prime}.j_{l}),$ $\Gamma_{0}\rightarrow\Theta^{\star}$

is so, hence $\mathfrak{S}^{\star}$ is LK-provable.
2.722. When the principal formula of $\mathfrak{J}$ is not an $\mathfrak{f}$-formula:
2.722.1. When $\mathfrak{J}$ is an V-antecedent:
Let $\mathfrak{S}$ be

$\nu_{X}\mathfrak{F}$ (ee), $\Gamma\rightarrow\Theta$ ,

then the premise $\mathfrak{S}^{\prime}$ of $\mathfrak{J}$ has the form
$\mathfrak{F}(t),$ $\Gamma\rightarrow\Theta$ ,

and $\mathfrak{S}^{\star}$ and $\mathfrak{S}^{J\star}$ have the forms

V ee $\mathfrak{F}^{\star}$ (ee), $\Gamma^{t\star},$ $\Phi(i_{1},\ldots, i_{k}),$ $\Gamma_{0}\rightarrow\Theta^{\star}$

and
$\mathfrak{F}^{\star}(t^{\star}),$ $I^{7}\#\star,$ $\Phi(i_{1},\ldots, i_{k},j_{1},\ldots,j_{l}),$ $I_{0}^{7}\rightarrow\Theta^{\star}$ ,

respectively. By the hypothesis of the induction, $\mathfrak{S}^{\prime\star}$ is LK-provable,
then

$F$ ee $\mathfrak{F}^{\star}$ (ee), $\Gamma\#\star,$ $\Phi(i_{1},\ldots, i_{k},j_{1},\ldots,j_{l}),$ $I_{0}\rightarrow\Theta^{\star}$

is so, hence $\mathfrak{S}^{\star}$ is LK-provable.
2.722.2. When $\mathfrak{J}$ is an V-succedent:
Let $\mathfrak{S}$ be

$ I^{7}\rightarrow\Theta$ , Va $\mathfrak{F}(x)$ ,

then the premise $\mathfrak{S}^{\prime}$ of $\mathfrak{J}$ has the form
$I^{7}\rightarrow\Theta,$ $\mathfrak{F}(\mathfrak{a})$

and $\mathfrak{S}^{\star}$ and $\mathfrak{S}^{\prime\star}$ have the forms
$\Gamma\#\star,$ $\Phi(i_{1},\ldots, i_{k}),$ $\Gamma_{0}\rightarrow\Theta^{\star},$ $b^{r}ae\mathfrak{F}^{\star}(x)$

and
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$\Gamma\#\star,$ $\Phi(i_{1},\ldots, i_{k}),$ $\Gamma_{0}\rightarrow\Theta^{\star},$ $\mathfrak{F}^{\star}(\mathfrak{a})$ ,

respectively. By the hypothesis of the induction, $\mathfrak{S}^{\prime\star}$ is LK-provable,
then $\mathfrak{S}^{\star}$ is LK-provable (cf. 2.22 and 2.233).

2.722.3. When $\mathfrak{J}$ is an inference of other kind: The treatment
is similar to the above, $q$ . $e$ . $d$ .

\S 3. Extension theorems.

3.1. $‘<\mathfrak{F}(\mathfrak{f}(\xi), \xi)>$ -extension ’.
Let $A$ be an axiom system in $LK$, and $\mathfrak{f}$ be a function symbol

contained in none of the axioms of $A$ . Then we shall call the axiom
system in $LK\cdot obtained$ from $A$ by adjoining the new LK-axiom

V $\xi$ Vee $(\mathfrak{F} (ae, \xi)\supset \mathfrak{F}(\mathfrak{f}(\xi), \xi))$

the $<\mathfrak{F}(\mathfrak{f}(\xi), \xi)>$ -extension of $A$ , where $\mathfrak{F}(x, \xi)$ does not contain $\mathfrak{f}$.
THEOREM 3. Let $A$ be an axiom system in $LK$ If $A$ is LK-con-

sistent, then $the<\mathfrak{F}(\mathfrak{f}(\xi), \xi)>$ -extension of $A$ is also LK-consistent.
PROOF is obtained immediately from Theorem 1 (\S 2) and the

LK-provability of the sequent

$\rightarrow F\xi \mathfrak{X}\mathfrak{y}$ Vac ( $\mathfrak{F}$ (ee, $\xi)\supset \mathfrak{F}(\mathfrak{y},$ $\xi)$ ).

3.2. $‘<\mathfrak{F}_{1}(\mathfrak{f}_{1}(\xi_{1}), \xi_{1}),\ldots,$ $\mathfrak{F}_{n}(\mathfrak{f}_{n}(\xi_{n}), \xi_{n})>$ -extension ’.
The $<\mathfrak{F}_{1}(\mathfrak{f}_{1}(\xi_{1}), \xi_{1}),\ldots,$ $\mathfrak{F}_{n-1}(\mathfrak{f}_{n-1}(\xi_{n-1}), \xi_{n-1}),$ $\mathfrak{F}_{n}(\mathfrak{f}_{n}(\xi_{n}), \xi_{n})>$ -extension of

$A$ , which is an axiom system in $LK$, is the $<\mathfrak{F}_{n}(\mathfrak{f}_{n}(\xi_{n}), \xi_{n})>$ -extension
of the $<\mathfrak{F}_{1}(\mathfrak{f}_{1}(\xi_{1}), \xi_{1}),\ldots,$ $\mathfrak{F}_{n-1}(\uparrow n-1(\xi_{n-1}), \xi_{n-1})>$ -extension of $A(n=2,3,\ldots)$ .

THEOREM 4. Let $A$ be an axiom system in $LK$ If $A$ is LK-con-
sistent, then $the<\mathfrak{F}_{\iota}(\mathfrak{f}_{1}(\xi_{1}), \xi_{1}),\ldots,$ $\mathfrak{F}_{n}(\mathfrak{f}_{n}(\xi_{n}), \xi_{n})>$ -extension of $A$ is LK-
consistent.

PROOF is obtained by the mathematical induction on $n$ (cf.
Theorem 3).

3.3. $<\mathfrak{F}(\mathfrak{f}(\xi), \xi);=>$ -extension’.
Let $A$ be an axiom system with equality in $LK$, and $\mathfrak{f}$ be a

function symbol contained in none of the axioms of $A$ . Then we
shall call the axiom system obtained from $A$ by adjoining the new
LK-axioms

$F\xi$ Fee $(\mathfrak{F} (ae, \xi)\supset \mathfrak{F}(\uparrow(\xi), \xi))$
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and

$\nu\xi F\eta(\xi=\eta\supset\uparrow(\xi)=\mathfrak{f}(\eta))$

the $<\mathfrak{F}(\mathfrak{f}(\xi), \xi);=>$ -extension of $A$ , where $\mathfrak{F}(x,\xi)$ does not contain $\mathfrak{f}$,
and each of the functions and the predicates contained in $\mathfrak{F}(x, \xi)$ is
contained in some axiom of $A$ .

THEOREM 5. Let $A$ be an axiom system with equality in $LK$, and
$A^{\prime}$ be $the<\mathfrak{F}(\uparrow(\xi), \xi);=>$ -extensim of A. Then:

1) $A^{\prime}$ is an axiom system with equality in $LK$.
2) If $A$ is LK-consistent, then $A^{\prime}$ is LK-consistent.
PROOF is obtained from Theorem 2 (\S 2).

3.4. $<\mathfrak{F}_{1}(\mathfrak{f}_{1}(\xi_{1}), \xi_{1}),\ldots,$ $\mathfrak{F}_{n}t\mathfrak{f}_{n}(\xi_{n}),$ $\xi_{n}$ ) $;=>$ -extension :
The $<\mathfrak{F}_{1}t\mathfrak{f}_{1}(\xi_{1}),\xi_{1}),\ldots,$ $\mathfrak{F}_{n-1}(\mathfrak{f}_{n-1}(\xi_{n-1}), \xi_{n-1}),$ $\mathfrak{F}_{n}(\mathfrak{f}_{n}(\xi_{n}), \xi_{n});$ $=>$ -exten-

sion of $A$ , which is an axiom system with equality in $LK$, is the
$<\mathfrak{F}_{n}(\mathfrak{f}_{n}(\xi_{n}), \xi_{n});=>$ -extension of the $<\mathfrak{F}_{1}(\uparrow 1\sim(\xi_{1}), \xi_{1}),\ldots,$ $\mathfrak{F}_{n-1}t\mathfrak{f}_{n-1}(\xi_{n-1})$ ,
$\xi_{n-1});=>$ -extension of $A(n=2,3,\ldots)$ .

THEOREM 6. Let $A$ be an axiom system with equality in $LK$, and
$A^{\prime}$ be $the<\mathfrak{F}_{1}(\uparrow 1(\xi_{1}), \xi_{1}),\ldots,$ $\mathfrak{F}_{n}(\mathfrak{f}_{n}(\xi_{n}), \xi_{n});=>$ -extension of A. Then:

1) $A^{\prime}$ is an axiom system with equality in $LK$.
2) If $A$ is LK-consistent, then $A^{\prime}$ is LK-consistent.
PROOF is obtained by the mathematical induction on $n$ (cf. Theorem

5).

\S 4. Main theorems.

4.1. MAIN THEOREM 1. Let $A$ be an axiom system in $LK$. If $A$

is LK-consistent, then $A$ is consistent (in the predicate calculus with e-
symbol).

4.11. PROOF. We assume that $A$ is contradictory. Then there
exists an axiom sequence $\Gamma_{0}$ of $A$ and the sequent

$\Gamma_{0}\rightarrow$

is provable. Now, let $P$ be a proof of this sequent.

4.111. Let
$eae_{1}\mathfrak{F}_{1}(x_{1}, \alpha_{1}),$

$\ldots,$
$eae_{n}\mathfrak{F}_{n}(x_{n}, \alpha_{n})$

be types of all of the e-terms contained in $P$ which are not congruent
with each other, the grade of $eae_{i}\mathfrak{F}_{i}(x_{i}, \alpha_{i})$ be not greater than those
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of $eae_{i+1}\mathfrak{F}_{i+1}(x_{i+1}, \alpha_{i+1}),$
$\ldots$ , $eae_{n}\mathfrak{F}_{n}(x_{n}, \alpha_{n})(i=1,2,\ldots, n-1)$ , and $\alpha’ s$ indicate

all of the arguments of the types, respectively.
4.112. Let

$\mathfrak{f}_{0},$ $\mathfrak{f}_{1},\ldots,$ $\mathfrak{f}_{n}$

be $n+1$ distinct function symbols not contained in $P$.
4.113. For any formula or term $\mathfrak{V}$ containing no function symbols

such as $\mathfrak{f}_{0},$ $\mathfrak{f}_{1}\cdots,$ $\mathfrak{f}_{n}$ , now we inductively define the LK-formula or
LK-term described as $\overline{\mathfrak{V}}(4.113.1-4.113.62)$ . When $I^{\gamma}$ or $\tau$ stands for
a finite sequence of formulae : $\mathfrak{A}_{1},\ldots,$ $\mathfrak{A}_{m}$ or of terms: $t_{1},\ldots,$ $t_{m},$

$\overline{I^{\prime}}$ or $\overline{\tau}$

means the sequence $\overline{\mathfrak{A}_{1}},\ldots,\overline{\mathfrak{A}}_{m}$ or $\overline{t}_{1},\ldots,$ $\overline{t}_{m}$ , respectively.
4.113.1. If $\mathfrak{a}$ is a free variable, $\overline{\mathfrak{a}}$ is $\mathfrak{a}$ .
4.113.2. If $\tau$ is a sequence of terms, and $\mathfrak{f}$ is a function, $\overline{\mathfrak{f}(\tau)}$ is

$\uparrow(\overline{\tau})$ .
4.113.3. If $\tau$ is a sequence of terms, and $\mathfrak{P}$ is a predicate, $\overline{\mathfrak{P}(\tau)}$

is $\mathfrak{P}(\overline{\tau})$ .
4.113.4. If $\mathfrak{A}$ is a formula, $\overline{7\mathfrak{A}}$ is $7\overline{\mathfrak{A}}$. If $\mathfrak{A}$ and $\mathfrak{B}$ are formulae,

A&B, $\overline{\mathfrak{A}\ovalbox{\tt\small REJECT} \mathfrak{B}}$ and $\overline{\mathfrak{A}\supset \mathfrak{B}}$ are $\overline{\mathfrak{A}}\&\overline{\mathfrak{B},}\overline{\mathfrak{A}}\ovalbox{\tt\small REJECT}\overline{\mathfrak{B}}$ and $\overline{\mathfrak{A}}\supset\overline{\mathfrak{B},}$ respectively.
4.113.5. If $Px\mathfrak{F}(ae)$ or $Ex\mathfrak{F}(ae)$ is a formula of such form, $\mathfrak{a}$ is a

free variable not contained in $\mathfrak{F}(ae)$ , and $\overline{\mathfrak{F}}(x)$ is the result of sub-
stituting ee for $\mathfrak{a}$ throughout $\overline{\mathfrak{F}(\mathfrak{a})}$ (cf. 1.121), $Fx\mathfrak{F}\overline{(}x$ ) or $\overline{Hx}\overline{\mathfrak{F}(x)}$ is $F\alpha\overline{\mathfrak{F}}(x)$

or $Hx\overline{\mathfrak{F}}(x)$ , respectively.

4.113.61. If $\tau$ is a sequence of terms, $\overline{eX_{i}\mathfrak{F}_{i}(X_{i},\tau)}$ is $\uparrow_{i}(\overline{\tau})(i=1,2$ ,
..., $n$).

4.113.62. If none of $eX_{i}\mathfrak{F}_{i}(x_{i}, \alpha_{i})(i=1,2,\ldots, n)$ is a type of an e-
term $eae\mathfrak{F}$ (ee), $\overline{eX\mathfrak{F}(x)}$ is $\mathfrak{f}_{0}$ .

4.114. Let $\Psi$ be the sequence of the formulae:

$b^{7}\xi_{1}$ Pae ($\overline{\mathfrak{F}}_{1}$ (ee, $\xi_{1})\supset\overline{\mathfrak{F}_{1}}(\mathfrak{f}_{1}(\xi_{1}),$
$\xi_{1})$ ),

... $F\xi_{n}$ Vee $(\overline{\mathfrak{F}}_{n} (ae, \xi_{n})\supset\overline{\mathfrak{F}}_{n}(\mathfrak{f}_{n}(\xi_{n}), \xi_{n}))$ .
If the sequent $ I^{7}\rightarrow\Theta$ occurs in $P$, the sequent

$\overline{I^{\gamma},}\Psi\rightarrow\overline{\Theta}$

is LK-provable. It can be proved by the mathematical induction on
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the number of occurrences of sequents contained above $\Gamma\rightarrow\Theta$ in $P$.
Especially,

$\Gamma_{0},$
$\Psi\rightarrow$

is LK-provable.
4.115. If $\mathfrak{V}$ is a formula or term containing no function symbols

$\mathfrak{f}_{0},$ $\mathfrak{f}_{1},\ldots,$ $\mathfrak{f}_{n}$ , and $\overline{\mathfrak{V}}$ contains $\mathfrak{f}_{i}$, then the grade of $\mathfrak{V}$ is not less than
that of the $\epsilon$ -type $\epsilon ae_{i}\mathfrak{F}_{i}(x_{i}, \alpha_{i})(i=1,2,\ldots, n)$ . Accordingly, $\mathfrak{f}_{i}$ does not
occur in $\overline{\mathfrak{F}_{1}}(ae, \xi_{1}),\ldots,\overline{\mathfrak{F}_{i}}(ae, \xi_{i})$ (cf. 4.111).

4.116. Let $A^{\prime}$ be the $<\overline{\mathfrak{F}}_{1}(\mathfrak{f}_{1}(\xi_{1}), \xi_{1}),\ldots,\overline{\mathfrak{F}}_{n}(\mathfrak{f}_{n}(\xi_{n}),\xi_{n})>$ -extension of
$A$ (cf. 4.115), then the sequence $I_{0}^{7},$ $\Psi$ is an axiom sequence of $A^{\prime}$ ,
consequently $A^{\prime}$ is LK-contradictory (cf. 4.114). Hence, $A$ is LK-
contradictory (cf. Theorem 4 3.2), $q$ . $e$ . $d$ .

4.12. $CoROLLARY$ . Let $A$ be an axiom system in $LK$, and $\mathfrak{A}$ be an
LK-formula. If $\mathfrak{A}$ is provable from $A$ , then $\mathfrak{A}$ is LK-provable from $A$ .

PROOF. Let us regard the free variables contained in $\mathfrak{A}$ as fixed
individuals, then the axiom system $A^{\prime}$ in $LK$ obtained from $A$ by
adjoining the new axiom $7\mathfrak{A}$ is contradictory, accordingly $A^{\prime}$ is LK-
contradictory. Hence, there exists an axiom sequence $\Gamma_{0}$ of $A$ and

7 $\mathfrak{A},$ $\Gamma_{0}\rightarrow$

is LK-provable, $i$ . $e$ .
$\Gamma_{0}\rightarrow \mathfrak{A}$

is LK-provable. Hence, $\mathfrak{A}$ is LK-provable from $A$ , $q$ . $e$ . $d$ .
4.2. MAIN THEOREM 2. Let $A$ be an axiom system with equality in

$LK$, and $A^{e}$ be the axiom system obtained from $A$ by adjoining all of
the axioms of the form

V $\xi b^{\gamma}\eta$ ( $\xi=\eta\supset eae\mathfrak{F}$ (ee, $\xi)=eae\mathfrak{F}$ (ae, $\eta)$ )

which are dependent on A. Then:
1) $A^{e}$ is an axiom system with equality (in the predicate calculus

with e-symbol).
2) If $A$ is LK-consistent, then $A^{e}$ is consistent (in the predicate

calculus with $e$-symbol).
4.21. PROOF. 1) is almost clear, then, in the following, we shall

prove 2) only.
We assume that $A^{e}$ is contradictory. Then there exist an axiom
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sequence $\Gamma_{0}$ of $A$ and a finite sequence $\Omega$ of axioms of the form
$V\xi F\eta(\xi=\eta\supset eae\mathfrak{F}(x, \xi)=eae\mathfrak{F}(x, \eta))$

which are dependent on $A$ , and the sequent

$\Gamma_{0},$
$\Omega\rightarrow$

is $prot^{\gamma}able$ . We can assume without loss of generality that the
sequent

$ I_{0}^{7}\rightarrow\forall$ ee (ee $=ae$)

is LK-provable. Now, let $P$ be a proof of the sequent $\Gamma_{0},$
$\Omega\rightarrow$ .

We use the symbols $\mathfrak{f}_{1},$

$\ldots,$
$\mathfrak{f}_{n},$

$\overline{\mathfrak{F}}_{1}(\mathfrak{f}_{1}(\xi_{1}), \xi_{1}),$ $\ldots\overline{\mathfrak{F}}_{n}(\mathfrak{f}_{n}(\xi_{n}), \xi_{n})$ and $\Psi$ in
the similar sense to the sense of those in the proof (4.11) of Main
theorem 1, and $\Sigma$ stands for the sequence

$V\xi_{1}P^{r}\eta_{1}(\xi_{1}=\eta_{1}\supset \mathfrak{f}_{1}(\xi_{1})=\mathfrak{f}_{1}(\eta_{1}))$ ,

... , $V\xi_{n}F\eta_{n}(\xi_{n}=\eta_{n}\supset \mathfrak{f}_{n}(\xi_{n})=\mathfrak{f}_{n}(\eta_{n}))$ .
Then the sequent

$\Gamma_{0},$ $\Psi,$ $\Sigma\rightarrow$

is LK-provable. Let $A^{\prime}$ be the $<\overline{\mathfrak{F}_{1}}t\mathfrak{f}_{1}(\xi_{1}),$
$\xi_{1}$ ) $,\ldots,\overline{\mathfrak{F}_{n}}$ $(\uparrow_{n}(\xi_{n}),\xi_{n});=>$ -ex-

tension of $A$ , then the sequence $\Gamma_{0},$ $\Psi,$ $\Sigma$ is an axiom sequence of $A^{\prime}$ ,
accordingly $A^{t}$ is LK-contradictory. Hence, $A$ is LK-contradictory
(cf. Theorem 63.4), $q$ . $e$ . $d$ .

4.22. $CoROLLARY$ . Let $A$ be an axiom system with equality in $LK$,
$A^{e}$ be the axiom system with equality obtained from $A$ by adjoining the
axioms of the form

$ V\xi V\eta$ ( $\xi=\eta\supset e\Re \mathfrak{F}$ (ee, $\xi)=ex\mathfrak{F}$ (ee, $\eta)$ )

which are dependent on $A$ , and $\mathfrak{A}$ be an LK-formula depending $mA$ .
If $\mathfrak{A}$ is provable from $A^{e}$, then $\mathfrak{A}$ is LK-provable from $A$ .

PROOF. Let us regard the free variables contained in $\mathfrak{A}$ as fixed
individuals, $A^{\prime}$ be the axiom system obtained from $A$ by adjoining the
new axiom 7 $\mathfrak{A}$ , and $A^{r_{e}}$ be the axiom system obtained from $A^{\prime}$ by
adjoining all of the axioms of the form

V $\xi F\eta(\xi=\eta\supset ex\mathfrak{F}(x, \xi)=eae\mathfrak{F}$ (ee, $\eta$))

which are dependent on $A^{\prime}$ , then $A^{\prime}$ is an axiom system with equality
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in $LK,$ $A^{\prime e}$ is an axiom system with equality and is obtained from $A^{e}$

by adjoining the axiom $7\mathfrak{A}$ , and $A^{r_{e}}$ is contradictory, accordingly $A^{\prime}$

is LK-contradictory. Hence, there exists an axiom sequence $\Gamma_{0}$ of $A$

and
$7\mathfrak{A},$ $ I_{0}^{7}\rightarrow$

is LK-provable, $i$ . $e$ .
$\Gamma_{0}\rightarrow \mathfrak{A}$

is LK-provable. Hence, $\mathfrak{A}$ is LK-provable from $A$ , $q$ . $e$ . $d$ .

Appendix.

In this appendix, we shall consider the e-symbol on proposition.
For this purpose, we use the extended predicate calculus named $L_{0}K$

in my previous paper [4].
A.l. THE PREDICATE CALCULUS ‘ $L_{0}K’$ .
The predicate calculus $L_{0}K$ is obtained from Gentzen’s $LK$ (cf.

1.7) by extending the conception of formula and rules of inference,
as follows:

A.ll. To the definition of formula in $LK$ (cf. 1.11 and Example
3, 1.7), we adjoin the two following items:

A.lll. If $a^{0}$ is a free propositional variable, then $\mathfrak{a}^{0}$ is a formula.
A.112. If $\mathfrak{F}(\mathfrak{a}^{0})$ is a formula, $\mathfrak{a}^{0}$ is a free propositional variable,

ee is a bound variable, and $\mathfrak{F}(x)$ is the result of substituting ee for $\mathfrak{a}^{0}$

throughout $\mathfrak{F}(\mathfrak{a}^{0})$ , then $\nu^{0}ae\mathfrak{F}(x)$ and $E^{0}x\mathfrak{F}(x)$ are formulae.
A.12. Additional logical rules of inference for $L_{0}K$.

Introduction of in antecedent. in succedent.
$\underline{\mathfrak{F}(\mathfrak{A}),}\underline{\Gamma\rightarrow\Theta}$ $-\Gamma\rightarrow\Theta,$ $\mathfrak{F}(-\mathfrak{a}^{0}-\llcorner-$

$F^{0}$ ;
$\nu 0ae\mathfrak{F}$ (ee), $\Gamma\rightarrow\Theta$ $\Gamma\rightarrow\Theta,$ $F^{0}$ ae$\mathfrak{F}-$ (ee)

$E^{0}$ : $\overline{E^{0}}ae\mathfrak{F}\frac{(\mathfrak{a}^{0}),\Gamma\rightarrow\Theta}{\mathfrak{F}^{(x),\Gamma\rightarrow\Theta}}$ $\frac{\Gamma\rightarrow\Theta,\mathfrak{F}(\mathfrak{A})}{\Gamma\rightarrow\Theta,E^{0}ae\mathfrak{F}(x)}$

where $\nu^{0}ae\mathfrak{F}$ (ae) or $H^{0}$ ee $\mathfrak{F}$ (ee) is an arbitrary formula of such form, and
at this time $\mathfrak{F}(\mathfrak{A})$ or $\mathfrak{F}(\mathfrak{a}^{0})$ is the result of substituting an arbitrary
formula $\mathfrak{A}$ or a free propositional variable $\mathfrak{a}^{0}$ for all of the free oc-
currences of the bound variable ee in $\mathfrak{F}$ (ee), respectively; and $\Gamma$ and $\Theta$

are arbitrary finite sequences of formulae.
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Restriction on variable: The free propositional variable $\mathfrak{a}^{0}$ of the
$F^{0}$-succedent or the $H^{0}$-antecedent shall not occur in its conclusion.

A.2. THEOREM. Let $e^{0}x\mathfrak{F}(ae)$ be the abbreviation of
$\nu^{0}$ ae ( $ae\supset \mathfrak{F}$ (ee)).

Then any sequent of the form
$\mathfrak{F}(\mathfrak{A})\rightarrow \mathfrak{F}$ ( $e^{0}$ ae $\mathfrak{F}$ (se))

is $L_{0}K$-provable.
If we regard $e^{0}ae\mathfrak{F}(x)$ as the abbreviation of

$E^{0}$ ee (ee&F (ee)),

then the similar theorem is proved, too.
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Notes.
1) Main theorems 1 (4.1) and 2 (4.2).
2) Cf. Gentzen [1].
3) Cf., for example, Hilbert [2]. But in it, he used the ‘

$\tau$ -symbol ‘, instead of the
$\epsilon$ -symbol, that makes $\tau$ x $F(x).mean\epsilon x7F(x)$ , where $7F(x)$ means ‘ not $F(x)$ ’.

4) For example, ‘ engerer Funktionenkalk\"ul ’ in Hilbert and Ackermann [3].

5) An individual is regarded as a function of zero argument place.
6) A proposition is regarded as a predicate of zero argument place.
7) We call each of them a free occurrence of the bound variable ee in $\mathfrak{F}(X)$ .
8) For a formula $b^{7}x\mathfrak{F}(x),$ H Se $\mathfrak{F}(x)$ or term $\epsilon$ se $\mathfrak{F}(x)$ , there may be the freedom of

choosing the formula $\mathfrak{F}(\alpha)$ , but the totality of the subterms of the latter which are those
of the former is independent of the way how choose the latter.

9) Cf. Gentzen [1] and Example 4 (1.7).
10) They are the abbreviations of ‘ introduction of $t7^{\gamma}$ in succedent ’ and ‘ introduction

of a in antecedent ’, respectively.
11) For the sake of this, for example, it suffices that the grade of $\mathfrak{f}(\tau_{i)}$ is not less

than those of $\mathfrak{f}(\tau_{i+1}),\ldots,$ $\mathfrak{f}(\tau_{n})$ .
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12) This sequence is in general not uniquely determined.
13) There exist in general more than one sequent which are described as $\mathfrak{S}^{*}$ (cf.

note 12)). Yet, if one of them is LK-provable, then any one of them is so.
14) In such a case, $s^{\triangleright}$ is an $b^{7}$-antecedent (cf. 2.11 and 2.12).
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